
Curtis Mobley

Radiative Transfer Theory

Copyright © 2021 by Curtis D. Mobley

Lectures on 
Optical Oceanography and

Ocean Color Remote Sensing

Schiller Coastal Studies Center



Radiative Transfer Theory

Radiative transfer theory is the physical and mathematical framework for 
all of optical oceanography and ocean color remote sensing.

Today:  

• A few words on scattering of polarized light

• Outline how you get from fundamental physics to RT theory

• Derive radiative transfer equations for various levels of approximation

• Three solutions to the scalar radiative transfer equation
▪ The Lambert-Beer law
▪ Gershun’s equation
▪ The Single-scattering approximation



The Radiative Transfer 
Equation (RTE)

Connects the IOPs, boundary 
conditions, and light sources 
to the radiance

All other radiometric 
variables (irradiances) and 
AOPs can be derived from 
the radiance.

If you know the radiance 
(technically, the Stokes 
vector), you know everything 
there is to know about the 
light field.



Polarization

Light consists of propagating electric and magnetic fields, which are 
described by Maxwell's equations (see the Web Book pages at
https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/maxwells-equations-vacuo) and OOB Section 
7.6)

“Polarization” refers to the plane in which the electric field vector is 
oscillating. This is given by the Stokes vector, S = [I,Q,U,V]T, which is 
an array of four real numbers (not a vector in the geometric sense).

https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/maxwells-equations-vacuo


Scattering of Polarized Light
Absorption does not change the state of polarization.  Absorption just 
removes light from the beam.

Scattering can change one state of polarization into another.

Scattering is specified by a 4 x 4 matrix Z, called the phase matrix.

The scattering angle is given by



Meridian Planes
Stokes vector Q and U depend on the coordinate system.  

In oceanography, we use meridian planes to express the Stokes vectors of 
incident and scattered light.  

The meridian plane is the plane 
containing the normal to the mean 
sea surface and the direction of 
light propagation.

S′ is defined in the local (h′,v′) 
(horizontal or vertical; 
perpendicular or parallel) system

The meridian plane changes if the 
light changes direction

Must translate Stokes vectors 
between these coordinate systems



Phase, Scattering, and Rotation Matrices

S( , ) = Z( ) S ( , )

= R( ) M( ) R( ) S ( , )

Start with S in the initial 
meridian plane

“Rotate” S′ into the scattering 
plane

Compute the scattering in the 
scattering plane (Mueller 
matrix)

Rotate the final S from the 
scattering plane to the final 
meridian plane



Phase, Scattering, and Rotation Matrices
S( , ) = Z( ) S ( , )

= R( ) M( ) R( ) S ( , )

The phase matrix Z( ) transforms S to S, with 
both expressed in the meridian planes

The scattering matrix M( ) transforms S to S, 
with both expressed in the scattering plane

Rotation matrices R transform S from one plane 
to another

The decomposition Z( ) = R( ) M( ) R( ) separates the physics of the 
scattering process (described by M) from the bookkeeping related to the 
different coordinate systems (described by R) .  M is often called the Mueller 
matrix.

For the equations, see the Web Book
https://www.oceanopticsbook.info/view/light-and-radiometry/level-2/polarization-scattering-geometry

Section 1.10 of the OOB, or Mobley (2015) in the Library

https://www.oceanopticsbook.info/view/light-and-radiometry/level-2/polarization-scattering-geometry


The state of polarization of the radiance contains information about the environment (affected by 
the size distribution, shape, and index of refraction of particles in the water)

However, oceanographers usually measure only the total radiance because

• The 4x1 Stokes vector (and corresponding 4x4 scattering matrix, which describes scattering 
of polarized light) is much harder to measure than just L

• The state of polarization is believed to have little effect on processes like phytoplankton 
photosynthesis or water heating (but it can have large effects of other things like visibility and 
reflectance)

• The different polarizations of the radiance in different directions tend to average out when the 
radiance is integrated to get irradiance

• We do not have good models or data for the inputs needed to compute polarization in the 
ocean

Therefore, we will usually ignore polarization in this class.  

Keep in mind, however, that ignoring polarization (e.g., in HydroLight) causes some error (~10% 
in radiance, ~1% in irradiance) and that use of polarization will become more important in future 
years, as instruments and models improve.



