Lecture 6
Scattering Part 1-
theoretical basis of scattering, scattering
by individual particles, bulk scattering
measurements
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Review measurement Theory
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Derivation of scattering coefficient

Scatterance
B = fraction of incident Dy
radiant power scattered /] D,
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Scattering geometry
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* Light passes through thin layer, dr
* |lluminating volume, dV

* Scattering at
* polar angle Y

* azimuth angle ¢




Solid angle

e Circle

/%L e Radius, r
r e Differential polar angle, dy

e Arclength [ =rdy

e Sphere
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Scattering has an angular dependence described by

the Volume Scattering Function (VSF)
LY, P) = power (W) per unit steradian (sr~1) emanating from a

volume (m?) illuminated by irradiance (Wm™2) = %%% (m~1lsr™1)
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VVolume Scattering Function (VSF)

B, @) = power per unit steradian emanating from a
volume illuminated by irradiance
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Calculate Scattering, b, from the
volume scattering function
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If there is azimuthal symmetry
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These are spectral!



Particle parameters that

fluence scattering

size (Diameter : Wavelength)
shape
refractive index relative to surrounding medium

absorption of radiation through particle



Small Particles: Rayleigh scatterers

e Propagating EM wave sets up
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Scattering - Rayleigh

e Volume Scattering Function, £ (1) is almost equal in all
directions

 The spectral dependence of scattering is proportional to A
—>shorter wavelengths preferentially scattered

B)

Volume Scattering Function

~__

0 30 60 90 120 150 180

Y

A

400 500 600 700
Wavelength (nm)



Scattering — Large particles

e Particle diameter >> wavelength of light

e Particle interacts with EMR as a geometric shape

e EMR wave oscillation in particle and at interfaces

e Scattering is predicted by Mie theory = Mie scattering

e Scattering is composed of refraction, reflection,
diffraction
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Scattering — Large particles

Dera, Marine Physics



Refractive Index

e Speed of EMR
— inavacuum (air), ¢=3*10%m/s
— Slows down in other media
e the index of refraction, n
— is a property of a medium
— n =c/v, where v is the speed of EMR in the medium
- Ny = 1; Nyater = 1.33, Nseawater = 1.34
e We typically parameterize refractive index of oceanic
particles relative to the seawater medium, m = np/nSW



Refraction

e As EMR enters a particle from seawater, it
slows down (unless it is a bubble)

e The wavelength shortens

e Can change propagation angle if incidence
angle not 1 to interface
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Reflection and Transmission

e Fresnel’s Law quantifies reflection and
transmission of EM radiation across an
interface between two media with different
refractive indices

— CI)Incident =& + O

— Function of relative index of refraction, n, and
incidence angle

transmitted reflected



Diffraction:
independent of index of refraction,
bending of EMR around particle



Scattering — Large particles

e Proportional to particle cross-sectional area
(although not equal to it because of diffraction)

e Angular dependence of large particle scattering
is primarily in the forward direction (because of

diffraction)

Mie Scattering,
larger particles
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Scattering — Large particles

e Spectral dependence of scattering is very weak

e Paths through particle weakly depend on
wavelength

b(3) Rayleigh Increasing
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Effect of absorption

e Parameterized by n’, the imaginary
refractive index relative to surrounding
medium

e Describes attenuation of EM radiation as it
passes through particle

e Reduces scattered radiation



Effect of Absorption in the extreme

Only diffraction




What are the constituent properties that
we need to consider

e Particle size
e Particle composition

— Index of refraction (real part)
— Index of refraction (imaginary part)

e Particle shape

e |nternal structures



What are the particles in the ocean that
are responsible for light scattering

e \Water molecules
e Dissolved matter

— Inorganic salts
— Organic matter (CDOM, colloids)

e Particles
— Organic
e Cells and organisms (viruses, bacteria, phytoplankton, to...)
e Detrital aggregates
— Inorganic
e Sediments

e Minerals
e Air bubbles



Scattering in the ocean:

water molecules
Rayleigh Scattering
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Scattering by CDOM: From Emmanuel Boss

Scattering by molecules whose D<<A. Rayleigh scattering:

b(/ﬁt) oc 17° B(6) (1 + 0052(6’))

“No evidence in the literature that scattering is significant (the only
place I have ever found significant dissolved scattering (c,>a, ) was
in pore water).”



Scattering in the ocean:
submicron particles (~colloids)
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Detector Response (relative)

Scattering in the ocean:
marine viruses
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Scattering in the ocean:
phytoplankton (modeled)
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Scattering in the ocean:
inorganic minerals

e Terrestrial dust sources

Stramski et al. 2007



B(0) response to particle size distribution

Back to oceanic particle size distributions
represented by size slope
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B(0) as a function of particle size distribution
(size slope), holding refractive index constant
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B(0) as a function of index of refraction,
holding size spectrum constant
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Basis for design of LISST

32 concentric ring detectors




Scattering in the ocean:
which particles contribute to
backscattering and scattering

Boss et al., 2004, TOS



Consider what information
scattering can provide
and what do you want to

measure
0 e Concentration
oF * Size
0, e Shape

B(0) e Composition



Importance of scattering in the ocean

e Competing forces of absorption and scattering on
the downward propagation of light in the ocean

e Backscattering and the upward propagation of
light from the ocean

Normalized water-leaving radiance in the Mediterranean Sea (Sept 2003)
412 nm 490 nm
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