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Recall the Remote-Sensing Inverse Problem

constraints on the
allowed solution

Incomplete light
measurements: e.g.,
only R, at selected
wavelengths

Imperfect atmospheric
correction, unknown
boundary condtions

A relatively simple
math model relating
the available light
measurements to the
|OPs, Chl, bottom
depth, etc.

an estimate of what
we want: IOPs, Chl,
etc



Statistical Inverse Models

One family of simple math models relating the available measurements
to what we want is statistical models.

These models are essentially just correlational models obtained from
Inspection of data sets containing both the inputs inputs (R,;) and
outputs (Chl, a-poy, Water depth, etc). The models are not necessarily
based on any physical insight as to why the correlation exists.

The general forms of the models contain unknown parameters
(proportionality constants, weighting functions, fitting coefficients).

That is, the parameter values
give the statistical best-fit of the model to the data, hence the name
“statistical” or “empirical” models.

After the parameters have been determined using known inputs and
outputs, the model with the same parameter values can be applied to
new input data, to obtain new outputs.



Statistical methods are how ocean color remote
sensing got started 40 years ago

Two examples:
* band-ratio algorithms
* neural networks
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Fig. 10.1. Water-leaving radiances L, as a function of wavelength for four
chlorophyll concentrations C, in case 1 waters. The shaded regions labeled
1-4 indicate the detector bandwidths of the CZCS sensor. [redrawn from
Gordon, et al., (1985), by permission]
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CZCS Image

-

P Coastal Zone Color
Scanner (CZCS)

1978-1986

4 visible, 2 IR bands
66,000 images
revolutionized
oceanography with

very simple band
ratio algorithms
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Examples of Recent Band-Ratio Algorithms

SeaWiFS OC4v4 for Chl:

log,{max[R .(443)/R.(555), R,.(490)/R (555), R..(510)/R (555)]}

Chl = 107(0.366 - 3.067X + 1.930X? + 0.649X3 - 1.532X4)

100
MODIS for K4(490):
X=1,(488)/L,(551)
K4(490) = 0.016 + 0.156445X"(-1.5401)
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MODIS for acpoy(400) and a,, (675):
= Ioglo[Rrs(412)/Rrs(551)]
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= l0g,0[Rs(443)/R (551)] o

0C4 v4

r35 Ioglo[Rrs(488)/Rrs(551)] |
acpom(400) =

3.531r, + 1.702r,:2 - 0.008)]

and so on, for dozens more....

10 |

(Rrs >R >R 2 ol

1.5*107(-1.147 + 1.963r5 - 1.01r,c2 - 0.856r,c + 1.02r,:?)
a,/(675) = 0.328 [ 10(-0.919 + 1.037r, - 0.4071,2 -
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Inadequate in-water bic-optical algorithms are one possi-
ble source of ermor in satellite-derived ocean color data
products. Another source of error is associated with the
atmospheric comection procedure, in which the water-leav-
ing radiance is retrieved from radiance measured by a
satellite sensor by subtracting the effects due to atmosphere
and sea surface. Part of our database from measurements in
the Baltic was used for direct with satellite-
derived water-lcaving radiances and other satellite-derived
data products. Although our match-up data set is limited in
isaiu,itisﬂ[ﬂsiuﬂorwuhmimﬂypuww
between in sitv-measured water-leaving radiances, Loo(4),
and satellite-derived L.o(4) from the MODIS/Terra and
SeaWiFS sensors. Assuming that the in situ determinations
are reasonably accurate, these match-up comparisons indi-
cate that the current atmospheric correction for MODIS and
SeaWiFS usually fails to retrieve Ly, (4) in the Baltic. This
problem is especially well pronounced in the blue spectral
bands (412, 443, and 488 nm) where we observed no
covariation between in situ and satellite values of Lao(2)
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Appendix A

Standard MODIS and SeaWiFS in-water bio-optical
algorithms examined in this smdy

TERRA/MODIS prudoct nusmber MOD 19, parameter number 13
CZCS total pigment concensration - CZCS._pigm
(Clask. 1997, K. Kilpatrick, privaie communication, April 2002),

a=— 14843, b= L4947, c = — L5283, of = - 00433, snd 2 =1,
and for the low 1

a=— 50511, b=28951, o=~ 0.5069, o= — 01126, and £=1,
and the switch paint between the kow and high X is 0.7368

