Lecture 2
Overview of Light in Water

Collin Roesler
Department of Earth and Oceanographic Science
Bowdoin College

Inherent Optical Properties

Radiative Transfer Equation

Radiometric Quantities

Apparent Optical Properties

Fig. 3.27. Relationships among the various quantities commonly used in hydrologic optics. [reproduced from Mobley (1994), by permission]
Tracing light from the Sun into the Ocean
The Source

What is the intensity and color of the Sun?

The bright sun, a portion of the International Space Station and Earth's horizon are featured in this space wallpaper photographed during the STS-134 mission's fourth spacewalk in May 2011. The image was taken using a fish-eye lens attached to an electronic still camera.

credit: NASA

http://www.space.com/12934-brightness-sun.html
Black body radiation

- Any object with a temperature >0K emits electromagnetic radiation (EMR)

- **Planck’s Law**: The spectrum of that emission depends upon the temperature (in a complex way)

- **Sun** $T \sim 5700$ K
 So it emits a spectrum of EMR that is maximal in the visible wavelengths

$$B(\lambda,T) = \frac{2hc^2}{\lambda^5 \left(\exp \left(\frac{hc}{\lambda kT}\right) - 1\right)}$$
Blackbody Radiation

\[B(\lambda, T) = \frac{2hc^2}{\lambda^5 \left(\exp \left(\frac{hc}{\lambda kT} \right) - 1 \right)} \]

% Planck's Law.
% Define the constants in the equation
h=6.63*10^(-34); \hspace{1cm} % Planck's constant (J s)
c=3*10^8; \hspace{1cm} % speed of light (m/s)
Ts=5700; \hspace{1cm} % blackbody temperature of the sun (K)
Te=288; \hspace{1cm} % blackbody temperature of the Earth (K)
k=1.38*10^(-23); \hspace{1cm} % Boltzmann's constant (J/K)

% Define a range of wavelengths over which to calculate the emission
L=0.05:.05:50; \hspace{1cm} % 0 to 50 (um)
L=L/1000000; \hspace{1cm} % convert to (m)

% Calculate the spectral energy density of the blackbodies
Bs=(2*h*c*c)./(L.^5.*(exp(h*c./(L*k*Ts))-1)); \hspace{1cm} % J s \left(\frac{m^2}{s^2} \right) / m^5 = J/s/m^3 = W/m^3 or W/m^2/m
% Convert to the same units as measured solar irradiance (W/m^2/nm)
Bsnm=(Bs*10^(-9))/10000;
Blackbody Radiation
Earth's atmosphere
Spectrum of energy that we measure is different from Planck’s Law predictions

- at Earth surface
 - Atmospheric gases
 - \((O_3, O_2, H_2O)\)
- beneath Ocean surface
 - Water
 - Particulate and dissolved constituents

http://lasp.colorado.edu/home/sorce/files/2011/09/fig01.gif
In the **absence** of the atmosphere

- What is the color of the sun?
- What is the color of the sky?
- What is the angular distribution of incident light?
In the presence of the atmosphere

• What is the color of the sun?
• What is the color of the sky?
• What is the angular distribution of incident light?
• So the atmosphere
 • Reduces the intensity
 • Changes the color
 • Changes the angular distribution
• Consider
 • Natural variations in $E_{\text{solar}}(\lambda)$
 • Measurement-induced variations in $E_{\text{solar}}(\lambda)$
• Try it for yourself in the radiometric properties lab
Impact of clouds on $E_{\text{solar}}(\lambda)$

- Intensity
- Color
- Angular distribution
- Impact on remote sensing
Now we are at the Ocean surface

- Surface effects

This photograph of the Bassas da India, an uninhabited atoll in the Indian Ocean, has an almost surreal quality due to varying degrees of sunglint. credit: NASA/JSC
As light penetrates the ocean surface and propagates to depth, what processes affect the light transfer?

- Absorption
- Scattering
- Re-emission
Case study 1:
Consider an ocean that has no particles but does have absorption

• Is there a natural analog?

The Rio Negro in 2010
Credit: MODIS Rapid Response Team
NASA GSFC
Case study 1:
Consider an ocean that has no particles but does have absorption

http://2.bp.blogspot.com/-4NPGeVA5zVs/T-iCGJp3GlI/AAAAAAAEEal/3cTvA31bth4/s1600/encontro-do-negro-e-solimoes.jpg
Case study 1:
Consider an ocean that has no particles but does have absorption
Case study 2:
Consider an ocean that has no absorption but does have particles

• Is there a natural analog?
Case study 2:
Consider an ocean that has no absorption but does have particles

• Is there a natural analog?

http://www.co2.ulg.ac.be/peace/objects/218-01.JPG

https://www.bigelow.org/enews/English%20Channel%20Bloom.jpg
While these examples have generally considered the whole visible spectrum, it is important to realize that within narrow wavebands, the ocean may behave as a pure absorber or pure scatterer and thus appear nearly “black” or “white” in that waveband.

