Inelastic Scattering

UNIVERSITY
OF MIAMI

Ken Voss, Ocean Optics Summer class, 2020




Introduction

Remember your freshman physics class and
all that time you spent learning about
collisions? Two types of collisions: elastic
and in-elastic. What was the difference?
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Introduction

Remember your freshman physics class and
all that time you spent learning about
collisions? Two types of collisions: elastic
and in-elastic. What was the difference?

Elastic collisions conserved Kinetic
energy and momentum, inelastic just
momentum....was energy lost?
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Introduction

So elastic scattering: photons come in and
out of the process with the same energy
(wavelength)

In-elastic scattering: photons come in with
one wavelength and leave with another
wavelength. (remember Compton scattering
of photons?). Difference between this and
fluorescence is basically a short intermediate
time for the event (which leads to other
effects).
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Raman Scattering

Strongest, most
evident in natural
seawater, in-elastic -
scattering process is®
Raman scattering,
although relative to
some other
substances, water
has a weak Raman

cross section. (first
seen 1920’s)
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Introduction

As opposed to the absorption process discussed earlier, the initial photon
does not have to match an energy level to be absorbed, at least for a very
short time, limited by the uncertainty principle (AEAt<nh). But the probablility
of this happening is greatly enhanced if there is a nearby transition to the
virtual energy level (but if too close can cause issues of confusion with

fluorescence).
Energy <
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level +<T T
; AE = AE =
AE =hv, AE =-hy, | AE,=hy, | [-h(v,-v,) | AE,=hy, [ [-h(v,+1,)
------ > SEREL> JNERNEELEEL o SREEL ENLELLL o LN o
1st excited |y
vibrational state AE =hv,
Ground state EA A i - . A
Rayleigh Stokes anti-Stokes
scattering scattering scattering

UNIVERSITY
OF MIAMI




Ris (H1/W1)/(H2/W2), H=height, W=gaussian width

Raman Scattering
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Raman shift, cm~! Figures from Becucci et al., Applied Optics,

38, pg 928, 1999.

For water two main peaks, around 3200 cm-1

and 3400 cm-1 (O-H stretch in water), ratio depends on temp and salinity.
Proposed as early as the 70’s to be used with lasers to remotely sense water
temperature. (Leonard, Caputo and Hoge) Also used to calibrate a lidar return.

Note how to use this shift: 1/Final Lambda= 1/wavelength — shift all in cm or cm-
1
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Raman Scattering

Importance in the natural light field:

By the early 80’s the ocean optics community
were getting multispectral instruments, either full
blown spectrometers (for example Ray Smith and
John Tyler, Vislab) or multi channel radiometers,
such as the MER-1032 made by Biospherical
instruments.

Seeing strange results: Diffuse attenuation
coefficients less than water absorption.
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K, which you expect
has to be larger than

absorption was being 0.4~
measured to be less
than absorption when -
approaching red B = o ”
wavelengths. (K about
=a+by, g G2
7 W

Sought instrument
problems: leaks in 0.1
filters (out of band) for
example...hard

problem in general 0.05 ' ' ' l ' .
. . 400 450 500 550 600 650 700
(red).
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Raman Scattering

We knew Raman was there, particularly for laser
excitation, most thought it was unimportant in
natural light. Series of people figured out that we
were wrong:

Sugihara, Kishino and Okami, J. Oceanogr. Soc.
Japan, 1984.

Stavn and Weidemann, Applied Optics, 1988.

Marshall and Smith, Applied Optics, 1990
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Raman Scattering

Characteristics of Raman scattering:

1) relatively weak, b, =1.84 x 10-*m'at 532 nm,
vs rayleigh scattering, 1.8 x 103 m-".

2) scattering phase function like water Rayleigh,
but higher depolarization factor.

3) wavelength shift approximately 3400 cm-.

4) strength varies with wavelength, around A=,
depending on whether you are talking excitation
or emission wavelength and photon vs energy.
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Raman Scattering
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Energy shift is constant (3400 cm-), which causes a varying shift in
wavelength, increasing towards red:
Note how to use this shift: 1/Final Lambda= 1/wavelength - shift
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Raman Scattering

Look | light fiel
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Raman Scattering

Raman becomes important when the amount of light at the emission
wavelength is reduced in elastic processes relative to the excitation
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Raman Scattering

1) Raman important because it shifts light from where it is abundant to
where the “elastic” part is small.

2) Need to be careful when interpreting measurements at these
wavelengths

Upwelling Radiance (Nadir)
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Wavelength (nm) Fig. 3. Raman fraction of L, for a water body consisting of pure

Fig. 4. Raman fraction of E, for a water body consisting of pure seawater for 6, = 20°, 37°, and 60°.
seawater for 6, = 20°, 37°, and 60°.

