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the model domain have spectra with similar exponents to the
spectra of physical quantities such as sea surface temperature22, so
the relaxation rate is set at a ¼ 0:25. At large relaxation times the
spectral exponent becomes close to 1, the value expected for the
spectrum of a passive non-reacting tracer in a two-dimensional
turbulent flow18. This suggests that the turbulent transfer of varia-
bility to smaller scales is adequately represented by the seeded-eddy
model.

With the inclusion of advection the continually changing carry-
ing capacity prevents the populations within each parcel from
reaching equilibrium. Despite the simplicity of the dynamics, a
complex spatial pattern emerges by the end of the model run
(Fig. 2). Because of the rapid phytoplankton growth rate, the
phytoplankton distribution (Fig. 2b) is similar to the distribution
of the carrying capacity (Fig. 2a). In contrast, the zooplankton
population (Fig. 2c) has marked fine scale structure. This is clearly
seen in a transect through the model domain (Fig. 3a), which
simulates the data that would be collected from a ship. There is no
coherence between the zooplankton and phytoplankton distribu-
tions at the larger length scales, and grazing causes the distributions
to be negatively correlated at distances of less than ,10 km. As a
consequence, the phytoplankton concentration has a spectrum that
is slightly flatter than that of the carrying capacity, but steeper than
the zooplankton spectrum (Fig. 3b). These results are in good
agreement with observations, which find similar spectra, and
which show a similar negative correlation between phytoplankton
and zooplankton populations at shorter length scales2,3,23.

An analysis of the populations obtained by integrating the model
with a range of parameter values, and using a simplified representa-
tion of the flow, confirms that the relative slopes of these spectra are
insensitive to both the precise values of the parameters and the
details of the stirring process (Fig. 4). An increasing zooplankton
maturation time leads to flatter zooplankton spectra, whereas a

Figure 2 Snapshots at the end of a high-resolution model run. The model follows
equations 1–3, with t=r ¼ 25d and d ¼ 2, corresponding to a high P and low Z

regime. a, Carrying capacity; b, phytoplankton, c, zooplankton. The strip at the left
shows the zonally varying distributions the populations would have in the
absence of advection while the bar on the right gives the values associated
with the different colours. The distortion due to turbulent stirring is clearly visible.
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Figure 3 A representative transect and the corresponding spectra. Graphs show
carrying capacity (blue), phytoplankton (green) and zooplankton (red). a, A
transect through the snapshots in Fig. 2 (at x ¼ 128 km). The simplicity of the
underlying population dynamics is not apparent. b, The corresponding spectra
have a power-law form over an order of magnitude range. The spectra from 256
evenly spaced transects are averaged to form those shown here. The spectral
exponents (mean 6 s:d:) of the populations at this time are bC ¼ 2:5 6 0:20,
bP ¼ 2:1 6 0:20 and bZ ¼ 1:0 6 0:16.
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the model domain have spectra with similar exponents to the
spectra of physical quantities such as sea surface temperature22, so
the relaxation rate is set at a ¼ 0:25. At large relaxation times the
spectral exponent becomes close to 1, the value expected for the
spectrum of a passive non-reacting tracer in a two-dimensional
turbulent flow18. This suggests that the turbulent transfer of varia-
bility to smaller scales is adequately represented by the seeded-eddy
model.

With the inclusion of advection the continually changing carry-
ing capacity prevents the populations within each parcel from
reaching equilibrium. Despite the simplicity of the dynamics, a
complex spatial pattern emerges by the end of the model run
(Fig. 2). Because of the rapid phytoplankton growth rate, the
phytoplankton distribution (Fig. 2b) is similar to the distribution
of the carrying capacity (Fig. 2a). In contrast, the zooplankton
population (Fig. 2c) has marked fine scale structure. This is clearly
seen in a transect through the model domain (Fig. 3a), which
simulates the data that would be collected from a ship. There is no
coherence between the zooplankton and phytoplankton distribu-
tions at the larger length scales, and grazing causes the distributions
to be negatively correlated at distances of less than ,10 km. As a
consequence, the phytoplankton concentration has a spectrum that
is slightly flatter than that of the carrying capacity, but steeper than
the zooplankton spectrum (Fig. 3b). These results are in good
agreement with observations, which find similar spectra, and
which show a similar negative correlation between phytoplankton
and zooplankton populations at shorter length scales2,3,23.

An analysis of the populations obtained by integrating the model
with a range of parameter values, and using a simplified representa-
tion of the flow, confirms that the relative slopes of these spectra are
insensitive to both the precise values of the parameters and the
details of the stirring process (Fig. 4). An increasing zooplankton
maturation time leads to flatter zooplankton spectra, whereas a

Figure 2 Snapshots at the end of a high-resolution model run. The model follows
equations 1–3, with t=r ¼ 25d and d ¼ 2, corresponding to a high P and low Z
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absence of advection while the bar on the right gives the values associated
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Figure 3 A representative transect and the corresponding spectra. Graphs show
carrying capacity (blue), phytoplankton (green) and zooplankton (red). a, A
transect through the snapshots in Fig. 2 (at x ¼ 128 km). The simplicity of the
underlying population dynamics is not apparent. b, The corresponding spectra
have a power-law form over an order of magnitude range. The spectra from 256
evenly spaced transects are averaged to form those shown here. The spectral
exponents (mean 6 s:d:) of the populations at this time are bC ¼ 2:5 6 0:20,
bP ¼ 2:1 6 0:20 and bZ ¼ 1:0 6 0:16.
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Proxies are at the heart of major sampling programs

6Siegel et al., 2016

https://www.frontiersin.org/articles/10.3389/fmars.2016.00022


Why?
• Optics – in situ or remote 

sensed gives us higher 
resolution dataset

• Traditional methods 
(discrete) often expensive 
and time consuming

• Sampling the parameters 
on the scales of 
importance

• Validation for remote 
sensing and hi-res 
biogeochemical models 
(e.g. Haëntjens et al, 2017)

Chang, G. and T. Dickey (2008). 
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http://opl.ucsb.edu/tommy/pubs/grace_dickey2007.pdf


Why?
• Optics – in situ or remote 

sensed gives us higher 
resolution dataset

• Traditional methods 
(discrete) often expensive 
and time consuming

• Sampling the parameters 
on the scales of 
importance

• Validation for remote 
sensing and hi-res 
biogeochemical models 
(e.g. Haëntjens et al, 2017)

Zykov and Miller (2019). 
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https://par.nsf.gov/servlets/purl/10095489


Why?
• Optical instruments are getting smaller, more robust and 

diverse
• They can be deployed over extended periods of time and 

in hard to reach areas

9



What are some in situ optical proxies (and associated 
biogeochemical quality/quantity)?

