On your own go through these models

e Example 1: inversion to multiple phytoplankton
absorption spectra (e.g., diatom, dino,... absorption
eigenvectors)

e Example 2: inversion to pigments (e.g., fucoxanthin,
peridinin,... absorption eigenvectors)

e Example 3: reformulate reflectance equation to retrieve
other IOPs (e.g., beam c coefficient and spectral slope,
backscattering ratio, spectral variations in backscattering
spectrum)

e Example 4: linear matrix inversion allows for uncertainty
guantification in the regression



Example 1: Phytoplankton come in all colors due to taxon-
specific pigments that have distinct absorption spectra
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e Why limit inversion to
single eigenvector?
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Invert for Phytoplankton Functional Types
ex. Benguela Upwelling System
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Day to day variations in water color

Our primary tool was a small radiometric buoy (HTSRB):
incident solar irradiance spectrum
upwelled radiance spectrum
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Inversion Modeling for Phytoplankton Functional Types:
South African Red Tide
(Roesler et al 2004)

e Time series measured daily reflectance spectra (ex below left)
e Multiple phytoplankton eigenvectors, PFTs, (below right, lab)
e |nversion to estimate PFT contributions

e Compare with PFT determined microscopically
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Examples from South African Time Series
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Examples from South African Time Series
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Examples from South African Time Series
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Examples from South African Time Series
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Examples from South African Time Series
the differences in ocean color are due to differences in pigmentation,
SO we can retrieve species information
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Inversion Modeling for Phytoplankton
Functional Types: South African Red Tide

(Roesler et al 2004)

 Validation

e Daily microscopic cell counts (Grant Pitcher)

 Converted cell counts to absorption
coefficients for each species using mean cell
size and intracellular pigment concentrations
(Bricaud and Morel approach), measured a,
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Inversion Modeling for Phytoplankton
Functional Types: South African Red Tide

(Roesler et al 2004)

* 5-phytoplankton eigenvectors, PFTs

* estimate time series of PFT contributions
(black symbols) by inversion

 compare with time series of microscopic
estimates (colored symbols)

* model resolved accurate proportions of each
species/group even over large range of PFTs
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Example 2:
Hyperspectral Inversion to pigments

is an overconstrained problem (many more
measured wavelengths than unknown eigenvalues)

allows resolution of spectral gradients in R(1),
hence spectral gradients in a(A)

This spectral resolution is what makes this approach
sensitive to variations in pigment-based
phytoplankton taxonomy

By using pigment-based taxonomic eigenvectors,
PFTs can be estimated

But the PFT absorption spectra must be distinct and
sufficiently large to impact the R spectrum



Hyperspectral Inversion of PFTs
Chase et al. 2013 and 2017
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Hyperspectral Inversion of PFTs
Chase et al. 2013 and 2017

e Use Gaussians as basis vectors for the inversion

— How well does the inversion estimate of the absorption
Gaussian relate to associated HPLC pigment?

— 8 Gaussians used
— 4 showed significance

AE131 9




Hyperspectral Inversion of PFTs
Chase et al. 2013 and 2017

e Use Gaussians as basis vectors for the inversion

— Is the inversion result more robust than simply using
covariability between Tchla and other pigments?

— Similar errors = but one is empirical (chl cov) one
allows for independence (chl-indep pigments)
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Questions?

e \Why is the water red during a red water
HAB event?

e Now we will reformulate the reflectance
equation to exploit the b, eigenvector to
obtain information on c(A), b, (A), b, /b



Example 3: Reformulate the reflectance
equation to retrieve more information

e Magnitude and slope of beam ¢
e Backscattering spectrum
e Backscattering ratio

GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 9, 1468, doi:10.10292002GL0 161 85, 2003

Spectral beam attenuation coefficient retrieved from ocean color
inversion

Collin S. Roesler

Bigelow Laborsiory for Ocean Scences, Wesl Boothhay Harbor, Mame, USA

Emmanuel Boss

School of Manne Sciences, University of Maine, Orono, Mame, USA



Roesler and Boss 2003 GRL:
Semianalytic inversion to retrieve beam attenuation
f bbw bbp
Q ay, + Apnyt T Acpom T Anap T bpw + bbp

R(A) =

let bbp — Ebp bp

where Bbp 1s the particle backscattering ratio

SO bbp (7\.) — Ebp bp (7\.)

therefore by, (1) =@(cp M)-a, (k))




What do we know about the
particle backscattering ratio?