Two Paths to the Scalar Radiative Transfer Equation

Maxwell’s Equations (light 
described by electric and 
magnetic fields)

The general vector RTE

very difficult physics and 
math, but no energy 
arguments, and no mention of 
radiance

The scalar RTE as solved by HydroLight

Rigorous Derivation

various simplifications and 
approximations

Phenomenological Derivation

Define radiance

arguments about 
conservation of energy as 
expressed by the radiance 

but two levels of understanding and two different interpretations



Basic Physics to Radiative Transfer Theory

Quantum electrodynamics (QED)
↓

Maxwell’s equations
↓

The general vector radiative transfer equation (VRTE)
↓

The VRTE for particles with mirror symmetry
↓

The scalar RTE for the first component of the Stoke’s vector (what 
HydroLight solves)

Radiative transfer theory is now a well established branch of physics.

Noble prize level of difficulty

Exceptionally difficult (only in the last 10 years)

PhD in physics level of difficulty

We can do this



QED

Quantum electrodynamics (QED) is the fundamental theory that explains 
with total accuracy (as far as we know) the interactions of light and matter 
(or of charged particles).

Views light as consisting of elementary particles called photons.  These are 
the quanta of the electromagnetic field.

Extremely mathematical and abstract.  Can do the calculations only for 
interactions between elementary particles.

Recommended introduction: QED: The Strange Story of Light and Matter
by Richard Feynman

Also, see
https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/the-general-vector-radiative-transfer-equation

or OOB Section 7.3 for more discussion and links to other papers.

https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/the-general-vector-radiative-transfer-equation


Maxwell’s Equations
"The classical limit of the quantum theory of radiation is achieved when the 
number of photons becomes so large that ... may as well be regarded as a 
continuous variable. The space-time development of the classical 
electromagnetic wave approximates the dynamical behavior of trillions of 
photons.“ –J. J. Sakurai, Advanced Quantum Mechanics (1967)

This limit leads to Maxwell’s equations, which govern electric and magnetic 
fields.  For a discussion of these equations, see
https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/maxwells-equations-vacuo or OOB Sec.7.6

Light is viewed classically as propagating electric and magnetic fields.

These equations are accurate for everyday problems: e.g., generation, 
propagation, and detection of radio waves; the generation of electrical 
power; the refraction of light at an air-water surface; and the scattering of 
light by phytoplankton.  (They break down for atomic scale processes, very 
high energies, very low temperatures, or when individual photons become 
important (“quantum optics” or “photonics”).)  So, correct, but still too 
complicated to use for oceanographic calculations.

https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/maxwells-equations-vacuo


The General VRTE
A propagating-wave solution to Maxwell’s equations leads to a general 
vector radiative transfer equation (VRTE) for the Stokes vector (see  
Mishchenko’s books and papers):  

In general, all 16 elements of K and Z are non-zero.

where



This equation can describe polarized light propagation in matter that is 
directionally non-isotropic (e.g., in a crystal), that can absorb light differently for 
different states of polarization (dichroism),  and that contains scattering 
particles of any shape and random or non-random orientation.

Can solve the equation numerically, but we almost never have the needed 
inputs: the 16 elements of K and 16 of Z.

Still need to simplify for oceanographic applications

The General VRTE



Mirror-symmetric Particles

mirror-symmetric particle

not mirror-symmetric

Are oceanic particles like phytoplankton or mineral particles mirror-symmetric?

The general VRTE becomes much simpler if the scattering particles are 
mirror-symmetric and randomly oriented.



Mirror-symmetric Phytoplankton

https://media1.britannica.com/eb-media/
93/184793-004-11DAC31B.jpg

http://www.mikroskopie-ph.de/Kreispraeparat-25-G.jpg

The assumption that 
phytoplankton are mirror-
symmetric is reasonable 
and usually correct.

The assumption that 
they are spherical is not.

http://www.mikroskopie-ph.de/Kreispraeparat-25-G.jpg


Non-mirror-symmetric Phytoplankton
This chain-forming diatom (Chaetoceros debilis) is a left-handed helix (but 
maybe the photo was flipped).  It is not mirror symmetric.  A bloom of these 
would require the general VRTE for Stokes vector calculations.

© Wim van Egmond.  From https://www.wired.com/2013/10/nikon-small-world-2013/

250 x

(If you have equal numbers of randomly oriented left- and right-handed helices, 
then the bulk medium is mirror symmetric, and you can use the simpler VRTE.)



The VRTE for a Mirror-symmetric Medium
If the particles are mirror-symmetric and randomly oriented:

• The attenuation matrix becomes diagonal and the attenuation does not 
depend on direction or state of polarization:

c is the “beam attenuation 
coefficient”

• The scattering matrix becomes block diagonal with only 6 independent 
elements:

Do measured oceanic 
scattering matrices 
look like this?