Check out - Boss et al (2014) and Babin, Roesler and Cullen (2008)
10



Overview

üWhere proxies fit, why to construct them
• Concentration proxies
– “To first order, concentration controls IOPs” 

Emmanuel Boss, yesterday

• Composition and rate proxies
• Caveats

11



Kitchen and Zaneveld, 1990
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Absorption Line Height à Chlorophyll proxy

Roesler and Barnard, 2013
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estimation of Chl a absorption and provide size information on64
phytoplankton.65

A. Overview of Absorption Band Effects on66
Beam-Attenuation Spectra67

The modification of the internal marine light field occurs68
through scattering (elastic and inelastic) and absorption proc-69
esses, which are defined as the inherent optical properties (IOPs)70
of the aquatic medium [15]. The beam-attenuation (beam-c)71
coefficient c (�) describes the decay or directional change in a72
beam of collimated light and is the sum of the total absorption73
a(�) and scattering b(�) coefficients. In practice, c (�) and74
a(�) are more readily measured, and b(�) is obtained through75
subtraction. Although often treated as such, a(�) and b(�)76
are not independent properties. The coefficients may be fur-77
ther specified to represent the particulate (algal and non-algal)78
contributions by subtracting the properties of the dissolved79
(filtered) materials from those of the whole water [16], expressed80
as ap(�), bp(�), and cp(�) for the particulate absorption,81
scattering, and beam-c coefficients, respectively.82

For individual particles within a medium, the ratios of the83
optical cross-sections to the geometric cross-sections define the84
absorption Qa(�), scattering Qb(�), and extinction Qext(�)85
efficiency factors, which contribute to the bulk IOPs of a water-86
mass [i.e., to ap(�), bp(�)], and cp(�), respectively. Anomalous87
diffraction theory approximates Qext(�) for large (i.e., cir-88
cumference much greater than the wavelength of light in the89
medium), non-absorbing, and homogeneous spheres through a90
phase-lag term, ⇢ (the change in a ray’s phase if it were to travel91
the full diameter of a spherical particle), defined as [8]92

⇢ = 2x (n � 1) , [unitless] (1)

in which n is the real index of refraction and x is the ratio of93
the particle’s circumference to the wavelength of light in the94
medium, ranging from 0 to 1. In this paper, the real index95
of refraction n is defined relative to seawater, and (n � 1) is96
assumed to be positive. The spectral dependency in x provides97
a theoretical basis to estimate the PSD from the spectral slope98
of cp(�) that is sensitive to pigmented and nonpigmented99
constituents [17].100

For absorbing particles, including phytoplankton, the101
imaginary component n0 of the complex index of refraction102
m (defined as m = n + in0) corresponds to a particle’s pig-103
mentation [18] and is included in the anomalous diffraction104
approximation of the optical efficiency factors [8]. In the case105
of phytoplankton cells, Chl a and various accessory pigments106
elevate Qa(�) and suppress Qb(�) across a relatively broad range107
of blue wavelengths [19]. At red wavelengths, a special situation108
arises from the specific absorption spectrum of Chl a , which109
produces a narrow red absorption band. Changes to n and n0110
in the vicinity of the absorption band (nominally centered at111
676 nm) modify Qext(�) based on the size and refractivity of the112
particle (i.e., ⇢). Figure 1(a) illustrates the characteristic Qext(�)113
spectra in the vicinity of an absorption band using various ⇢114
values and is based on the anomalous diffraction approximation115
of [8].116

The predicted changes in Qext(�) are described as a function117
of ⇢: For lower ⇢ values, Qext(�) is elevated at the absorption118

Fig. 1. (a) Anomalous diffraction approximation for Qext(�) at a
narrow absorption band as a function of light frequency for various
⇢ values, recreated from van de Hulst [8] using a lookup table; and
(b)–(d) illustrative examples of Qext(�) residuals for various small-sized
phytoplankton (diameters 8, 5, and 1 µm, respectively), with a fixed
n of 1.0344 and spectral n0 with a maximum value of 0.0024 at the
Chl a red absorption peak. The sizes presented in (b)–(d) are sensitive
to the selection of real and imaginary refractive index; for example, as
[14] illustrates, an anomalous dispersion curve for Qb(�) using a 1µm
absorbing sphere and spectral dependencies in both n and n0.

band [e.g., resembling an increase in Qa(�)]; for higher⇢ values, 119
Qext(�) is reduced at the absorption band; and for moderate ⇢ 120
values, an anomalous dispersion curve emerges with Qext(�) 121
reduced at shorter wavelengths and elevated at longer wave- 122
lengths (relative to the center of the absorption band). We use 123
the more general term absorption band effects, following [13], 124
to describe the spectral features in Qext(�) or cp(�) that are 125
observed near the absorption bands. 126

B. Relevance of Absorption Band Effects to 127
Phytoplankton Composition 128

The approximation that the real index of refraction is near that 129
of seawater is valid for many types of phytoplankton, although 130
natural variability exists due to differences in cellular compo- 131
sition [14]. For example, calcification generally corresponds 132
to a higher refractivity of coccolithophores [20]. Cell size is 133
relevant to the phase lag parameterization in such a way that, 134
for constant cellular composition, smaller cells are associated 135
with lower ⇢ values and larger cells with higher ⇢ values. The 136
combined effects of cell size and index of refraction, therefore, 137
yield the result that Qext(�) residuals in the spectral vicinity of a 138
narrow absorption band can be positive for small phytoplankton 139
with n near seawater, or negative for larger or more refractive 140
phytoplankton. Within a narrow, intermediate range in size and 141
refractivity, predicted Qext(�) residuals resemble an anomalous 142

Chlorophyll from absorption band effects on beam attenuation 
(Housekeeper et al., 2020) 6 Vol. 59, No. 22 / 1 August 2020 / Applied Optics Research Article

Fig. 5. Median validation scatterplot relating measured (vertical)
and predicted (horizontal) aLH values from the S matrix predictors,
with both axes on the log10 scale.

insignificant. The negative phase of component 3 (absorption395
band minima; higher ⇢) produced a greater slope than the396
positive phase (absorption band maxima; lower ⇢).397

The repeated cross-validation within the thinned Tara398
Oceans Expedition dataset produced a median RMSE to esti-399
mate aLH of 3.19 · 10�3 ± 0.55 · 10�3 m�1, corresponding400
to 3.3% of the range in aLH. RMSE derived from log10-401
transformed variables (log10-RMSE) indicated uncertainty of402
18.6% ± 1.7%. The median R2 value in the validation datasets403
was 0.894. A link to code based on the median-performing404
model is provided in the supplemental materials. The log-log405
scatter plot of measured and predicted aLH values in the median406
validation subset is shown in Fig. 5.407