Effect of the particle-size distribution
on the backscattering ratio in seawater E
7070  APPLIED OPTICS / Vol. 33, No. 30 / 20 October 1994 by

Osvaldo Ulloa, Shubha Sathyendranath, and Trevor Platt
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by (1) = by (€ (2) — a4 (1))

we know  a,(A) = appye(A) + apgp(A)

and ¢, (1) 1s a smoothly varying function

% \Y
cp(A) = ¢p (Kref ) (Kref)

SO

_ 2\
bbp (7*) — bbp (Cp (}‘“ref) (ﬁ) — Uphyt (7*) — Anap (7‘*))



Regression Model

f by
R = =
Where Q a+ by
f
L=y
e %

. A\ . .
bb O\) = bbw O\) + Abbp (Acp (Aref) ()\ f) _ Aphytaphyt(}\) — Anapanap O‘))
re

aO\) = Qy O\) + Aphytaphyt (}\) + Anapanap (}\) + ACDOMaCDOM (}\)

7 unknowns, 3 absorption eigenvectors



Results: Model fit to reflectance

Standard Model Fit —— Better fit with c-model——



Results: Validate with measured I0Ps
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Results: Validate with measured IOPs
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c-model realistic spectrum, spectral features under high
absorption conditions as predicted by Mie theory.



So spectral backscattering and beam
c seem to be retrievable from R

e More sensitive to starting values (use OC
chl to estimate order of magnitude)

e Better to assume smooth power function
for c than b,

e Separates CDOM from NAP due to
differential impact on backscattering

e Useful for carbon models (DOC vs POC)



Questions?

e Which quantity would you most want to
retrieve from space: c, c(A), b,(A), b, /b?

e Now | will show an example of Linear
Matrix Inversion (approach of Hoge and
Lyon 1996) which allows for uncertainty
estimates in the retrievals



Example 4: Linear matrix inversion

e This is linear??

Q ay, + Apnyt T Acpom T Anap T bpw + bbp
f
Ay + Appyt T Acpom T Anap T bpw + bbp — OR(L) (bbw+bbp)

_ [ bpw
aphyt + Acpom + anap + (1 QR(K)) bp — (bk) (aw + bbw)

f

Aphytaphyt + ACDOMaCDOM + Anapanap + Abbpbbp (QROL) 1) bbw — Qy

(unknowns) (knowns)



Because it is linear

e Regression yields exact solution
e Fast (good for image processing)

e Allows for computation of uncertainties in
retrieved IOPs (when system is
overconstrained)

e based upon our uncertainties in
— Measured Rrs
— Spectral shapes of basis vectors



Linear Matrix Inversion

e For each eigenvector
(component IOPs), define
range in spectral shapes

A=440nm 2=555nm

e For each measured R(A)

— Perform LMI for every iy
possible combination of
eigenvectors (think nested
loops in code)

Number of occurrences

A=440nm A=440nm

ccurrences

Number of o

— Allow statistics to
determine most likely
estimate and uncertainties
(note ranges are smalll)
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Wang, Boss, Roesler 2005



Estimated 3 [m")

Determining uncertainties

Linear Matrix Inversion
e Each R spectrum inverted hundreds (thousands) of times

e Average estimate of each eigenvalue comes with
uncertainties (errorbars)

e Non-linear inversion yields single eigenvalue for each R
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Questions?

e \Why do we care about uncertainties in our
retrieved eigenvalues?



