Some basic statistics, curve fitting techniques and
error propagation

‘Statistics 1s the discipline concerned with the study of variability,
with the study of uncertainty, and with the study of decision-
making in the face of uncertainty’ (Lindsay et al., 2004).

Statistics 1s the science of collecting, organizing, analyzing and
interpreting data.

Nominal data — categories that are not ordered (e.g. taxa).

Ordinal data — fits in categories that are ordered but level
between orders has no objective measure (e.g. pain level).

Scale data — fits 1n categories that are ordered with units
measures between levels (e.g. units such as m/s)



Why do we need statistics?
Statistics helps to provide answers to questions such as:

1. What is the concentration of plankton at the dock right now (given
past measurements)?

2. Will species x be in the water tomorrow?
Stats help reduce large datasets into their salient characteristics.
The use of statistics to make a point:

1. Statistics never proves a point (it says something about
likelihood).

2. If you need fancy statistic to support a point, your point 1s, at
best, weak... (Lazar, 1991, personal communication)



Why do we need statistics?
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Statistical description of data

Statistical moments (1t and 2"9):

1 N
e Mean: X=— ) Xx.
N2
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e Standard deviation: o =~ Var

* Average deviation:

Jind: i
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* Standard error: i o/~ N



» Standard error: s, =o/sN

When 1s the uncertainty not reduced by additional sampling?

Low random error High random error
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Statistical description of data

Probability distribution:
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Fig. 1-2 Histogram of frequency distribution of stature of 24,404 U.S. Army males.
Adapted from data of Newman and White.



Non-normal probability distribution:
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Fig. 1-3 U.S., female, 1965: percent dying in each 5-year age interval (the 100-105
interval includes all deaths after 100 rather than only those occurring in the interval).
Data from N. Keyfitz and W. Flieger, World Population: An Analysis of Vital Data.
Chicago: University of Chicago Press, 1968, p. 45.



Statistical description of data

Nonparametric statistics (when the
distribution 1s unknown):

e rank statistics
s SR e S U
Median

* percentile

e Deviation estimate
 The mode

Issue: robustness, sensitivity to outliers



Statistical description of data

Robust: “insensitive to small departures form the idealized
assumptions for which the estimator is optimized.”
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Press et al., 1992
% 3 Figure 14.6.1. Examples where robust statistical methods are desirable: (a) A one-dimen-

Numerical recipe sional distribution with a tail of outliers; statistical fluctuations in these outliers can prevent
accurate determination of the position of the central peak. (b) A distribution in two di-
mensions fitted to a straight line; non-robust techniques such as least-squares fitting can
have undesired sensitivity to outlying points.



Statistical description of data

Examples from COBOP,
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How can statistics contribute to answer research
questions?

*Relationships between variables (e.g. do we get
blooms when nutrients are plentiful?)

*Contrast between conditions (e.g. 1s diatom vs.
dinoflagellate domination associated with freshwater
input?).



Bayesian statistics (currently underutilized in our
field and with huge potential)

Allows answering questions such as:

What is the likelihood that species x 1s blooming given
location, date, ocean color and temperature?

Given a reflectance spectrum and SST, what 1s the likely
underlying nitrate concentration?

Requires knowledge of conditional probabilities {p(x|A)}.

An unrelated but very fun example (the Monty Hall problem,
I learned about from ‘The case of the dog in the nighttime’).



Relationship between 2 variables

Linear correlation:
: 22Ny )
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Rank-order correlation:
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Relationship between 2 variables

Same mean, 0
Stdev, and r=0.816.

0 | | | | | | | |
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FIGURE 3.16 “Anscombe’s quartet,” illustrating the ability of graphical EDA to discem data features more powerfully than
can a few numerical summaries. Each horizontal (x) variable has the same mean (9.0) and standard deviation (11.0), as does each
of the vertical (y) variables (mean 7.5, standard deviation 4.12). Both the ordinary (Pearson) correlation coefficient (r,, = 0.816)

and the regression relationship (y = 3 + x/2) are the same for all four of the panels.



Regressions (models)
y = 1(x)

Dependent and independent variables:

*Absorption spectra.
*Time series of scattering.

What about chlorophyll vs. size?



Regressions of type I and type II

Uncertainties in y only:

y(x)=ax+b
3
25 yi_a_bxi
! lzl;f[ a j

Minimize % by taking the derivative of y> wrt a and b and equal it to zero.

What if we have errors in both x and y?

y(x)=ax+b

;{2 vt Z(yi — dx, _b)2

2 Ryl
iZIZNG yi+d O «xi

Var(y, —ax, —b)=0"y +a’c’x

Minimize y? by taking the derivative of ¥? wrt a and b and equal it to zero.



The coefficient of determination

R? = 1- MSE/Var(y).

MSE=mean square error=average error of
model”2/variance.

What variance does 1t explain?
Can 1t reveal cause and effect?
How 1s 1t affected by dynamic range?

R 1s the ‘correlation coefficient’.

HOW TO

LIE WITH
STATINTICS

Darrell Huif

Over Half a Million Copies Sold—
An Honest-to-Goodness Bestseller




Regressions of type I and type II
Classic type II approach (Ricker, 1973):

The slope of the type II regression 1s the geometeric mean of
the slope of y vs. x and the inverse of the slope of x vs. y.

y(x)=ax+b
x(y)=cy+d

a, =+alc =t0,/0,
J_rzsign{zixl.yi}



Smoothing of data

Filtering noisy signals.

What 1s noise?

e instrumental (electronic) noise.

e Environmental ‘noise’ .