TERRAMODIS product nusnber MOD I'l.m-mbuld.
I-mkﬂ-irﬂt—
[Cllt. 1997; K. Kilpatrick, private

MOBIS ChI™

K= bogaod [Lunld43) + Laa(43ZIHLanl 350}
wiere ¥

a=—-LENT,
and for the ;
o=~ 81067, b= 120707, ¢= — 60171, d= 08791, and e = 1,
and the switch between the bow and high X is 0.9866

9110 I = 0EMM, and e=1,

chlor a2 = |QIIEN-ETSATS LATT seamr® -1

-@ase»me —

X'Mi

fudelhlhm &&hqt)l-m“mﬂw
empirical algosithms:
o 3 = g 358120

441675) i
acoou (404) = 1 alr'GD‘

‘whene:
Fiz= bl (4 I 2VRASS 1] ros = boplRa(443)¥R,(551]), and
r1s = bog[ Rl 485V Rl 55 1)]

SeaWiFS OCdvd algorithm

wSEaWIFS Chl

chilor DHCvd — (O I-1 08T H0r sepnr’ - 512r

X log ol mux[ R, (A4 3VR,(555), R, 40V RA555), RalS10VRL3551])




Atmospheric Correction Effects

than some other technigues such as spectrum matching
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Band-ratio algorithms are vulnerable to non-uniqueness problems
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450 500 550 600
wavelength A (nm)

Frgurs 2 CHarophyll concentranon lgorthms designed for mukispecoal Insoumenta-
chon may nec be useful for shallow, opeically dear waters Shown here ars one hundrad
twanty two Hydrolight-generated remota sansing reflectance (R ) specera for Bahamian
waters using varks combinacions of nine different secs of K0P, 32 dfferant botom
reflcances, and 22 depthe beewsen 55 and 50 m. These spacera are dearly urigus.
Howewer, avery specorum has rearly dw same remots sensing reflectance wavslength
rackx R 490)/R (555) = 1.71 £ 001 (490 and 555 nm are indicaced by the wertical black
dashad lines) Ifchis racio were appliad to the commenly used SeaWAFS band-rade
algorkhm (OC2; ORatlly o al, 1938, & would gve a chlerophyll concsrerancn of 0.59
4001 mg Chl m™ In other words, the same chlrophyl conceneration would be decer-
minad for all 22 spectra daspke the face that cheza amulated water bodies hae 10P:
comesponding to chlorophyl concencrations beewsen 0 (pure water ) and 02 mg Chi
m?. The OC2 agorthm falls here because of boctom effects n opeically chiar waters.

Oxano_grqoly | June 2004




Ry(555)/R 5(670)

x = log,, [R.(555)/R.(670)].

log,, (z,) = -0.1706 x> + 0.8913 x - 0.2316



Nonunigueness

The Dierssen algorithm did OK
over shallow sand bottoms,
but totally failed over deeper
sea grass bottoms. Why?

Dierssen et al zb mode Algol _RGS_5750_wl1_UnS
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IOP1, sand
10P4, sand

IOP1, grass
I0P4, grass
Eq. D2

10 100
Rrs(5565)/Rrs(670)
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Model Selection

In some situations, you can figure ———
out (from intuition, theoretical A
guidance, or data analysis) the O
general mathematical form of the

model that links the input and output
(e.g., the polynomial functions that f
relate the band ratios to Chl). You |

0.001 0.01 0.1 1 10 100

can then use the available data I
(€.0., sSimultaneous Measurements oo i e R 1908
of R,((A) and Chl) to get best-fit

coefficients in the model via least-

squares fitting.

s
AT Morel '88

Rrs490/Rrs555

But what if you don’t have any idea what the
mathematical form of the model is?



Neural Networks

Neural networks are a form of multiprocessor computation,
based on the parallel architecture of animal brains, with

e simple processing elements
e a high degree of connection between elements
e simple input and output (real numbers)
e adaptive interaction between elements
Neural networks are useful

e where we don’t know the mathematical form of the
model linking the input and output

e Where we have lots of examples of the behavior we
require (lots of data to “train” the NN)

e Where we need to determine the model structure from
the existing data



Biological Neural Networks
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Cell body %
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Dendrite ﬁg}
0 | |

from www.qub.ac.uk/mgt/intsys/nnbiol.html
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A Simple Artificial Neural Network

INnput synaptic hidden layer output
layer weights (neurons) layer

|
X{W; + XoW, + b <t
W2 output = 0, else Output
output =1

In the neuron, b is the bias, t is the threshhold value

The neuron (processor) does two simple things:

(1) it sums the weighted inputs

(2) compares the biased sum to a threshhold value to
determine its output



= Google Translate

X Text B Documents

DETECT LANGUAGE ENGLISH ENGLISH CHINESE (SIMPLIFIED)

where is the toilet please? X &|0IRE B MER ?

