Beam attenuation
(aka extinction, beam-c)

* Theory of measurement... reality of measurement

* Distribution in ocean

* Theoretical beam attenuation (model predictions for idealized
particles with different sizes/compositions)

* Afew applications
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Beam Attenuation
Measurement Theory

C = attenuance

c = fractional attenuance )
per unit distance (m™) D, c = AC/AX
C AX = - AO/D
5 [, cdx =-, do/@
D, @,

¢(x-0) = -[ In(D)-In(Do)

C X = -[ In(Dy)-In(D,)
c X = - In(DJ/D,)
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¢ (M) = (-1/x) In(dJ/D,)

Roesler and Boss, 2008 AX



Beam Attenuation
Measurement Reality

¢ = (-1/x) In(DJD,)

source detector

/ P /
@ = = . el
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X Roesler and Boss, 2008
Detected flux () To get a signal detector has finite
measurement must acceptance angle — some forward

exclude scattered flux scattered light is collected.



Beam Attenuation
Measurement Reality

¢ = (-1/x) In(DJD,)

collimated source detector
/ i
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D,
X Roesler and Boss, 2008
Instrument | Acceptance , _ . ,
angle (in-water) Which instrument will give the higher value of c, all
AC-meter | 0.93 other things being equal?
LISST-B 0.0269°




Beam-c issues: acceptance angle.

Jerlov, 1976: less than 5% of scattering in first 1°.
Petzold, 1972: up to ~30% of scattering in first 1°.

Instrument | Acceptance Path-length
angle (in-water)

AC-9 0.93 10cm
0.0269° scm

LISST-Floc |0.006° Scm
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Beam-c issues: reference materials
= (-1/x) In(DdJ/D,)

We typically never measure @, (some

instruments, eg LISST, do monitor changes in
lamp intensity).

Instead, we measure a reference material:

Cref = ( 1/X) In(q)t ref/q)o)

Csample Cref = ( 1/X) In(q)t sample/q)t ref)

Works as long as @, is stable or its stability monitored.



Scenario: You collect some LISST data in the Dead Sea
(S =270 g kg') and the instrument gives you negative
values for beam attenuation. You collect a bottle sample
of the same water, filter it, and measure the absorption

coefficient in a 1 cm cuvette on a benchtop
spectrophotometer, but the problem is even worse. Both

measurements are referenced against the same MilliQ.

What's going on?



Beam-c issues: reference materials

Fresnel equation,

source lens  window window  aperture normal incidence
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Boss et al. 2013; figure: Boss et al., 2019



Beam-c issues: “Dark” signal removal

Csample Cref = ( 1/X) In(q)t sample/q)t ref)

Another wrinkle: Many sensors report a signal even when no
light hits the detector (dark signal). For accurate
measurements this signal needs to be removed:

C C — —— <(¢Sampl€ (pdark))
sample — ‘“ref (gbref gbdark)



Beam attenuation measurement

Advantages:
Well defined optical quantity (for a given acceptance angle).

No need to correct for absorption or scattering along the path
(unlike the VSF and a).

Not dependent on polarization state.

First commercial inherent optical quantity measured (O(1980))
-> long history.



Scenario: You go on a cruise where the ship’s rosette
carries a C-Star transmissometer of unknown
provenance. What info do you need to get from the
ship’s technician (and/or find out on your own) before
using the data from the sensor?



Theoretical Beam Attenuation:

Like all IOPs, c, is dependent on size and composition.

Attenuation cross section

C ., = attenuation of a single particle
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Theoretical particle with
"phytoplankton-like” refractive
index, for A=650nm



Theoretical Beam Attenuation:

Like all IOPs, c, is dependent on size and composition.

Extinction (or attenuation) efficiency

Q ¢ = Optical/Geometric cross-section
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Note that Q.approaches 2 for large sizes.



Theoretical Beam Attenuation:

Like all IOPs, c, is dependent on size and composition.

@, = C,/particle volume

107" 10Y 10" 102
D [pum]

Peak sensitivity is to particles with diameter 10%-10 microns
This IOP model is for A = 650 nm ... more to come on wavelength
dependence



Theoretical Beam Attenuation:
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(To further ‘compact’ the presentation size
is normalized by wavelength;

also here “n” is index relative to seawater) Boss et al., 2001



Theoretical Beam Attenuation:
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Theoretical Beam Attenuation:
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Mass-normalized scattering (b,™) only varies by a factor of ~2
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Babin et al. 2003

Modeled, mass-normalized scattering
coefficient (b,"(555)) for non-absorbing
particles

Line = organic particles (more—>less
hydrated). Symbols = mineral particles.

Most organic particles are water-filled
“bags” where the dry material
(carbohydrates, proteins, lipids) have
higher indices of refraction (Aas, 1996)



Good correlation with total partlcle volume, and particulate organic carbon.
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Lower attenuation/mass in high SPM settings
(SPM = suspended particulate matter)
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What is the typical distribution of the beam
attenuation?



What is the typical distribution of the beam
attenuation?
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Typical distribution
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Single wavelength beam attenuation and
biogeochemistry:

Found to correlate well with:

« Total suspended mass

« Particulate organic carbon

« Particulate volume

* Phytoplankton pigments in areas where the mixed layer is
stable and light relatively constant.




Beam attenuation: proxies and
applications

* Particle size distribution from c, spectral slope
* Particle composition and species succession

* Response of ¢, during particle
aggregation/disaggregation
* Biological rates from diel cycles in c,




C..i/volume is sensitive to the wavelength
of measurement:

S S
N (o)}
T T

o
b

particle beam attenuation/volume

article diameter[u]

The particle size where the maximum occurs, and the
width of the peak, changes between blue to red
wavelengths. Spectral c, contains size information!



Beam-c and PSD relation (more tomorrow):

Mie Theory (homogenous spheres):

Volz (1954): For non-absorbing particles of the same n and
a power-law distribution from D,,,;;=0 to D, 5=,

N(D)=N,(D/D,)"-

cp(x):cp(xo)(%j E=ye3

0

- expect a relation between
attenuation spectrum and PSD.
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Particulate attenuation
spectral slope as a tool to
study particle composition
and species succession:

IOP data fromz=3m

Phytoplankton type al is
inferred to be high-light
adapted, a2 is low-light
adapted
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How would you expect beam
attenuation coefficients to
compare between aggregates
and the disaggregated primary
particles (with mass
concentration held constant)?

Aggregates




How would you expect beam
attenuation coefficients to
compare between aggregates
and the disaggregated primary
particles (with mass
concentration held constant)?
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How would you expect beam
attenuation coefficients to
compare between aggregates
and the disaggregated primary
particles (with mass
concentration held constant)?
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Diel cycles In beam attenuation

(at 20 m, from CTD profiles 8x/day)
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Summary:

 Beam attenuation is a robust, relatively
straightforward measurement with
numerous applications

« ... but caveats to be aware of include
acceptance angle effects, reference
materials, dark signal removal