- Pure absorber in near infrared (water absorption)
- Close to pure scatterer in the uv/blue (clear water)
From space the ocean color ranges from white to black generally in the green to blue hues.

- All of these observed variations are due to the infinite combination of absorbers and scatterers.

MODIS image of phytoplankton bloom in the Barents Sea observed on August 14, 2011 (image credit: NASA)

https://directory.eoportal.org/web/eoportal/satellite-missions/a/aqua
Now consider the process of absorption and scattering in the ocean

• As you look down on the ocean surface, notice variations in color, clarity and brightness
• These are your clues for quantifying absorption and scattering
 • Color: blue to green to red
 • Clarity: clear to turbid
 • Brightness: dark to bright
IOPs: Inherent Optical Properties

- Absorption, a
- Scattering, b
- Beam attenuation, c (a.k.a. beam c, ~transmission)

easy math: $a + b = c$

- IOPs are
 - Dependent upon particulate and dissolved substances in the aquatic medium;
 - Independent of the light field (measured in the absence of the sun)
Photo credits: Clark Little

Before measuring IOPs it is helpful to Review IOP Theory

Incident Radiant Power: Φ_o

No attenuation

Transmitted Radiant Power: Φ_t
IOP Theory

If $\Phi_t < \Phi_o$ there is attenuation
Loss due solely to absorption

\[\Phi_a \text{ Absorbed Radiant Power} \]

\[\Phi_o \text{ Incident Radiant Power} \]

\[\Phi_t \text{ Transmitted Radiant Power} \]
Loss due solely to scattering

\[\Phi_b \] Scattered Radiant Power

\[\Phi_o \]
Incident Radiant Power

\[\Phi_t \]
Transmitted Radiant Power
Loss due to beam attenuation (absorption + scattering)

\[\Phi_o \quad \text{Incident Radiant Power} \]

\[\Phi_a \quad \text{Absorbed Radiant Power} \]

\[\Phi_b \quad \text{Scattered Radiant Power} \]

\[\Phi_t \quad \text{Transmitted Radiant Power} \]
Conservation of radiant power

\[\Phi_o = \Phi_t + \Phi_a + \Phi_b \]
Beam Attenuation Theory

Attenuance

\[C = \text{fraction of incident radiant power attenuated} \]

\[C = \frac{\Phi_b + \Phi_a}{\Phi_o} \]

\[C = \frac{\Phi_o - \Phi_t}{\Phi_o} \]
Beam attenuation coefficient

\[c = \text{attenuance per unit distance (m}^{-1}) \]

\[c = \frac{C}{\Delta x} \]

\[c\Delta x = \text{limit } -\Delta \Phi/\Phi \]

\[\Delta x \to 0 \]

integrate

\[\int_{0}^{x} c \, dx = -\int_{0}^{x} d\Phi/\Phi \]

\[c \, x \bigg|_{0}^{x} = -\ln \Phi \bigg|_{0}^{x} \]
Beam Attenuation Theory

Beam attenuation coefficient

\[c = \text{attenuance per unit distance} \ (m^{-1}) \]

\[c \ x |^x_0 = - \ln(\Phi |^x_0) \]

\[c \ (x - 0) = - [\ln(\Phi_x) - \ln(\Phi_0)] \]

\[c \ x = -[\ln(\Phi_t) - \ln(\Phi_0)] \]

\[c \ x = -\ln(\Phi_t/\Phi_0) \]

\[c \ (m^{-1}) = (-1/x) \ln(\Phi_t/\Phi_0) \]

This provides a guide towards measurements (lab 2)
Following the same approach...

Absorption Theory

A = absorbance

\[a = \frac{A}{\Delta x} \]

\[A = \Phi_a / \Phi_o \]

\[a = \frac{A}{\Delta x} \]

\[a \, \text{(m}^{-1}) = (-1/x) \ln(\Phi_t / \Phi_o) \]

How is this measurement different from beam c?
Scattering Theory

$B = \text{scatterance}$

$b = \text{scatterance per unit distance (m}^{-1})$

$B = \frac{\Phi_b}{\Phi_o}$

$b = \frac{B}{\Delta x}$

$b \ (m^{-1}) = \frac{-1}{x} \ln(\frac{\Phi_t}{\Phi_o})$

How is this measurement difference from beam c, a?
Scattering has an angular dependence described by the Volume Scattering Function (VSF)

\[\beta(\theta, \phi) = \text{power per unit steradian emanating from a volume illuminated by irradiance} = \frac{\delta \Phi}{\delta \Omega} \frac{1}{\delta V} \frac{1}{E} \]

\[E = \Phi / \delta S \text{ [\(\mu\)mol photon m}^{-2} \text{ s}^{-1}] \]

\[\delta V = \delta S \delta r \]

\[\beta(\theta, \phi) = \frac{\delta \Phi}{\delta \Omega} \frac{1}{\delta S \delta r} \frac{\delta S}{\Phi_0} = \frac{1}{\Phi_0} \frac{\delta \Phi}{\delta r \delta \Omega} \]