Qingwen na li ydu césud?

27/5000 [Em ~ )




cat photos 4 Q

All Images News Videos Books More Settings Tools

About 199,000,000 results (0.60 seconds)

Images for cat y _ _
WIRED STAFF SCIEMCE 0OB.26.12 11:15 &AM

GOOGLE'S ARTIFICIAL BRAIN
LEARNS TO FIND CAT VIDEOS

BY LIAT CLARK, Wired UK

" When computer scientists at Google’s mysterious ¥ lab built
a neural network of 16,000 computer processors with one
billion connections and let it browse YouTube, it did what
| .‘_ many web users might do — it began to look for cats.

d [partner id="wireduk”] The “brain” simulation was exposed
2 to 10 million randomly selected YouTube video thumbnails
over the course of three days and, after being presented with
a list of 20,000 different items, it began to recognize
pictures of cats using a “deep learning” algorithm. This was
despite being fed no information on distinguishing features
that might help identify one.

- More images for cat




Example Applications of Neural Networks

Intelligent ‘Robot Surveillance’
Poses Threats, A.C.L.U. Study Says New York Times

Advances in artificial intelligence could supercharge 14 J une 2019

surveillance cameras, allowing footage to be constantly

monitored and instantly analyzed.




[JCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www . LJCSLorg

Artificial Neural Networks in Medical Diagnosis

Qeethara Kadhim Al-Shavea

The use of Neural Networks for the
estimation of oceanic constituents based on
the MERIS instrument

Daniel Buckton, Eon O'Mongain & Sean Danaher
Pages 1841-1851 | Published online: 25 Nov 2010

&k Download citation http://dx.doi.org/10.1080/014311699212515
noise and variability models. The advantage of NNs is that they not only achieve higher
retrieval accuracy than more traditional techniques such as band ratio algorithms, but

they also allow the inclusion of usually superfluous or unused information, such as

geometric parameters and atmospheric visibility.



Training the Neural Network (1)

This is called training the NN. The NN has to
“learn” what weighting functions will generate the desired
output from the input.

Training can be done by backpropagation of errors when
known inputs are compared with known outputs. We feed the
NN various inputs along with the correct outputs, and let the
NN objectively adjust its weights until it can reproduce the
desired outputs.

The Java applet from www.qub.ac.uk/mgt/intsys/perceptr.ntml
llustrates how a simple NN is trained by backpropagation.



run the NN applet



Things to Note

The NN was able to use the training data to determine
a set of weights so that the given input produced the
desired output. After training, we hope (in more
complex networks) that new inputs (not in the training
data set) will also produce correct outputs.

The “knowledge” or “memory” of a neural network is
contained in the weights.

In a more complicated situation, you must balance
having enough neurons to capture the science, but not
so many that the network learns the noise in the
training data.



Training the Neural Network (2)

Another way to train a NN is to view the NN as a
complicated mathematical model that connects the inputs
and outputs via equations whose coefficients (the weights)
are unknown.

Then use a non-linear least squares fitting/search algorithm
(e.g., Levenberg-Marquardt) to find the “best fit” set of
weights for the given inputs and outputs (the training data).

This makes it clear that NNs are just fancy regression
models whose coefficients/weights are determined by fancy
curve fitting to the available data (not a criticism!)



An Example NN

From Ressom, H., R. L. Miller, P. Natarajan, and W. H. Slade,
1995. Computational Intelligence and its Application in Remote

Sensing, in Remote Sensing of Coastal Aquatic Environments,
R.L. Miller, C.E. Del Castillo, B.A. McKee, Eds.

« Assembled 1104 sets of corresponding R, spectra and Chl
values from the SeaBAM, SeaBASS, and SIMBIOS databases.

» Construced a NN with 5 inputs (R, at 5 wavelengths) and two
hidden layers of 6 neurons each, and one output (Chl).

 Partitioned the 1104 data points into 663 for training, 221 for
validation, and 221 for testing the trained NN.

