## Particle imaging

## Meg Estapa, Ocean Optics Course 2021



Alldredge and Gotschalk, 1988 (panel "b" scale bar $=1 \mathrm{~cm}$, others $=1 \mathrm{~mm}$ )


Flintrop et al. 2018

## Why particle imaging?

(i.e., What information content do you gain? What processes are captured?)

## Emphasis today on

- Particles $\sim 100$ um and larger (mostly)
- In situ techniques (mostly)
- Digital systems
*not* remote sensing images! (those will come later...)


## Overview

- Theory
- Instrumentation examples (major types, emphasis on systems in wide use)
- Particle detection \& classification


Upper: Clavano et al. 2007; lower: Lombard et al. 2019


Particle size ranges, optical modeling regimes, and particle sizing/imaging instruments

## Optical resolution of an imaging system



Figure 1.1, Ocean Optics Web Book (Mobley et al.)

## Optical resolution of an imaging system



Figure 1.1, Ocean Optics Web Book (Mobley et al.)

## Optical resolution of an imaging system

- Rayleigh criterion: Diffraction-limited horizontal resolution ( $r$ ) of an imaging system

$$
r=\frac{1.22 \lambda}{N A} \quad \text { where } \quad \begin{array}{ll}
N A=n \sin \alpha & \text { if objective lens only } \\
N A=n \sin (2 \alpha) & \text { if objective + condenser lenses }
\end{array}
$$

(NA = numerical aperture)

figure: http://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html

## Optical resolution of an imaging system

- Rayleigh criterion: Diffraction-limited horizontal resolution ( $r$ ) of an imaging system

$$
r=\frac{1.22 \lambda}{N A} \quad \text { where } \quad \begin{array}{ll}
N A=n \sin \alpha & \text { if objective lens only } \\
N A=n \sin (2 \alpha) & \text { if objective + condenser lenses }
\end{array}
$$

- However depth of field varies in proportion to $1 /(\mathrm{NA})^{2}$
higler NA b lower NA f/2.8


Toward Camera and Lens
f/8

Plane of Best Focus Small Object Details


## Sampling density of an imaging system

- Ideally want sampling density / camera resolution (pixels per physical length) to match optical resolution
- Nyquist sampling theorem: sampling frequency should be at least $2 x$ the highest-frequency features in the specimen

$175 \times 175$
Total Pixels = 30625




## Illumination types (by analogy to microscopy)

- Brightfield (transmitted-light) microscopy
- Imaging Flowcytobot
- Flowcam




## Illumination types (by analogy to microscopy)

- Brightfield (transmitted-light) microscopy
- Imaging Flowcytobot
- Flowcam

aggregate images: C. Durkin, unpublished



## Illumination types (by analogy to microscopy)

- Brightfield (transmitted-light) microscopy
- Imaging Flowcytobot
- Flowcam

- Darkfield (scatteredlight) microscopy
- Underwater Vision Profiler

aggregate images: C. Durkin, unpublished



## Illumination types (by analogy to microscopy)

- Brightfield (transmitted-light) microscopy
- Imaging Flowcytobot
- Flowcam

- Darkfield (scatteredlight) microscopy
- Underwater Vision Profiler

Also holography, line-scanning cameras...

aggregate images: C. Durkin, unpublished

## Overview

$\checkmark$ Theory

- Instrumentation examples (major types, emphasis on systems in wide use)
- Particle detection \& classification
- Challenges


## Imaging Flowcytobot (Olson \& Sosik, 2007)



Fig. 2. Schema of fluidics system of Imaging FlowCytobot.


Fig. 3. Schema of optical layout of Imaging FlowCytobot.