Measured Scattering Matrices

The reduced scattering matrix is 

Redrawn from Fig. 3(a) of Voss and Fry (1984)

M11 = β(ψ) is the volume 
scattering function

M22 ≠ M11 indicates non-
spherical particles

To within the 
measurement error,
M12 = M21 and M33 = M44
and others are 0, so 
really only 4 independent 
elements

The assumption of randomly oriented, mirror-symmetric particles is justified.



The VRTE for Mirror-symmetric Particles
If the IOPs and boundary conditions are horizontally homogeneous, depth 
z is the only spatial variable and

The one-dimensional (1D) VRTE for a mirror-symmetric medium then becomes

where

This is the VRTE commonly used in atmospheric and oceanic optics



The RTE for the total radiance I

The first element of the Stokes vector is the total radiance, I, without regard for 
the state of polarization.  In oceanography, I is usually called the radiance L.

Note: we cannot solve this equation for I because we do not know Q and U
unless we simultaneously solve the VRTE for all of I, Q, U, V



The RTE for the Total Radiance
Some modern instruments exist for measuring the VSF M11 = β(ψ) [e.g., 
Lee and Lewis (2003), Harmel et al. (2016), Li et al. (2012), Tan et al. 
(2013)].  However, β(ψ) is seldom measured during field experiments.

There are only a few instruments for measuring some of the other Mij(ψ)
elements of the scattering matrix [see Chami et al. (2014), Twardowski et 
al. (2012), Slade et al. (2013)].  

If the VRTE is solved, the Mij(ψ) are usually modeled (often using Mie 
theory, which assumes spherical particles).

Because of the lack of data or good models for Mij(ψ) for different water 
types, modelers (including me) often just drop the terms involving M12Q
and M12U and hope for the best.

This gives the scalar radiance transfer equation (SRTE) for the total 
radiance.



The SRTE for the Total Radiance I (or L)

Dropping the polarization-dependent terms gives the SRTE:

This is the equation HydroLight solves.



SRTE Error Estimate
The degree of linear polarization in the ocean is typically 10-30%; so Q/I or 
U/I < 0.3.  For ψ ≈ 90 deg, M12 ≈ 0.8 M11.  Then the error in ignoring the Q or 
U terms can be as large as

However, comparison with L computed by the VRTE and the SRTE shows 
that the difference is typically ~10%.  The error in radiance is positive in some 
directions and negative in others.

Irradiances are integrals of L over direction, so the errors in L tend to cancel, 
and irradiances are then good to a few percent.

Even though the SRTE is somewhat inaccurate, it is commonly used because
• The inputs c and β(ψ) are better known.
• The math needed to solve the SRTE is much easier that for the VRTE.
• The output is accurate enough for many (but not all) applications.
• Commercial software (HydroLight) is available.



RTE Summary
Maxwell’s equations are correct but too complicated to solve in the 
oceanographic setting.  Also, they give electric and magnetic fields, which 
is more and different information than we need or want.

The general VRTE gives us what we want (Stokes vectors), but we don’t 
have all of the needed inputs (extinction K and phase Z matrices).

The VRTE for mirror-symmetric media is usually applicable to the ocean, 
but we still don’t have all of the inputs needed for routine usage.  This 
VRTE is commonly solved for the atmosphere, but not yet routinely solved 
for the ocean.  The output is accurate, but there is no user-friendly public 
or commercial software for solving this VRTE in the ocean.

The SRTE gives output that is accurate enough for many (but not all) 
applications.  There are more data and bio-geo-optical models for defining 
the inputs.  There is commercial software (HydroLight) for solving this 
equation.



Another Way to Think About the SRTE
The previous discussion derived the SRTE from the general VRTE.  This is 
the proper way to think about the SRTE because the various steps showed 
all of the assumptions made along the way and gave an estimate of the 
errors made if you use the SRTE rather than the full VRTE.

However, you will often see the SRTE 
“derived” using arguments about 
conservation of energy (e.g., Collin’s 
lecture or Light and Water).  This 
development would be correct if light 
were unpolarized, so that there is no 
VRTE.  (This derivation is included for 
reference at the end of the Powerpoint.)

There are also conceptual problems with “phenomenological” RT theory; 
see the recent papers of Mischenko (2013, 2014) in the library.



The 1D SRTE, Geometric-depth Form

The SRTE is a linear (in the unknown radiance), first-order (only 
a first derivative) integro-differential equation.  Given the green 
(plus boundary conditions), solve for the red.  This is a two-point 
(surface and bottom) boundary value problem.  The math goes 
way beyond this course....