The relationships for the S matrix predictors and the expo-408
nential slopes of the cp(�) dataset, � , were evaluated using the409
nonparametric scatterplot smoother lowess [33], shown in410
Fig. 6 with log10 horizontal scales. As in Fig. 4, we omitted the411
predictor corresponding to the negative phase of S2, due to the412
low number of observations and lack of physical interpretabil-413
ity. The nonparametric smoothers indicate that large positive414
expressions of mode 1 and large negative expressions of mode 3415
in the S matrix correspond with decreasing � , and large negative416
expressions of mode 1 correspond with increasing � . Based on417
our Section 3.B interpretation of the eigenvector spectra, the418
relationships in Figs. 6 (a–c) also could be expressed in terms of419
⇢, indicating a negative association between � and ⇢. Ignoring420
the variability in m (i.e., ⇢ / x ), the results are in agreement421
with theory relating � to the PSD. For example, an increase in422
the concentration of larger cells corresponds to a lower � and423
a greater expression of the high-⇢ amplitude functions P (+)

1424

and P (�)
3 . However, the theoretical relationship between PSD425

and � corresponds to the full particle population, while the426
relationship to the absorption band effects corresponds to the427
pigmented particle fraction.428

Fig. 6. Relationships between � and the S matrix predictors:
(a) P1

(+); (b) P1
(�); (c) P2

(+); (d) P3
(+); and (e) P3

(�), with locally
weighted scatterplot smoothing (lowess) functions overlaid in solid
black. The horizontal scales are log10. (f ) Histogram estimate of the
probability density function of the � values derived from the c p(�)
dataset.

4. DISCUSSION 429

A. Relevance of Absorption Band Effects to 430
Phytoplankton Dynamics 431

The development of hyperspectral IOP sensors and their 432
deployment in a continuous, underway configuration provided 433
us with a large surface ocean IOP dataset with 13 wavebands 434
within about 25 nm of the Chl a red absorption peak. Our 435
eigendecomposition found that three principal modes cap- 436
tured more than 99% of the variance in the c 0

p(�) dataset. The 437
shapes of these principal modes resembled the Qext(�) spectral 438
residuals predicted by the electromagnetic theory to arise in the 439
vicinity of narrow absorption bands. 440

The first eigenfunction, which captured 61.1% of the vari- 441
ance in the c 0

p(�) dataset, was primarily expressed in its positive 442
phase in the S matrix time series, which corresponded to a 443
minimum at wavelengths shorter (⇠10 nm) than the Chl a red 444
absorption maximum. The second eigenfunction, which cap- 445
tured 37.0% of the c 0

p(�) variance, most closely resembled the 446
anomalous dispersion curve illustrated in Fig. 1(c). Absorption 447
band effects are not anticipated to produce spectral shapes 448
resembling the reflection of this curve (recall Section 3.B and 449
Fig. 1), and likewise the negative phase of the second eigenfunc- 450
tion was rarely present in the S matrix time series (less than 1% 451
of the S2 values were negative). The variance captured by the 452
second eigenfunction is interesting because previous analyses 453
have indicated that the anomalous dispersion result is only 454
relevant to very small phytoplankton(e.g., [14]). Although 455
caution is warranted in relating ⇢ to phytoplankton size because 456



Particulate Organic Carbon & Suspended Particulate Material 
proxy

• Backscattering and 
attenuation are 
associated with particle 
concentration / size. 

• Backscattering  is also 
highly dependent on 
morphology and type of 
the particle

• Carbon density in all 
oceanic particles / 
phytoplankton are not 
the same. 

Also see:
Kitchen and Zaneveld, 1990
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POC/cp slope comparison (mg C m-2)

Cetinić et al., 2012, JGR 
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Finally, we computed the theoretical PC:ATN ratio for each particle
type. These estimates are shown as a function of size in Fig. 10 (solid
lines). Fig. 10 also shows the bulk (i.e., not-size resolved) estimates of
PC:ATN based on measured (rather than assumed) attenuances from
this study and from Bishop et al. (2016) using dashed, horizontal lines.
Our estimated PC:ATN for BATS is most consistent with the smaller
size classes of fecal marine snow estimated from Alldredge (1998), and
with the fecal pellet estimate based on the model of Dagg et al. (2014).
These particle types are primarily what Durkin et al. (2015) identified
in the gel collectors during the BATS deployments.

Our field measurements of sinking particles at the BATS site (Fig. 7)
gave a PC:ATN ratio that was larger than the largest values reported for
suspended particles (see Fig. 10 for values derived from the Menden-

Deuer and Lessard (2000) estimates for plankton cells; and Table 1 in
Cetinić et al. (2012)). Sinking-particle assemblages from Iselin Pier and
Saratoga Lake also had PC:ATN values at the high end of values
observed for suspended particles (Table 3; Fig. 10), although not as
high as at the BATS site. This could reflect aggregates with lower fractal
dimension or compositional differences compared to the BATS site, but
because our model assemblages were from shallow water in inland and
near-coastal environments, their lower PC:ATN ratios may also reflect
higher lithogenic contributions, or collection differences between the
laboratory and field measurements. The settled T. weissflogii cells
measured here in the lab had PC:ATN ratios (Table 3) similar to field
measurements of non-sinking diatom communities referenced above.
This is consistent with findings that aggregates have similar carbon:
surface area properties to their primary particles.

We did not find a significant relationship between individual field
samples’ PC:ATN ratios and their particle size distributions determined
from gel trap images (Table 1; Durkin et al., 2015). Also, the OST flux
proxy was a much better predictor of carbon flux over all 5 cruises (R2

=0.66) compared to the total particle area flux in the gels (R2=0.02;
Durkin et al., 2015). This could be due to particles having sizes that are
large relative to the wavelength of visible light, but optical properties
that are better modeled as a collection of small particles in the Mie
scattering regime with some variable, non-attenuating fluid fraction
(Boss et al., 2009b; Slade et al., 2011). Durkin et al. (2015) modeled the
carbon content of particles (C) in our samples from BATS as a power-
law function of particle diameter (C(D)=α(D)β) for each cruise month
using the bulk PC fluxes and gel trap PSD data, and found that values of

Table 3
Settling-particle optical properties.