## Underwater Vision Profiler 5 (Picheral et al., 2010)



- Sidescattered light detection
- Empirical imaged volume and pixel size calibrations required
- Particles below ~100 um not well-resolved
- Large ( $\sim 1$ L) sample volume/image


Thumbnails below:
scalebars $=5 \mathrm{~mm}$


## Holographic imaging - basics

- Sample volume illuminated by coherent, monochromatic light source
- Interference between diffraction pattern and the original, unscattered beam is recorded reconstruction provides 3D image of particle size, shape, orientation


Fig. 1. Typical setup of digital holographic recording of a particle field based on in-line holography.
Gabor introduces holography in a paper in the journal Nature

## Holographic imaging - basics



## Holographic image reconstruction (example)

- Sample volume geometry (z axis is the optical axis)
- Background = average along z axis (or over some time interval)
- Identify in-focus zcoordinate of particles and create composite 2D image

Figures: Davies et al., 2015



McFarland, et al. 2020

## Does orientation matter?

- In situ digital holography
- D. brightwellii diatom colonies with preferential orientation increased $\mathrm{a}_{\phi}$ by 4.5-24.5\%.



## Line-scanning (shadowgraph) cameras

 Laser Optical Plankton Counter (LOPC, Hermann et al. 2004)- Simple optics (linear diode array detector)
- Relatively large depth of field/sampling volume
- Limited particle image detail


Line-scanning (shadowgraph) cameras Laser Optical Plankton Counter (LOPC, Hermann et al. 2004)

(B)


(C)

RECONSTRUCTED SHAPE PROFILE


## Line-scanning (shadowgraph) cameras

In Situ Icthyoplankton Imaging System (ISIIS; Cowen and Guigand, 2008)


Fig. 4. In situ invertebrate zooplankters. 0-40 m depth, Florida current. Selected images of invertebrate plankton captured via /SIS. Organisms are not scaled to each other in this composite image; sizes range from a few millimeters to several centimeters. A. Larvacean (Oikopleura sp.). B. Scyllarid lobster larva. C. Unidentified larval crustacean (?). D. Chaetognath. E. Copepod with eggs. F. Ctenophore. G. Ctenophore with feeding tentacles extended. H. Aggregate phase Thaliacean salp with reproductive buds. I. Ctenophore (Velamen sp.). J. Pterotracheid heteropod.


Fig. 1. Light scheme using shadowgraph technique. Light passes through plano-convex lens, thereby establishing a collimated light beam. The advantages of this approach over other lighting techniques include high depth of field $(20+\mathrm{cm})$, telecentric image (magnification level not affected by distance from object to the lens), and very sharp outlines of organisms and internal structures (facilitates automated recognition).

- Very large sampling volume ( $70 \mathrm{~L} / \mathrm{s}$ at $2.5 \mathrm{~m} / \mathrm{s}$ tow speed)
- Ability to observe large, fragile organisms in situ


## Overview

$\checkmark$ Theory
$\checkmark$ Instrumentation examples (major types, emphasis on systems in wide use)

- Particle detection \& classification
- Challenges


## Particle detection and classification

1. Find the particles
2. Measure and identify the particles
3. Interpret the data

## Particle detection and classification

\author{

1. Find the particles
}

## 2. Measure and identify the particles

## 3. Interpret the data



Figure, Durkin et al., in revision


## Segmentation:

 differentiating between background and particle

Giering et al, 2020a

## Segmentation:

differentiating between background and particle

| g | Type | Name | Example |  |  | Description and reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ackground and particle | Edge | Canny | 管解 |  |  | First smoothes the image using Gaussian convolution and then highlights regions with high first spatial derivatives (edges) using a 2D gradient operator similar to Roberts Ref: Canny, 1986 |
|  | Edge | Roberts |  |  |  | Performs 2D spatial gradient measurements by passing two $2 \times 2$ convolution masks along the image Ref: Roberts, 1963 |
| Table, continued... Edge detection | Edge | Scharr | $\frac{4 n^{2}+4}{6}$ | $5$ |  | Variation of Sobel algorithm Ref: Scharr, 2000 |
| algorithms | Edge | Sobel |  | ${ }^{604}$ |  | Performs 2D spatial gradient measurements by performing convolution between two $3 \times 3$ kernels and the image Ref: Sobel and Feldman, 1973 |

TABLE 1 | Threshold algorithms.