NOTE:  The SRTE has the TOTAL c and  TOTAL VSF.  Only 
oceanographers (not light) care how much of the total absorption 
and scattering are due to water, phytoplankton, CDOM, minerals, 
etc.



A unique solution of the RTE requires:

Region of
interest:
IOPs are
known

Radiance incident onto all
boundaries from outside 
the region is known

A 3-D problem

IOPs are known as a 
function of depth

Bottom (can be at ∞)

Radiance incident onto sea 
surface is known

A 1-D problem

Stretch out the
region to make
a horizontally
homogeneous
ocean

Solving the RTE

Given the IOPs within the region and the incident radiances, we can 
solve for the radiance within and leaving the region



Solving the SRTE:  The Lambert-Beer Law
A trivial solution:  
• homogeneous water (IOPs do not depend on z)
• no scattering (VSF β = 0, so c = a + b = a)
• no internal sources (S = 0)
• infinitely deep water (no radiance coming from the bottom boundary, 
so L → 0 as z → ∞)
• incident radiance L(z=0) is known just below the sea surface

Note that this L satisfies the SRTE, the surface boundary condition, 
and the bottom boundary condition L(z→∞) = 0.



Solving the SRTE:  Gershun’s Law

Start with the 1D, source-free, SRTE.

Integrate over all directions. The left-hand-side becomes



Solving the SRTE:  Gershun’s Law

The – cL term becomes

The elastic-scatter path function becomes



Solving the SRTE:  Gershun’s Law

Collecting terms,

or

Gershun’s law can be used to retrieve the absorption coefficient from 
measured in-water irradiances (at wavelengths where inelastic 
scattering effects are negligible).  See Voss L&O (1989).

This is an example of an explicit inverse model that recovers an IOP 
from measured light variables.



Water Heating and Gershun’s Law
The rate of heating of water depends on how much irradiance there is 
and on how much is absorbed:

cv = 3900 J (kg deg C)-1 is the specific heat of sea water  
ρ = 1025 kg m-3 is the water density 

This is how irradiance is used in a coupled physical-biological-optical 
ecosystem model to couple the biological variables (which, with water, 
determine the absorption coefficient and the irradiance) to the 
hydrodynamics (heating of the upper ocean water)

0



Solving the SRTE:  Approximate Analytical Solutions
Approximate analytical solutions can be obtained for idealized situations 
such as single scattering in a homogeneous ocean. These solutions were 
very important in the early (pencil and paper) days of remote sensing 
(used by Howard Gordon in many CZCS-era papers).  They are still 
useful for understanding first-order relations and basic ideas.

Quick outline:  SOS → SSA → QSSA
(successive order of scattering → single-scattering approximation →
quasi-single-scattering approximation)

Assume:
(A1): The water is homogeneous: the IOPs do not depend on depth
(A2): There are no internal sources or inelastic scattering
(A3): The sea surface is level (zero wind speed)
(A4): The sun is a point source is a black sky, so that the incident 
radiance onto the sea surface is collimated
(A5): The water is infinitely deep



Solving the SRTE: The SOS Approximation
Assumptions (A1) and (A2) reduce the RTE (using optical depth ζ = cz) to

Now write radiance = unscattered + scattered once + scattered twice + …

This gives



Solving the RTE: The SOS Approximation
Regrouping the terms gives

This equation must hold true for any value of 0 ≤ ωo < 1. Setting ωo = 0
would leave only the first line of the equation, whose terms must sum to 0.
Similarly, when ωo ≠ 0, each group of terms multiplying a given power of
ωo must equal zero in order for the entire left side of the equation to sum
to zero. We can therefore equate to zero the groups of terms in brackets
multiplying each power of ωo. This gives a sequence of equations:



Solving the RTE: The SOS Approximation

We first solve Eq. (S0), which governs the unscattered radiance. The 
solution for L(0) then can be used in Eq. (S1) to evaluate the path 
integral, which becomes a source function for singly scattered 
radiance. After solving Eq. (S1) for singly scattered radiance, L(1) can 
be used to evaluate the path function in Eq. (S2), and so on. This 
process constitutes the successive-order-of-scattering (SOS) solution 
technique.



Solving the RTE: The Single-Scattering Approximation
Next we must integrate these equations with the appropriate 
boundary conditions at the sea surface and the bottom.  The 
boundary condition at the sea surface is given by assumptions (A3) 
and (A4).  The boundary condition at the bottom is given by (A5).