Field or lab sample Carbon: attenuance flux ratio ( ± 95% confidence) (mg C m-2)

BATS, type-II weighted regression 3.4 ± 0.2 × 103

BATS, type-II weighted regression excluding “jump” signal (see text) 3.8 ± 0.5 × 103

BATS, regression forced through zero 2.38 ± 0.08 × 103

T. weissflogii culture 3.0 ± 0.3 × 102

Iselin pier, Woods Hole, MA 6.5 ± 0.8 × 102

Saratoga Lake, Saratoga Springs, NY 1.1 ± 0.1 × 103
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=0.66) compared to the total particle area flux in the gels (R2=0.02;
Durkin et al., 2015). This could be due to particles having sizes that are
large relative to the wavelength of visible light, but optical properties
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scattering regime with some variable, non-attenuating fluid fraction
(Boss et al., 2009b; Slade et al., 2011). Durkin et al. (2015) modeled the
carbon content of particles (C) in our samples from BATS as a power-
law function of particle diameter (C(D)=α(D)β) for each cruise month
using the bulk PC fluxes and gel trap PSD data, and found that values of

Table 3
Settling-particle optical properties.

Field or lab sample Carbon: attenuance flux ratio ( ± 95% confidence) (mg C m-2)

BATS, type-II weighted regression 3.4 ± 0.2 × 103

BATS, type-II weighted regression excluding “jump” signal (see text) 3.8 ± 0.5 × 103

BATS, regression forced through zero 2.38 ± 0.08 × 103

T. weissflogii culture 3.0 ± 0.3 × 102

Iselin pier, Woods Hole, MA 6.5 ± 0.8 × 102

Saratoga Lake, Saratoga Springs, NY 1.1 ± 0.1 × 103
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Fig. 8. Rate of occurrence of spikes in the OST flux proxy vs. gel trap zooplankton
“swimmer” flux (normalized to optical beam cross-sectional area, or gel area counted,
and to deployment length). The good correlation between the two suggests that spikes in
the flux proxy signal are related to the presence of active swimmers around the trap. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 9. Attenuance measured for suspended polystyrene beads of various sizes and
concentrations (x-axis) and the same suspensions’ attenuance values after allowing beads
to settle. Horizontal error bars are the 15th–85th percentile range of approximately
1 min of observations (at 1 Hz) while suspensions were allowed to flow through the
transmissometer. Parameters for Type-II linear regression are given. We did not see
evidence of multiple scattering due to particle settling. Noise in the relationship may be
due, in part, to the fact that settled particles do not move around in the beam cross-
section, while suspended particles do. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Values of PC:ATN ratios derived from literature models of particle carbon
content as a function of size, for different particles types relevant to sinking flux (see text
for discussion). Also included are bulk PC:ATN ratios from this study and from Bishop
et al. (2016). Solid lines show model-derived PC:ATN values as a function of particle size.
“MD&L00” refers to models of dinoflagellates, diatoms, and non-diatom protists from
Menden-Deuer and Lessard (2000). “D14” refers to average literature values for fecal
pellets from Dagg et al. (2014). “A98” refers to values for fecal and diatom-derived
marine snow from Alldredge (1998). Horizontal, dashed lines show bulk (not particle-
size specific) PC:ATN ratios computed from measured attenuances. “B16” refers to the
calibration ratio for California Current sinking particles derived by Bishop et al. (2016).
Black and gray dashed lines show the various PC:ATN ratios from this study (Table 3).
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Extend POC:cp relationship to sinking particles
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5 Sample Processing for Elemental Analysis 

5.1 Filter Sub-Sampling 
The GEOTRACES program has produced validated methods (Cutter et al., 2017) for various aspects 

of sample acquisition and processing for TEIs, including those measured in particulate samples. There are 
recommendations therein for sub-sampling filters derived from in situ pumps (section 2.1). Commonly, 
pumps are deployed for the measurement of multiple TEIs, in addition to POC. Here we summarize the 
procedures that apply to POC; researchers measuring multiple elements should consult the latest version 
of the GEOTRACES cookbook at http://www.geotraces.org. 

Filters of the QMA type can be sub-sampled with hole-punchers consisting of sharpened 
polycarbonate or acrylic tubing of the required diameter. Sharpened metal tubes can be used if trace metal 
contamination is not a concern. As for the plastic tubes, a machinist can sharpen stock metal tubes of 
desired diameter. Commercially available sterile biopsy punches (up to 12 mm in diameter) made of 
surgical stainless steel are convenient. For larger diameters, inexpensive commercially available leather 
punches can be used, but care must be taken to clean off machine grease before use. Hole-punching has 
the advantage of creating subsamples of reproducible area. Filters can also be sliced with a sharp blade, 
though this method generally leads to more variability in the subsampled area. A rotary ceramic or steel 
blade works well for cutting straight lines without the need to place a straight edge directly on the sample, 
especially if the filter is carefully placed over a carefully-drawn template to guide cutting. All sub-sampling 
where TEIs contamination is a concern is done over acrylic sampling plates, otherwise use heavy duty 
aluminum foil or glass surface. Rinse surfaces with de-ionized water in between samples discard once they 
become marred by repetitive use. 

Subsampling on smaller filters (i.e., 47 mm) can also be accomplished successfully with paper hole 
punches (~6 mm diameter), if the filter is not overloaded to the point that particulate loading begins to 
flake. The geometry of different filter towers frequently leads to different effective filtration areas on the 
filters (diameters can vary by >4 mm), so custom diameter measurements may be required on every filter. 
No statistical difference was noted for four vs. six holes punched in a filter. Comparisons between hole-
punched 47 mm filters and 25 mm filters analyzed in their entirety varied by <10% (Hernes et al., in prep). 

5.2 Drying 
Samples are commonly dried prior to analysis in a clean oven, used exclusively for that purpose, 

placed in glass scintillation vials or covered petri dishes that have been combusted at > 450 °C for ~4 
h. Drying time should not exceed 24 h and temperature maintained in the range 55 ± 5 °C to minimize 
loss of volatile organic C from the sample. Rosengard et al (2018) evaluated the effect of drying 

Figure 10. a) POC concentration corrected for the filtrate blank with a regression vs. corrected 
with a blank filter during the 2017 P06 Leg 2 GO-SHIP campaign. Regression line is the 
Pearson’s major axis Type II regression. The multiplicative mean absolute error (MAE) and 
bias were calculated as in Seegers et al (2018). b) Histograms of the POC data in a. Vertical 
lines depict the median POC concentrations for each correction approach.  

Good POC proxies require accurate in-water measurements:
Bias in discrete POC measurements from DOC adsorption to filters

Chaves et al., 2021

South Pacific Gyre (CLIVAR P16S) and the Gulf Stream, and
the lowest values from the Suwan. River Ref. II and Virg.
Beach measurements. The range of values encountered

indicates that the DOM measured in these experiments rep-

resents a wide variety of compositions, spectral characteris-

tics, and molecular weights.