11 ’ . ’ . ’”
one person s noise may be another person s signal

Matlab: filtfilt



Method of fluctuation
Lab aggregation exp.:
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Modeling of data

Condense/summarize data by fitting it to a model that depends
on adjustable parameters.

Example, CDM spectra:
a, (K) =a, exp(— S(K Sk ))

particulate attenuation spectra:




Modeling of data
Example: CDM spectra.

a, (K)z a, exp(—s(h—?»o))
:>a=LEig,SJ

Merit function:

3-8 o0 o))

l

*For non-linear models, there 1s no guarantee to have a single
minimum.
*Need to provide an 1nitial guess.

Matlab: fminsearch



Modeling of data

Let’s assume that we have a model

y=y(ha)

A more robust merit function:

l
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y(x‘i)_y(%“i;a)
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‘Problem’: derivative 1s not continuous.

Can be used to fit lines.




Reporting and Propagating Error

Practicing science well requires comfort with error and good judgment of its
magnitude. Otherwise, there 1s no way to tell whether observations fall outside
predictions from alternative hypotheses.

Science makes the most progress when i1deas that seem reasonable are discarded
in favor of better 1deas on the basis of data. If measurement error 1s too

large and sample size too small to distinguish which 1dea is right, then science
can’t advance.

In science, error 1s a necessary fact of working with physical evidence rather
than something to be avoided. It is uncertainty in measurement. Here we will
assume that error and imprecision are identical. The only way to know about
inaccuracy 1s to have some alternative measure, which 1s not universally the
case. Moreover, when two methods disagree it 1s not always clear which is the
more accurate.

Our best measures of inaccuracy are against known standards because those
standards have been tested thoroughly. Jumars, 2009



Propagating errors (explicitly)

Consider two variables, x and y, and a third variable q such that g=f(x,y).

ox ox

Thus x = xp #+ &. The fractional uncertainty 1s given as ‘ ‘ (implymng, x=x, | 1+——|).
> o " i

A small number of will serve you well for most purposes:

1. In addition or subtraction problems, (¢ = x + y or ¢ = x - y), uncertainties add:

z = gi Ao . o K.

og < ox + oy. If x and y are independent and random, 6g = \/ (Ox) +(5y)

2. In multiplication or division (g=xy, g=x/y), fractional uncertainties add:

5q| |5y |ox | 59 159\ 5x]

< + . If x and y are independent and random, — = +
a VY, X a \ X,
;. In multiplication by a constant & (6k = 0, i.e, the value of &k lacks any uncertainty or

its uncertainty is orders of magnitude smaller than that in any other variable) g = kx, &g =
k| ox|.

) )
4. Power function (g = x", dn = 0), error multiplies with the power: | q‘ﬂ %
0 For the general known functional dependence g = f(x.y), we use the chain rule:
. |0 0
= A sx+ q 5 V.
Ex )




Propagating errors (1implicitly): Monte-Carlo/Bootstrap methods

Need to establish confidence intervals 1n:
1. Fitting-model parameters (e.g. CDOM fit).

2. Model output (e.g. Hydrolight).

1 ; out




Bootstrap

When there 1s an uncertainty (or possible error) associated with
the mput:

Vary inputs with random errors and observe effect on output:

in] 0ut1

in, out,

1N, out;

Ny outy




Bootstrap

Example: how to assign uncertainties in derived spectral slope of
CDOM.

Merit function:

Xz % i(ag()ti)iAi _Zlg exp(—S()\.—Ao)))

i=1

2

Randomly add uncertainties (A;) to each measurement, each time
performing the fit (e.g. using randn.m 1in Matlab, RAND 1n Excel).

Then do the stats for the different s.



Incorporation of model and measurement uncertainties.
Novel example:

%
Development and Validation of an Empirical Ocean Color
Algorithm with Uncertainties: A Case Study with the
Particulate Backscattering Coefficient

Lachlan I. W. McKinna' (*, Ivona Cetini¢*’ *, and P. Jeremy Werdell’

1071
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Information content
How much independent information 1s there 1n a signal?
e.g.: the AC-S provides output in 84 wavelengths of
absorption and attenuation. How independent are they (how
many different products can we obtain from them)?
1. For a dissolved spectra?
2. For a particulate spectra?

How would you go about figuring it out?

How does 1t depend on measurement uncertainty and
uncertainty of model (assumed spectral shape)?



Information content (Cael et al., 2020)

eigenvectors: raw spectra eigenvectors: residual spectra

mode 1 (91.20%)
——mode 2 (5.37%)
mode 3 (1.90%)

——mode 1 (94.03%)] (Q)

—mode 2 (3.09%)
mode 3 (1.83%)
/ \/ / After removing:

\ ' / a,(\) = A(\)Chly 4,
Tara data: ~300,000 1min binned a,
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Left: 1% three PCA modes of non-normalized particulate absorption
spectra. First mode looks like the mean chlorophyll varying
phytoplankton absorption.

normalized absorption

normalized absorption
T

Right: after removing the spectra covarying (non-linearly) with
chlorophyll.

Implications for PACE or hyperspectral cameras on drones?



Summary

Use statistics logically. If you don’t know the underlying
distribution use non-parametric stats.

Statistics does not prove anything but can give you a sense of
the likelithood of a hypothesis (about relationships).

I strongly encourage you to study information content,
hypothesis tests and Bayesian methods. Beware that they are
often misused. ..
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REPRODUCIBILITY

‘Statisticians issue
‘warning on Pvalues

Statement aims to halt misstepsin the quest for certainty.