Turning these assumptions into the proper mathematical form is 
tricky and requires use of the Dirac delta function.  For that math, 
see the Web Book page at  
https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/the-single-scattering-approximation

OOB Section 7.8  

The final result is just the Lambert-Beer law:

This equation describes the propagation of unscattered radiance 
with depth and direction.

https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/the-single-scattering-approximation


Next we insert the form of L(0) into Eq. (S1) and

Solving Eq. (S1) is messy, as are the resulting equations for L(1).  
Again, see the Web Book or OOB pages on the SSA

Solving the RTE: The Single-Scattering Approximation



The SSA gives good results for small values of ωo, i.e. when there is 
very little multiple  scattering, or when the medium in thin (optical 
depth < 1).  For values of ωo > 0.1 and large optical depths, the  
SSA solution becomes very inaccurate.

Solving the RTE: The Single-Scattering Approximation



Solving the SRTE: The QSSA
The SSA can be improved by a clever approximation called the 
Quasi-Single-Scattering Approximation (QSSA).

However, this would be a full lecture....  For the math, see OOB Sec 7.9
https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/the-quasi-single-scattering-approximation

These approximations are seldom used today, but you’ll need to understand 
them before reading the foundational papers by Howard Gordon.

https://www.oceanopticsbook.info/view/radiative-transfer-theory/level-2/the-quasi-single-scattering-approximation


Solving the SRTE: Exact Numerical Methods

To get accurate solutions of the SRTE for realistic ocean conditions 
(depth-dependent IOPs, realistic sky radiances, large ωo, large optical 
depth, etc.) you must use numerical solutions and a lot of computer 
power.

Tomorrow you will learn to run the HydroLight software, which solves the 
SRTE for any IOPs, bottom reflectance, incident sky radiance, etc.

In week 4 we’ll discuss Monte Carlo methods for solving radiative 
transfer equations (Lecture 28, Lab 14).



Sea Kayaking in SE Greenland, 2005

photo by Curtis Mobley



Sea Kayaking in SE Greenland, 2005

photos by Curtis Mobley



Phenomonological “Derivation” of the SRTE
To “derive” the time-independent SRTE for horizontally 
homogeneous water, we assume that light is not polarized (always 
wrong).  Then consider the total radiance at a given depth z, 
traveling in a given direction ( , ), at a given wavelength .  We then 
add up the various ways the radiance L(z, , ,) can be created or 
lost in a distance Δr along direction ( , ), going from depth z to 
z + z



Losses of Radiance

The loss due to absorption is 
proportional to how much 
radiance there is:

dL(z,q,f,)

dr
= - a(z,) L(z,q,f,)

Likewise for loss of radiance due 
to scattering out of the beam:

dL(z,q,f,)

dr
= - b(z,) L(z,q,f,)



Scattering into the beam from all other directions increases the radiance:

dL(z,q,f,)

dr
= 4p L(z,q,f,) b(z; q,f→q,f ;) dW

Sources of Radiance

There can be internal 
sources of radiance 
S(z,q,f,), such as 
bioluminescence

dL(z,q,f,)

dr
= S(z,q,f,)



+ 4p L(z,q,f,) b(z; q,f→q,f; ) dW

Add up the Losses and Sources

+ S(z,q,f,)

dL(z,q,f,)

dr
= - a(z,) L(z,q,f,)

- b(z,) L(z,q,f,)

Finally, note that a + b = c and that dz = dr cosθ to get



The 1D SRTE, Geometric-depth Form

This is the same equation we got from the VRTE, but without the 
rigor and understanding.  

+ 4p L(z,q,f,) b(z; q,f→q,f; ) dW

+ S(z,q,f,)

dL(z,q,f,)

dz
= - c(z,) L(z,q,f,)cos

The VSF b(z; q,f→q,f; ) is usually written as b(z, , ) in terms of 
the scattering angle , where

cos ψ = cos q cos q + sin q sin q cos(f-f)



The 1D SRTE, Optical-depth Form

Note that a given geometric depth z corresponds to a different 
optical depth z() = 0z c(z,) dz at each wavelength

Define the increment of dimensionless optical depth z as dz = c dz

and write the VSF as b times the phase function, ,
and recall that o = b/c to get

b
~

Can specify the IOPs by c and the VSF b, or by o and the phase 
function     (and also c, if there are internal sources)b

~

+ o 4p L(z,q,f,) (z; q,f→q,f; ) dW

+ S(z,q,f,)/c(z,)

dL(z,q,f,)

dz
= - L(z,q,f,)cos

b
~