DOC retention experiments
DOC concentrations throughout the experiment ranged

from 62.63 lM C to 386.7 lM C, and the increase in DOC

concentration across the samples was directly proportional

to spectral characteristics of aCDOM, with the exception of

the Suwan. River Ref. II sample that exhibited high aCDOM

and low spectral slope. The largest concentration of DOC

was measured in Galveston Bay (Galv. Bay, 386.7 lM), while

the lowest concentrations were measured from the South

Pacific (CLIVAR P16S) and from the Suwan. River Ref. II

which were 63.92 lM and 62.63 lM, respectively (Fig. 2).
The variation between replicates in the majority of the DOC

retention samples was substantial (Fig. 3A). The average of all

of the standard deviations computed for each volume and for

each experiment was 18.7 6 16.8 lg C with a range of 0.11–

81.3 lg C. Lower variability was observed for dry filter blanks

(Fig. 3A, zero volume), where the average mass of carbon mea-

sured was 7.3 6 2.4 lg C (n 5 54). The variability in average

Fig. 3. Distribution of carbon mass on filters with respect to volume filtered from all samples collected during DOC adsorption experiments (Panel A)
and DOC adsorption models (Panel B). Outliers in Panel A, depicted with a plus symbol, were not used for the calculation of the global fits shown in
Panel B linear model (dashed black line) or exponential model (solid blue line). Color/symbol coding in panel B depicts the samples from different
experiments (see Table 1 legend).

Fig. 2. CDOM spectral absorption (lines) and DOC concentrations
given in lM. Both parameters varied significantly across the water types
used to develop the models.

Novak et al. Adsorption of dissolved organic carbon on GF/F

360

Novak et al., 2018



Current POC 
algorithm

No DOC adsorption blanks
• DOC adsorption can be up to 30.86±0.62 µg C per filter (Novak et al. 2018)
• We need original data
• We need filtered volumes to apply the correction

Stramski et al., 2008

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180003443.pdf
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Contributions of different uncertainty sources to RS 
algorithms – example for two different POC algorithmsMcKinna et al. Uncertainties in Ocean Color

FIGURE 8 | Pie charts demonstrate how individual uncertainty sources contribute to estimates of total measurement uncertainty. Here we consider: (A) a blue-green

band-ratio POC algorithm and (B) an IOP-based POC algorithm. We note that these examples are intended to illustrate how one might visualize source contributions

to measurement uncertainty. These plots are not intended for algorithm comparison purposes.

estimate and propagate random radiometric uncertainties using
the FOFM framework, estimating model uncertainties remains a
challenge. This is because model component uncertainties (e.g.,
model coefficient uncertainties) of legacy ocean color algorithms
were not routinely reported. To address this, re-analysis of the
structure of legacy ocean color algorithms using high quality bio-
optical datasets, such as NASA’s bio-Optical Marine Algorithm
Dataset (NOMAD; Werdell and Bailey, 2005), may be necessary.
Without such knowledge, it remains a challenge to formulate
complete measurement uncertainty budgets for legacy ocean
color algorithms.

CONCLUSIONS

In this paper we demonstrated a FOFM-based method for
estimating uncertainties in a selection of NASA OC and IOP
products, namely: Chl, Kd,490, POC, nflh, anw,440, aφ,440, adg,440,
and bbp,440, due to sensor-observed radiometric uncertainty.
Using a high quality hyperspectral Rrs dataset subsampled to our
target wavelengths, we first appraised the FOFM methodology
by comparing FOFM-derived uncertainty estimates with
uncertainties estimated from MC simulations with an assumed
relative spectrally flat, uncorrelated uncertainty in Rrs of 5%.
Our analyses showed that OC and IOP uncertainties estimated
using the FOFM method generally agreed with MC simulations.
Collectively, the FOFM-to-MC comparisons provided a basis
for checking the correctness of the FOFM formulations, which
are often algebraically complex. Further, we demonstrated
that the FOFM formulation, which is computationally
inexpensive, can be applied in routine pixel-by-pixel data
processing for estimating uncertainties in derived ocean color
data products.

This paper has primarily focused on propagating radiometric
uncertainties through bio-optical models (udata(y) in Equation
1). In practice, the combined measurement uncertainty in
derived ocean color data products is expected to be larger
once model uncertainties are included. In this study, we
have broadly assumed that coefficients within the bio-optical
algorithms themselves are errorless, which is not the case.
Indeed, most coefficients in bio-optical algorithms have been
derived empirically using in situ oceanographic datasets, which

themselves have inherent uncertainties due to measurement
method and environmental variability. The GIOP, for example,
makes assumptions about spectral shapes of IOPs, utilizes an
approximate forward reflectance model (Gordon et al., 1988),
and employs a model to convert Rrs,i to rrs,i (Lee et al.,
2002). Thus, there are a number of GIOP model components
whose uncertainties, if characterized, may improve the overall
estimate of IOP measurement uncertainty. Our case study of
POC algorithms also highlighted how the addition of model (e.g.,
coefficient) uncertainties can further inform end-users, and may
potentially guide algorithm development and/or selection.

Although this work represents a first step toward
implementing pixel-by-pixel uncertainty estimates in NASA
operational ocean color processing code, we recognize that
continued effort is required. For example, strategies for
quantifying uncertainties in look-up-table (LUT) based
models, such as the two-band particulate inorganic carbon
(PIC) algorithm (Balch et al., 2005) and bidirectional
reflectance distribution function (BRDF) correction (Morel
et al., 2002), are needed. Globally, there are a multitude of
ocean color algorithms maintained by various researchers
and/or institutes and formulating uncertainty estimates must
be a collective effort. While the community continues to
innovate new bio-optical algorithms, we strongly encourage
model developers to characterize uncertainties as a matter
of routine.