« The NN predictions of Chl using the testing data were compared
with the corresponding Chl predictions made by the SeaWiFS
OC4v4 band-ratio algorithm.



The Ressom et al. NN

input 30 hidden 36 hidden 6 output
layer weights layer 1 weights layer 2 weights layer

R,<(443) |

R,(490)

R.<(510)

N.B. not all connections
are shown; all neurons

R,s(555) ‘ in a layer are connected

to all in the preceeding
and following layers




The Ressom et al. NN

Used two layers of 6 neurons, rather than one layer of
12, (for example), so that neurons can talk to each
other (gives greater generality to the NN).

Training uses the training set for weigh adjustments,
and the validation set to decide when to stop adjusting
the weights.

0 optimum
°S=> 2 X weights
O 27T 5|\ L
oc g O N . - validation set
2 8 .,5, "L—'J \\\ ’,/
b} = -
B ~
=22 = training set

training cycle (epoch)
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-1 0 1 2 -1 0 1 2
Model Target: log(chl) Model Target: log(chl)




]

degrees

Latitude [

45

&

NN vs. OC4v4 Performance
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to SeaWIFS data

from Slade, et al. Ocean Optics XVI

Chlorophyll a [ug L™1]



For More on Neural Networks...

Youtube channel with excellent tutorials
on many math different topics

Example shows how to use a NN to
recognize handwritten numerals

o
X

0.0 0.0 0.0 00 0.0 0.0 00 00 0.0 0.0 00 0.0 0.0 0.0 0.0 A.0 A0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 00 p IXe I S -

0.0 00 0.0 00 0.0 0.0 0.0 0.0 8.0 0.0 00 0.0 00 0.0 0.0 4.0 A0 A0 0.0 0.0 00 00 0.0 0.0 0.0 0.0 0.0 00
0.0 00 0.0 00 0.0 0.0 00 0.0 0.0 0.0 00 0.0 00 0.0 0.0 0.0 A0 0.0 0.0 0.0 00 00 0.0 0.0 0.0 0.0 0.0 00
0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 0.0 00 0.0 A0 0.0 A0 0.0 0.0 0.0 0.0 00 0.0 00 0.0 0.0 0.0 00 784
0.0 00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 4.0 0.0 0.0 A0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 00

0.0 00 0.0 00 0.0 G0 60 0.0 00 00 00 01 02 010101010
101010 10 10 1.0

e manaaeee S NeuUrons
! 10100 FERE 02 00 00 00 00 00 ~ 784
00000000000000 00000001 0 010 00 00 00000000 . &
00 00 0.0 00 0.0 0.0 00 00 0.0 00 00 00 0.0 00 00 00 00 0 ) 00 00 00 00 00 00 th
QOQUQOMMUDUDODU»oDﬂOnﬂoOOUﬂDOU“ ) In e

iInput
layer

v ..
BEXXLE L X |

0.0 00 0.0 0.0 00 0.0 00!

0.0 00 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 00 0.0 A0 A A0 0.0 0.0 6.0 0.0 00 0.0 00 0.0 0.0 0.0 00
0.0 00 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 00 0.0 00 0.0 40 .0 A0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 00
0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 4.0 0.0 A0 A0 A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00



https://www.3blue1brown.com/

Take-home Messages

Statistical methods for retrieving environmental
Information from remotely sensed data have been highly
successful and are widely used, but...

» An empirical algorithm is only as good as the underlying data used
to determine its parameters.

» This often ties the algorithm to a specific time and place. An
algorithm tuned with data from the North Atlantic probably won’t work
well in Antarctic waters because of differences in the phytoplankton,
and an algorithm that works for the Yellow Sea in summer may not
work there in winter.

« The statistical nature of the algorithms often obscures the
underlying biology or physics.



Take-home Messages

Band-ratio algorithms remain operationally useful, but
they have been milked for about all they are worth
(IMHO). Note that band ratio algorithms throw away
magnitude information in the R, spectra, and they may
not use information at all available wavelengths.

New statistical techniques such as neural networks are
proving to be very powerful, as are other techniques such
as spectrum matching and semi-analytical techniques.
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Limestone (early-mid Cambrian, 505-525 Myr old) boulder with fossil algal
mats, Grand Canyon, photo by Curt Mobley




Lava Falls, Grand Canyon




Lava Falls, Grand Canyon




Lava Falls, Grand Canyon
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Lava Falls, Grand Canyon




Lava Falls, Grand Canyon
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