Gordon, AO, 3166-3174, 1999
UNIVERSITY Note...most important for clear (pure) water...why?
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Raman Scattering
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Fig. 6. Raman fraction of (L, ), as a function of C for 6, = 37° and
wavelengths of interest in ocean color remote sensing.

Should say...this modeling done without current knowledge of the UV.

Gordon, AO, 3166-3174, 1999
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Measuring Raman Scattering

How do you measure?

In lab, 90 degree scattering experiments...must be careful to exclude excitation.
Also careful of polarization effects on instrumentation.

In the field:
1) indirectly....make measurements and model how much Raman should be there
given the measured excitation field.

2) directly....Ring effect....3 groups, basically simultaneously, but independently
worked along these lines in early 90’s.....NOSC (now SPAWAR), TAMU, UM.
TAMU only theory, NOSC specifically for a specific application, Satellite Laser
Communication, and UM both theory and experiment.

Key: Broad emission spectrum, sharp lines in the light field....Ring effect
measures the filling of existing spectral lines by a broad emission source.
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Measuring Raman Scattering
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Figure 7. The spectrum near 486 nm measured at various
depths. Virtually no change is observed in the Fraunhofer

line.

Ge et al, JGR, 13227-13236, 1995
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lepths. As can be seen, the Fraunhofer line is filled quickly.
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Using Ring effect

Can use this to also look at fluorescence. Note, has been used for

terrestrial plants to look at plant stress (such as too little water).
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Brillouin Scattering

Other Inelastic scattering:
Brillouin scattering

Figure 2. Schematic showing the scattering of an inci-
dent electromagnetic wave from an elastic wave.
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Figure 3. Spectrum of scattered light showing both the
central or Rayleigh peak (FWHM = I',) and the Brillouin
doublets (FWHM = T};) as a function of frequency v.

(5)

Typical values (530nm,
backscattering, v=1500
m/s, wavelength shift is
7 x10°3 nm.

Note shift depends on
speed of sound and n,
which depend on salinity
and temperature, but
sound speed changes
more rapidly with
temperature.
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Fluorescence

Now Fluorescence

Remember distinction is lifetime, longer intermediate state, more chance to
“forget” information about incoming photon....

Phytoplankton fluorescence basically isotropically emitted (Gordon et al., L&O,
1993).

Probably also completely depolarizing for phytoplankton, has been used to
separate polarization from natural light. Found one article using techniques on
extracted compounds from Red Tide organisms.

Polarization of Fluorescence generally used as an indication of the lifetime of
the state and diffusion of the fluorophore.

" The impact of algal fluorescence on the underwater polarized light field
" A.Tonizzo, A. Ibrahim, J. Zhou, A. Gilerson, B. Gross, F. Moshary, S. Ahmed
(2010), Proceedings of SPIE Ocean Sensing and Monitoring Il (5-9 April,

Orlando, FL),
UNIVERSITY
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CDOM fluorescence

Other fluorescent properties (besides Chl and pigments described in next lecture)

CDOM Fluorescence, EEMS techniques (Paula Coble, USF) :
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CDOM

CDOM typically measured in the field by either absorption, which is also its
largest natural effect on the light field:

1.5

These samples from Orinoco Basin
Blough et al, JGR, 1993
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CDOM

Or measured with fluorescence:

IW\\ (d) Or single excitation and emission:
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CDOM

In most models of upwelling radiance, CDOM fluorescence is ignored,
why?
(hint on next slide?)

Would be useful to have the quantum fluorescence efficiencies, which are
rarely measured (one exception Hawes et al, Ocean Optics Xl, 1992, on

concentrated samples.)
Most measurements are related to quinine sulfate or some other
fluorescent material which makes it difficult to include in optical models
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CDOM flurorescence
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QOils

Other materials: Qils fluoresce when illuminated by UV...can get fingerprints for
these with EEMS systems. (Stelmaszewski, Optica Applicata, 405-418, 2004)
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Fig. 1. Examples of the normalized total spectra @ of hexane solutions of oils.
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Minerals

Minerals (such as calcite) fluoresce when illuminated by UV light.
365nm Ex looks pink, 320 nm looks red, 254 nm looks blue. Typically not enough
UV to matter (except to geologists, and the Fluorescent Mineral Society).
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Conclusion

Inelastic scattering:
Raman important to take into consideration when modeling light field and
comparing models with data.

Brillouin scattering: could be an interesting technique for lidar remote sensing
temperature. Being applied by Thomas Walther (Germany now after Fry’s lab).

CDOM fluorescence important for measuring CDOM, not as big a deal in the
natural light field (in my data and view...not necessarily everyone).

Qil fluorescence important for detecting, fingerprinting oil, not as much in the
natural light field

Mineral fluorescence important for identifying minerals...not in natural light field.
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