As we enter the hyperspectral world of PACE, it is credible
to expect an evolutionary leap in remote sensing observation of
ocean processes detailing, for example, phytoplankton diversity,
physiological preferences, and ecology from space. This, parallel
to the increase in computational power of the day-to-day data
processing, will allow for more complex algorithms; algorithms
which will need detailed evaluation of uncertainty budgets,
to understand what is real, and what is hidden under the
dashed line.
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Stramski et al. 2008 band-ratio Rasse et al. 2017 IOP-based

• umodel terms include uncertainty in the POC measurements used to construct 
the algorithms (here, uncorrected DOC adsorption)

• udata terms include uncertainty in radiometric measurements



Phytoplankton 
carbon
• Cell sorting 
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combination with 
optics
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calculation from of 
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cytometry based 
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Franz et al. 2020, ”Global Ocean Phytoplankton”, in Baringer et al. [eds], State of the 
Climate in 2019

Green dots = Multivariate ENSO Index, inverted

GIOP backscattering --> Phytoplankton carbon



Suspended Particulate Matter

Neukermans et al. 2012
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Dissolved Organic Carbon

CDOM can approximate DOC in the coastal ocean

Del Vecchio and Blough, 2004

26

blooms; (3) to aph (>60%) for offshore out-of-plume waters.
Considering that absorption due to CDOM and detrital
material contributed together over 80% of the total absorp-
tion at 440 nm along Transect A, the chlorophyll concen-
tration estimated by band ratio algorithms that uses the

443 nm could be overestimated by as much as !500% in
the region of Transect A if the total absorption is entirely
attributed to chl a. Similarly, we can predict an overestimate
of !250 and 150% for Region B and Region A, respec-
tively, during the high flow period. Comparisons of satel-

Figure 7. CDOM absorption coefficient at 355 nm [aCDOM(355)] (m"1) to salinity dependence for
waters in the WTNA. Numbers refer to stations. Lines represent linear regressions with parameters
reported in figure and statistics in Table 1.
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Del Vecchio and Subramaniam, 2004

• Every coastal region will probably be different
• Better relationships when there is one strong source (e.g. river 

plume) and one major loss process (e.g. dilution into ocean)



Dissolved Organic Carbon...
CDOM ≠ DOC in the open ocean 

Nelson and Siegel 2013

27

DOC from space – Aurin et al., 2018.  
Empirical regression against 4 wavebands (440-555 nm) + salinity 

required, RMSE still 27-29 µmol L-1

Stedmon and Alvarez-Salgado, 2011

https://www.mdpi.com/2076-3417/8/12/2687/pdf


Overview

üWhere proxies fit, why to construct them
üConcentration proxies
• Composition and rate proxies
– “ANYTHING THAT CAUSES VARIABILITY IN THE SAMPLE IS AN
OPPORTUNITY TO EXTRACT ADDITIONAL INFORMATION FROM
THAT SAMPLE”   - COLLIN ROESLER

• Caveats

28



OPPORTUNITY IN CHAOS
QUALITY (COMPOSITION, SIZE)
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CDOM slope  ~ DOC molecular mass

30

Helms et al., 2008
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https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1117&context=chemistry_fac_pubs


Particle size – fluctuation based 

Briggs et al, 2013

Application – Briggs et al., 2018

31

N. Briggs et al.: Multi-method autonomous assessment of primary productivity and export efficiency 4525

Figure 10. Estimates of sources and sinks of organic carbon inte-
grated over the top 60 m: GPPChl a and NPPChl a and sinking par-
ticle export (this study), as well as NCP and loss due to the sum of
sinking particle export and net DOC production and sinking parti-
cle export only (Alkire et al., 2012). Bloom periods follow Alkire
et al. (2012) and are defined in the text (Sect. 3.3).

Each budget term carries considerable uncertainty, but based
on the central estimates, the partitioning of fixed carbon ap-
peared to change substantially over the course of the bloom.
Note that these NCP estimates include the net production of
dissolved organic carbon (DOC), while NPPChl a excludes
any photosynthetic DOC production. NPPChl a and NCP es-
timates were similar during the early and main bloom, sug-
gesting moderate to low heterotrophic respiration. During
the early bloom period, export was also low (⇠ 22–28 % of
GPPChl a), allowing for the rapid accumulation of biomass.
During the main bloom, GPPChl a nearly doubled as biomass
increased, but a larger fraction (⇠ 50 %) was exported, leav-
ing ⇠ 25 % to accumulate. During the bloom decline, appar-
ent community respiration (defined as the difference between
GPPChl a and NCP) was 156 % of GPPChl a and export was
an additional 50–80 %. In the post-bloom period, community
respiration was again high (⇠ 100 % of GPP), and export was
much lower (0–15 % of GPP). Our NPPChl a estimates and
bbp spike-based sinking flux estimates provide a continuous,
high-resolution picture of the link between productivity and
export at 125 m for the entire study period (Fig. 11a). Float-
and glider-based POC export estimates agree broadly at this
depth (red lines), suggesting that the higher-resolution glider
time series are representative of the float patch as well. While
export at 125 m is coupled with NPPChl a (Fig. 11a), there is
a rapid increase in export efficiency between 3 and 6 May
from ⇠ 20 to 40 %. Area-weighted mean particle diameter
(Dbbp) ranged from 90–150 µm during April and peaked at
250 µm on 7–8 May (Fig. 11b), coincident with peak biomass
as measured by both Chl a and POCbbp from the gliders (not
shown). Dbbp fell rapidly on 9 May, coincident with an ML

Figure 11. (a) Continuous productivity and export from the au-
tonomous float and gliders to and from the top 125 m over the en-
tire study period. Productivity and glider export are 2-day running
means, while float export is averaged over longer periods denoted
by the width of the bars. Bar height denotes uncertainty bounds.
(b) Near-surface glider Dbbp estimates from 10–50 m.

deepening event. Post-bloom Dbbp ranged from 150–190 µm
(Fig. 11b).

4 Discussion

4.1 Accuracy of PP estimates

The combination of three estimates of primary productivity
and one estimate of community productivity, all from the
same platform at comparable temporal and horizontal scales,
provides a unique opportunity to evaluate the accuracy of
all methods. Each of our PP methods is discussed in turn in
Sect. 4.1.1–4.1.4.

4.1.1 GPPChl a

GPPChl a and GPPcp are estimates of the same quantity ob-
tained independently. GPPChl a is derived from PAR and
Chl a estimates using robust local parameterizations ob-
tained from 14C incubations. GPPcp is derived entirely from
cp measurements converted to POC using another robust, lo-
cal empirical relationship. The averaging depth (daily mini-
mum MLD) for GPPChl a was chosen to match the diel cycle
method based on the results of a model tuned to match lo-

www.biogeosciences.net/15/4515/2018/ Biogeosciences, 15, 4515–4532, 2018



Particle composition in a hydrothermal plume

Estapa et al, 2015 32

particles is precipitation from vent fluids. We also observed that the smallest particles contributed more to the
total particle volume in samples collected between 1.5 and 3.5 m above the vent than they did either above
or just below this layer (Figure 3b). This appears to be the zone of most rapid particle precipitation.