Fig. 1.5. The geometrical relations underlying the volume scattering function. (a) A parallel light beam of irradiance \(E\) and cross-sectional area \(d\lambda\) passes through a thin layer of medium, thickness \(dr\). The illuminated element of volume is \(dV\). \(dI(\theta)\) is the radiant intensity due to light scattered at angle \(\theta\). (b) The point at which the light beam passes through the thin layer of medium can be imagined as being at the centre of a sphere of unit radius. The light scattered between \(\theta\) and \(\theta + \Delta \theta\) illuminates a circular strip, radius \(\sin \theta\) and width \(\Delta \theta\), around the surface of the sphere. The area of the strip is \(2\pi \sin \theta \Delta \theta\) which is equivalent to the solid angle (in steradians) corresponding to the angular interval \(\Delta \theta\).
A note about solid angles

- Arc length of a circle
 - $= r \, d\theta$

- Area on a sphere, dA
 - $\rightarrow r \, d\theta$
 - $\rightarrow r \sin\theta \, d\phi$
 - $\sin\theta \, d\theta \, d\phi$
Volume Scattering Function (VSF)

\[\beta(\theta, \phi) = \text{power per unit steradian emanating from a volume illuminated by irradiance} \]

\[\beta(\theta, \phi) = \frac{1}{\Phi_o \delta r \delta \Omega} \delta \Phi \]

\[b = \int_{4\pi} \beta(\theta, \phi) \, d\Omega \quad \text{What is } d\Omega? \]

\[b = \int_{0}^{2\pi} \int_{0}^{\pi} \beta(\theta, \phi) \sin \theta \, d\theta \, d\phi \]
Calculate Scattering, b, from the volume scattering function

$$b = \int_{4\pi} \beta(\theta,\phi) \, d\Omega$$

If there is azimuthal symmetry

$$b = 2\pi \int_0^{\pi} \beta(\theta,\phi) \sin \theta \, d\theta$$

$$b_f = 2\pi \int_0^{\pi/2} \beta(\theta,\phi) \sin \theta \, d\theta$$

$$b_b = 2\pi \int_{\pi/2}^{\pi} \beta(\theta,\phi) \sin \theta \, d\theta$$

Phase function: $\tilde{\beta}(\theta,\phi) = \beta(\theta,\phi)/b$

These are spectral!
Inherent Optical Properties

- Absorption, a
- Scattering, b, and volume scattering function, β
- Beam attenuation, c
Apparent Optical Properties

• Derived from Radiometric measurements
 • Above or within ocean
 • Ratios or gradients

• Depend upon
 • light field
 • IOPs

• AOPs describe:
 • Depth of sunlight penetration (**diffuse attenuation**)
 • Angular distribution of sunlight (**average cosine**)
 • Ocean color and brightness (**reflectance**)
Now that we have some vocabulary
Trace a beam of sunlight through the ocean

Fig. 1.6. The processes underlying the equation of transfer of radiance. A light beam passing through a distance, \(dr \), of medium, in the direction \(\theta, \phi \), loses some photons by scattering out of the path and some by absorption by the medium along the path, but also acquires new photons by scattering of light initially travelling in other directions \((\theta', \phi') \) into the direction \(\theta, \phi \).

• Describe the beam of sunlight as radiance, \(L \), traveling along a path described by the zenith and azimuth angles, \(\theta \) and \(\phi \)

• What processes impact the beam?
Consider the radiance, $L(\theta, \phi)$, as it varies along a path r through the ocean, at a depth of z

$$\frac{dL(\theta, \phi)}{dr} = \text{absorption along path } r - a L(z, \theta, \phi)$$

$$\text{scattering out of path } r - b L(z, \theta, \phi)$$

$$\text{scattering into path } r \int_{4\pi} \beta(z, \theta, \phi; \theta', \phi') L(\theta', \phi') d\Omega'$$
Radiative Transfer Equation

Consider the radiance, \(L(\theta, \phi) \), as it varies along a path \(r \) through the ocean, at a depth of \(z \):

\[
\frac{d L(\theta, \phi)}{dr} = -a L(z, \theta, \phi) - b L(z, \theta, \phi) + \int_{4\pi} \beta(z, \theta, \phi; \theta', \phi') L(\theta', \phi') \, d\Omega' \\
\cos \theta \, dL(\theta, \phi) = -a \, L(z, \theta, \phi) - b \, L(z, \theta, \phi) + \int_{4\pi} \beta(z, \theta, \phi; \theta', \phi') \, L(\theta', \phi') \, d\Omega'
\]

If there are sources of light (e.g. fluorescence, raman scattering, bioluminescence), that is included too:

\[
a(\lambda_1, z) \, L(\lambda_1, z, \theta', \phi') \rightarrow \text{(quantum efficiency)} \rightarrow \, L(\lambda_2, z, \theta, \phi)
\]
Radiative Transfer Equation relates the IOPs to the AOPs

Fig. 3.27. Relationships among the various quantities commonly used in hydrologic optics. [reproduced from Mobley (1994), by permission]
Now you will spend the next four weeks considering each of these topics in detail