Particle imaging
Meg Estapa, Ocean Optics Course 2021
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Why particle imaging?
(i.e., What information content do you gain? What processes are
captured?)



Emphasis today on

e Particles ~100 um and larger (mostly)
* In situ techniques (mostly)

* Digital systems

*not* remote sensing images! (those will come
later...)



Overview

* Theory

* Instrumentation examples (major types, emphasis
on systems in wide use)

e Particle detection & classification
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Optical resolution of an imaging system
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Figure 1.1, Ocean Optics Web Book (Mobley et al.)



Optical resolution of an imaging system
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Optical resolution of an imaging system

e Rayleigh criterion: Diffraction-limited horizontal resolution (r) of an imaging

system
1.22 1 NA =n sina if objective lens only
" T TNA where NA = n sin(2a) if objective + condenser lenses

(NA = numerical aperture)
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figure: http://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html



Optical resolution of an imaging system

e Rayleigh criterion: Diffraction-limited horizontal resolution (r) of an imaging

system
1.22 1 NA =n sina if objective lens only
" T TNA where NA = n sin(2a) if objective + condenser lenses

* However depth of field varies in proportion to 1/(NA)?2
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figure: https://www.edmundoptics.com/knowledge-center/application-notes/imaging/depth-of-field-and-depth-of-focus/



Sampling density of an imaging system

* Ideally want sampling density / camera resolution (pixels per physical
length) to match optical resolution

* Nyquist sampling theorem: sampling frequency should be at least 2x
the highest-frequency features in the specimen

175 x 175 29 x 29 10x10

Total Pixels = 30625 Total Pixels = 841 Total Pixels = 100




m lllumination types (by analogy to
microscopy)
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aggregate images: C. Durkin, unpublished
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Overview

v'Theory

* Instrumentation examples (major types, emphasis
on systems in wide use)

e Particle detection & classification

e Challenges



Imaging Flowcytobot (Olson & Sosik, 2007)
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Fig. 2. Schema of fluidics system of Imaging FlowCytobot. Fig. 3. Schema of optical layout of Imaging FlowCytobot.



Underwater Vision Profiler 5 (Picheral et al., 2010)
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Holographic imaging - basics

 Sample volume
illuminated by
coherent,
monochromatic light
source

* Interference between
diffraction pattern and
the original,
unscattered beam is
recorded

 Computational
reconstruction provides
3D image of particle
size, shape, orientation

Beamsplitter
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Fig. 1. Typical setup of digital holographic recording of a particle field based on in-line holography.

In-line holography; Pan and Meng 2003
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- K" § @ Gabor introduces holography in a paper in the journal Nature
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@ The invention of the laser boosts research in holography

Knox et al. report first use of holography for marine particle
characterization in the laboratory

Stewart et al. report first field tests of an in situ
holographic system

Helfinger et al. report field deployment of an off-axis submersible
holographic system

Groups led by Kendall Carder at the University of South Florida
@ and Allan Acosta at CalTech develop other field versions through
the 1980s

Design improvements and other applications for in situ systems
@ shown by Joseph Katz’s group at Johns Hopkins University and John
Watson'’s group at the University of Aberdeen through the 1990s

@ Owen and Zozulya develop first in situ digital holographic system

Sequoia Scientific’s LISST-HOLO released
WETLABS HOLOCAM developed

4Deep Imaging’s holographic microscope for deepwater
applications released

Sequoia Scientific’s LISST-HOLO 2 released

Holographic
Imaging - basics

Nayak et al., 2021



———- Holographic image reconstruction
(example)

* Sample volume geometry (z axis is

the optical axis)
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Does orientation matter?

In situ digital holography
D. brightwellii diatom colonies with preferential
orientation increased ag, by 4.5-24.5%.
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Line-scanning (shadowgraph) cameras

Laser Optical Plankton Counter (LOPC,
Hermann et al. 2004)

* Simple optics (linear diode array
detector)

* Relatively large depth of
field/sampling volume

* Limited particle image detail
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Line-scanning (shadowgraph) cameras

Laser Optical Plankton Counter (LOPC, A)
Hermann et al. 2004)
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Line-scanning (shadowgraph) cameras

In Situ Icthyoplankton Imaging System
(ISIIS; Cowen and Guigand, 2008)
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Fig. 4. In situ invertebrate zooplankters. 0-40 m depth, Florida current.
Selected images of invertebrate plankton captured via /SlIS. Organisms
are not scaled to each other in this composite image; sizes range from a
few millimeters to several centimeters. A. Larvacean (Oikopleura sp.).
B. Scyllarid lobster larva. C. Unidentified larval crustacean (?). D. Chaetog-
nath. E. Copepod with eggs. F. Ctenophore. G. Ctenophore with feeding
tentacles extended. H. Aggregate phase Thaliacean salp with reproduc-
tive buds. I. Ctenophore (Velamen sp.). |. Pterotracheid heteropod.

Mirror  Light Path Pinhole LED
| | |

| ==
!

s Condenser

Imaged water parcel < Plano-convex lens

Camera

\ Camera lens
[ | |

5 .

Pod

Fig. 1. Light scheme using shadowgraph technique. Light passes
through plano-convex lens, thereby establishing a collimated light beam.
The advantages of this approach over other lighting techniques include
high depth of field (20+ cm), telecentric image (magnification level not
affected by distance from object to the lens), and very sharp outlines of
organisms and internal structures (facilitates automated recognition).