The normalized LSS:cp ratio qualitatively indicates relative particle size and refractive index. Smaller, inor-
ganic particles should have larger LSS:cp ratios, while larger, organic-rich particles should have smaller LSS:cp

ratios. The coincidence of the minimum in
the upcast LSS:cp ratio with the minimum in
n (Figure 1, downcast 4855 m) suggests the
presence of larger particles, but could also be
due to higher organic content associated
with biological activity in the plume [Bennett
et al., 2011; Dick et al., 2013]. Observed LSS:cp

maxima (Figure 1c, downcast at 4740, 4760,
4775 and 4870 m; upcast at 4845 m) suggest
passage of the CTD through small eddies of
small, inorganic particles, each generally situ-
ated immediately adjacent to or between
volumes with larger, possibly more organic-
rich particles. The low-iron, high-cp(650)
anomaly observed 49.5 m above the vent in
the ROV bottle samples (Figure 4b) could
similarly reflect a small eddy of particles of a
different composition. Physical entrainment
from multiple sources into the rising plume
[Jiang and Breier, 2014] could drive these
observations, whose optical-chemical prop-
erty ratios may reflect particles from a differ-
ent chimney, re-entrainment of more aged
particles [German and Sparks, 1993] or micro-
bially enriched fluids emanating as diffuse
flow from across the host Beebe Vents
mound.

0 200 400 600 800 1000
0

100

200

300

400

[Fe] (nmol kg−1)

c p
(6

50
) (

m
−1

) cp = [Fe]*242 − 1.5

Height above vent (m)
0 20 40 60

0 2 4 6 8 10
0

1

2

3

4

cp = [Fe]*537 − 2

Figure 4. Scatter plots of cp(650) versus whole-water iron concentrations measured in SUPR bottle samples in the rising plume above the
Beebe Vents mound, Piccard Hydrothermal Field, Mid Cayman Rise. Colors on both plots reflect the height at which samples were taken
above the vent-orifice. (a) (left) All data from 0.5 to 72.5 m, and Type II linear fit (R2 5 0.96, n 5 14). (b) (right) Panel is zoomed in by a factor
of 100 to show only the samples collected more than 25m off-bottom, together with the Type II linear fit to this restricted data set
(R2 5 0.998, n 5 6). Samples shown with squares were not included in that linear fit.
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Figure 5. Spectral albedo (the fraction of beam attenuation accounted
for by scattering (b(k)) rather than absorption) of suspended, powdered
iron oxide and sulfide mineral standards in water. Absorption accounts
for a greater fraction of beam attenuation by sulfide minerals, than it
does for oxide minerals. Measurements were collected with an ac-9 in the
laboratory, and data were processed and corrected similarly to field data
described in the text. Particle maximum diameters are given in the
legend.
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laboratory, and data were processed and corrected similarly to field data
described in the text. Particle maximum diameters are given in the
legend.
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Change in in situ optical proxies will tell us 
something about rates and fluxes 
– Space - e.g. carbon export from mixed layer 

to deeper ocean 
– Time – productivity  - e.g. primary 

production
– Type – e.g. phytoplankton to detritus, POC 

to DOC 
– Typical units could be:  
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aggregates; Fl represents a subset of bbl, which
additionally includes fecal and detrital matter
(21). BetweenMay 2013 and February 2018, we
identified 34 pulses of bbl and/or Fl in the
mesopelagic that were associated with surface
phytoplankton blooms and were clearly dis-
tinguishable from prebloom background con-
centrations. Bulk large-particle sinking velocity
was estimated for each large-particle pulse (fig.
S2) from the timing of peak concentration
versus depth (24). Mean sinking velocities
(and 95%confidence intervals) across all pulses
were 74 (58 to 100) m per day for large back-
scattering particles and 98 (79 to 129)mper day
for large fluorescing particles.
We observed close coupling between large-

and small-particle concentrations during these
flux pulses (Fig. 2). Small-particle concentra-
tions increased rapidly during periods of peak
large-particle concentration (Fig. 2; solid black
lines) at all depths below200m, peaking slightly
later (e.g., Fig. 2, left column: peakFs lags behind

peak Fl by ~2 days, regardless of depth). This
coupling provides strong evidence that large-
particle fragmentation drives the observed
accumulation of small particles in the meso-
pelagic, both for large particles in general
(bbl) and phytoplankton aggregates in particu-
lar (Fl).
We quantified specific fragmentation rates

during each sinking pulse by tracking these
changes in the concentrations of large and
small particles as a function of depth and time.
Full computations, assumptions, and uncer-
tainty budgets (24) are shown in figs. S3 to
S11 along with alternative calculations support-
ing key methodological assumptions (figs. S11
to S13).Mean fragmentation rate profiles across
all pulses varied with depth and particle type
from 0.03 to 0.27 per day (Fig. 3). Although
wide uncertainty bounds prevent firm conclu-
sions, the patterns in these rates offer prelim-
inary indications of possible fragmentation
mechanisms. First, live phytoplankton aggre-

gates (Fl) fragmented at higher rates than
large sinking particles in general (bbl) at all
depths in the mesopelagic zone (Fig. 3). Fresh
phytoplankton aggregates therefore appear
either more fragile than other large sinking
particles and/or are subject to higher local shear.
The latter might result from selective feed-
ing on fresh material by zooplankton. Second,
specific fragmentation rates decreased with
depth (Fig. 3). This depth dependency could
result from passive breakup of more fragile
particles closer to the surface. It might also re-
sult from higher zooplankton activity closer to
the surface, where we expect food to be more
abundant and more nutritious. On average,
fragmentation accounted for close to 50% of
the observed loss rates of large particles in gen-
eral and 30 to 60% of the loss of large fluoresc-
ing particles (Fig. 3) at all depths between 250
and 950 m.
We also found regional differences in spe-

cific fragmentation rates. When calculated
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Fig. 2. Fragmentation of large particles
generates small particles at depth. Large-
and small-particle measurements from
example large-particle pulses from the
North Atlantic (left panels) and the
Southern Ocean (right panels) are shown.
Large-particle fluorescence Fl (green
circles) and large-particle backscattering
bbl (red circles) are shown above the
corresponding log10 small-particle
fluorescence Fs (green) and backscattering
bbs (red). Large-particle measurements
are plotted individually with higher values
(darker colors) covering lower values.
Thin black lines along the top edges
of the panels show mixed-layer depth;
thick, diagonal solid lines show linear
least-squares fits of maximum large-particle
concentration with depth; and dashed
lines show the ±15 day windows used
for fragmentation calculations. Similar
visualizations for all 34 plumes in this
study can be found at seanoe.org
(26). Chl, chorophyll.
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additionally includes fecal and detrital matter
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scattering particles and 98 (79 to 129)mper day
for large fluorescing particles.
We observed close coupling between large-