Table, continued... Edge detection algorithms

Giering et al, 2020a

Segmentation: differentiating between background and particle


Sosik and Olson, 2007

## Particle identification - machine learning



Gonzàlez et al., 2019

## Particle identification machine learning

Figure: Classified particles collected in sediment traps

What if classes are not distinct from one another?


Computing particle volume (or carbon) from image area


Giering et al., 2020b

Computing particle volume (or carbon) from image area


D


E


Moberg and Sosik, 2012

| Classification | Shape | width | length | Volume | $\mathrm{C}=\mathrm{A} \times \mathrm{V}^{\mathrm{B}}$ (Equation 2) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | A | B | ref |
| aggregate | sphere | w = ESD | $1=$ ESD | $\mathrm{V}=\frac{4}{3} \times \pi \times\left(\frac{E S D}{2}\right)^{3}$ | $0.1 \times 10^{-9}$ | 0.8 | 1 |
| dense detritus | sphere | w = ESD | $1=$ ESD | $\mathrm{V}=\frac{4}{3} * \pi \times\left(\frac{E S D}{2}\right)^{3}$ | $0.1 \times 10^{-9}$ | 0.83 | 1 |
| large loose fecal pellet | cylinder | $\mathrm{W}=\frac{553 \times E S D}{E S D+996}$ | $1=\frac{\pi \times\left(\frac{E S D}{2}\right)^{2}}{w}$ | $\mathrm{V}=1 \times \pi \times\left(\frac{w}{2}\right)^{2}$ | $0.1 \times 10^{-9}$ | 0.83 | 1 |
| long fecal pellet | cylinder | $\mathrm{w}=\frac{187 \times \text { ESD }}{E S D+424}$ | $1=\frac{\pi \times\left(\frac{E S D}{2}\right)^{2}}{w}$ | $\mathrm{V}=1 \times \pi \times\left(\frac{w}{2}\right)^{2}$ | $0.1 \times 10^{-9}$ | 1 | 1 |
| short fecal pellet | ellipsoid | $\mathrm{w}=0.54 \times \mathrm{ESD}$ | $1=\frac{E S D^{2}}{w}$ | $\mathrm{V}=\frac{4}{3} \times \frac{l}{2} \times \pi \times\left(\frac{w}{2}\right)^{2}$ | $0.1 \times 10^{-9}$ | 1 | 1 |
| mini pellet | sphere | w = ESD | 1 = ESD | $\mathrm{V}=\frac{4}{3} \times \pi \times\left(\frac{E S D}{2}\right)^{3}$ | $0.1 \times 10^{-9}$ | 1 | 1 |
| salp fecal pellet | cuboid | $\mathrm{w}=0.63 \times \mathrm{ESD}$ | $1=\frac{\pi \times\left(\frac{E S D}{2}\right)^{2}}{w}$ | $\mathrm{V}=1 \times \mathrm{w} \times \frac{\mathrm{w}}{4}$ | $0.04 \times 10^{-9}$ | 1 | 2,3 |
| rhizaria | sphere | w = ESD | 1 = ESD | $\mathrm{V}=\frac{4}{3} \times \pi \times\left(\frac{E S D}{2}\right)^{3}$ | $0.004 \times 10^{-9}$ | 0.939 | 4,5 |
| phytoplankton | sphere | w = ESD | $1=$ ESD | $\mathrm{V}=\frac{4}{3} \times \pi \times\left(\frac{E S D}{2}\right)^{3}$ | $0.288 \times 10^{-9}$ | 0.811 | 4 |



Durkin et al., in revision

## Particle detection and classification

\author{

1. Find the particles
}

## 2. Measure and identify the particles

## 3. Interpret the data



Figure, Durkin et al., in revision

## Take-homes

- Imaging techniques provide important information about particle processes, validation for ocean color models
- Needs for the future: standards; shared details of image analysis methods; classification tools
- Collaboration across groups, funding sources, international community