» Very large sampling volume (70 L/s at
2.5 m/s tow speed)

» Ability to observe large, fragile
organisms in situ



Overview

v'Theory

v'Instrumentation examples (major types, emphasis
on systems in wide use)

e Particle detection & classification

e Challenges



Particle detection and classification

1. Find the
particles

2. Measure and
identify the
particles

3. Interpret the
data



Particle detection and classification

1. Find the
particles

2. Measure and
identify the
particles

3. Interpret the
data
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Figure, Durkin et al., in revision




Segmentation:
differentiating
between
background and

particle

TABLE 1 | Threshold algorithms.

Type Name Example v Description and reference
Threshold (Reference) Otsu Histogram Finds threshold that minimizes the intra-class variance Ref: Otsu,
Original ® Thresholded
. . 1979
. . d
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Threshold Mean Histogram Uses the mean of gray levels as the threshold Ref: Glasbey, 1993
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Threshold algorithms

Giering et al, 2020a



Segmentation:
differentiating
between
background and
particle

Table,
continued...
Edge detection
algorithms

TABLE 1 | Threshold algorithms.

Type Name Example Description and reference
Original
Edge Canny £ First smoothes the image using Gaussian convolution and then
X highlights regions with high first spatial derivatives (edges) using a
) 2D gradient operator similar to Roberts Ref: Canny, 1986
Original
Edge Roberts 2 Performs 2D spatial gradient measurements by passing two 2 x 2
’ convolution masks along the image Ref: Roberts, 1963
Edge Scharr oram! Variation of Sobel algorithm Ref: Scharr, 2000
Edge Sobel Original Performs 2D spatial gradient measurements by performing

) -

convolution between two 3 x 3 kernels and the image Ref: Sobel
and Feldman, 1973

Giering et al, 2020a



Segmentation:

differentiating

TABLE 1 | Threshold algorithms.

Type Name Example Description and reference
between
Edge Canny { First smoothes the image using Gaussian convolution and then
b a C kg ro u n d a n d ’ highlights regions with high first spatial derivatives (edges) using a
p a rt| Cl e o 2D gradient operator similar to Roberts Ref: Canny, 1986
Edge Roberts 2 _Oflgml Performs 2D spatial gradient measurements by passing two 2 x 2
. "_\ convolution masks along the image Ref: Roberts, 1963
L7 &
Table,
. Edge Scharr , oronet Variation of Sobel algorithm Ref: Scharr, 2000
continued... Exsy,
Edge detection
H Edge Sobel Original Filed Performs 2D spatial gradient measurements by performing
d Igo rlt h ms £y, convolution between two 3 x 3 kernels and the image Ref: Sobel
. .“. and Feldman, 1973
A 4 . _ . . . . .
..Large relative variations in particle diameter depending on detection
algorithm used 8 ¢
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Giering et al, 2020a



Segmentation: differentiating between background and particle

A L 3 —
IFCB analysis — phase . s \\ B
Original % — W)
congruency daoe
calculation step (eray s%ale) s .
(although
computationally —

intensive) improves
performance of
threshold-based edge
detection

Phase
congruency

Edge
detection

Sosik and Olson, 2007



Particle identification — machine Iearnlng

Gonzalez et al,,
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Particle identification —
machine learning

Figure: Classified particles
collected in sediment traps

What if classes are not distinct
from one another?

Durkin et al., in revision




Computing particle volume (or
carbon) from image area

ECDeyq = 32 mm Veya = 17,022 mm?
< >
A
# #
Acxa = 800 mm? Y
ECDinCl = 36 mm de 24 506 mm3
< >
A
# #
Aincl = 1,020 mmz v
excl A 78% ECD: 89% V: 69%

incl

Giering et al., 2020b



Computing particle volume (or

carbon) from image area

Moberg and Sosik, 2012

C=AxV?® (Equation 2)

Classification | Shape width length Volume
A B ref

aggregate sphere w=ESD 1=ESD Vzg X T X (ESTD)3 0.1x10° 0.8 1
dense detritus | sphere w=ESD 1=ESD V=§ * T X (?)3 0.1x10° 0.83 1
large loose 553 X ESD x (ESDy2 w

cylinder = 1=27 V=Ix m X (5)? 0.1x10° 083 |1
fecal pellet w
long fecal ESD

cylinder | w=222E2 | _TX G| v=lxw x ($)? 0.1x10° | 1 1
pellet w
short fecal ) .

ellipsoid | w=0.54 x ESD | =22 V=Sxoxmx (5)? | 0.1x107 1 I
pellet v
mini pellet sphere w=ESD 1=ESD V=§ X X (%)3 0.1x10° 1 1
salp fecal ESD. "

cuboid | w=0.63 X ESD | =X | Vel xwx 2 0.04x10° |1 23
pellet w
thizaria sphere | w=ESD 1=ESD =XTX ()P | 0.004x10° [ 0939 |45
phytoplankton | sphere | w=ESD 1=ESD V=X X (ESTD)3 0.288x10° | 0.811 |4

Durkin et al., in revision



Particle detection and classification

1. Find the
particles

2. Measure and
identify the
particles

3. Interpret the
data
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Figure, Durkin et al., in revision




Take-homes

* Imaging techniques provide important information

about particle processes, validation for ocean color
models

 Needs for the future: standards; shared details of
image analysis methods; classification tools

* Collaboration across groups, funding sources,
international community