and small-particle concentrations during these
flux pulses (Fig. 2). Small-particle concentra-
tions increased rapidly during periods of peak
large-particle concentration (Fig. 2; solid black
lines) at all depths below200m, peaking slightly
later (e.g., Fig. 2, left column: peakFs lags behind

peak Fl by ~2 days, regardless of depth). This
coupling provides strong evidence that large-
particle fragmentation drives the observed
accumulation of small particles in the meso-
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The latter might result from selective feed-
ing on fresh material by zooplankton. Second,
specific fragmentation rates decreased with
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result from passive breakup of more fragile
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the surface, where we expect food to be more
abundant and more nutritious. On average,
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Fig. 2. Fragmentation of large particles
generates small particles at depth. Large-
and small-particle measurements from
example large-particle pulses from the
North Atlantic (left panels) and the
Southern Ocean (right panels) are shown.
Large-particle fluorescence Fl (green
circles) and large-particle backscattering
bbl (red circles) are shown above the
corresponding log10 small-particle
fluorescence Fs (green) and backscattering
bbs (red). Large-particle measurements
are plotted individually with higher values
(darker colors) covering lower values.
Thin black lines along the top edges
of the panels show mixed-layer depth;
thick, diagonal solid lines show linear
least-squares fits of maximum large-particle
concentration with depth; and dashed
lines show the ±15 day windows used
for fragmentation calculations. Similar
visualizations for all 34 plumes in this
study can be found at seanoe.org
(26). Chl, chorophyll.
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using the same parameterizations (24), large-
particle (bbl) specific fragmentation rates
were notably higher in the Southern Ocean
than those in the North Atlantic, between
250 and 600 m (Fig. 4, left panel). On the
other hand, fragmentation of fresh phyto-
plankton aggregates (Fl) was not different in
the two regions (Fig. 4, right panel). Further
differences in bbl fragmentationwere observed
between subregions of the Southern Ocean
(table S2). Investigation of these regional dif-
ferences may help to constrain the drivers of
fragmentation.
Our measurements provide quantitative and

geographically broad support for the hypoth-
esis that fragmentation exerts a major control
on mesopelagic carbon flux (12), which has
two notable implications. First, when added to
previous estimates of large-particle consump-
tion by zooplankton and bacteria (13), frag-
mentation can now fully explain the observed

flux attenuation at high latitudes. Therefore,
these results strengthen ourmechanistic under-
standing of the biological carbon pump. Se-
cond, our results imply that fragmentation
may be the single most important process in
determining the depth at which fast-sinking
organic carbon is remineralized. By extension,
fragmentation appears to be a key regulator
of atmospheric CO2 concentrations (7) and
of the delivery of energy to deep-ocean eco-
systems versus its retention in mesopelagic
ecosystems (25).
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Fig. 3. Fragmentation contributes 50% of the observed flux
attenuation. First and third panels from left show mean specific
fragmentation rates of large particles bbl (red) and of large fluorescing
particles Fl (green) across all large-particle pulses. Second and fourth
panels from left show the mean fraction of bbl flux attenuation (red) and

Fl flux attenuation (green) explained by this fragmentation. Shaded areas
show 95% confidence intervals. Black curves and equations in first and third
panels show least-squared exponential fits of specific fragmentation rates
versus depth. d, day; r2, coefficient of determination; x, specific fragmenta-
tion rate (per day); y, depth (m).

Fig. 4. Regional differences in fragmentation.
Comparison between mean specific fragmentation
rates of large particles bbl (left) and those of large
fluorescing particles Fl (right) during North Atlantic
(purple) and Southern Ocean (blue) phytoplankton
blooms. Bold lines show means and shaded areas
show two standard errors around the means.
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• Use “spikes” to quantify large- and 
small-particle backscattering

• Find well-defined export events in 
BGC-Argo data

• à Disaggregation during such events 
accounts for ~ half of C flux 
attenuation



“Optical sediment trap”

Estapa et al. 2019, plus unpublished EXPORTS data
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Remineralization length scales computed from monthly, binned OST data at the shallowest two OST depths
were within the ranges predicted by a recent observational study (Marsay et al., 2015) and a modeling study
(DeVries & Weber 2017), but were much more variable, ranging from a minimum of 70 m in February
2014 to a maximum of 319 m in December 2013 (Figure 7). The seasonal behavior of z* was inconsistent with
temperature or oxygen serving as the primary control on remineralization rate, as reported in other studies
(Laufkötter et al., 2017; Marsay et al., 2015). However, at zref in our study area, these two parameters did not
vary a great deal. The observed, annual mean, and standard deviation in temperature were 20.3 ± 0.9 °C, and
for oxygen were 202 ± 10 μmol/kg. Therefore it is possible that other factors thought to covary with z*, such
as mineral ballasting and particle sinking speeds, were locally more relevant. No significant correlations (at
the 95% confidence level) were observed between z* and the monthly mean temperature, O2, bbp, cp, optical
spikes, or optical property ratios above zref.

Oxygen supersaturation predominately occurred just below the mixed layer while the mixed layer deepened
(Figure S6). This was evident during December 2013 for F033 and July to November 2014 for F034 and was
likely due to biological production in the submixed layer. Overall, temporal variability in O2 on short time-
scales is consistent with previous studies (Alkire et al., 2012; Yang et al., 2017).

Dall'Olmo and Mork (2014) used the rate of change in the depth‐integrated POC stock (from bbp as in this
study) as a proxy for POC flux due to seasonal stratification that traps surface particles below the surface
mixed layer (i.e., the mixed layer pump; Gardner et al., 1995). It is also possible that such events could arise
from disaggregation of large sinking particles at depth, or advection of small particles, and like geochemical

Figure 6. (a) Monthly means and standard deviations of shallowest particulate organic carbon (POC) flux observations
from optical sediment trap (OST; black bars) and Bermuda Atlantic Time‐Series Study (BATS) sediment traps (red
bars). Also indicated is the comparison depth. (b–n) Monthly means (circles) and standard deviations (horizontal lines) of
monthly flux profiles from OST on floats (black), BATS (red), and 1,500‐mOceanic Flux Program (OFP) fluxes (blue) over
all time series' respective durations. Note the larger x axis ranges (marked in red) in February and March 2014 plots.
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isms. During the July 2013 deployment the NBSTs were programmed
to hold depth within ± 25 m of the measurement depth, while in
subsequent deployments this band was narrowed to ± 10 m. Navis
floats first completed an initial down-and-up dive without parking,
then parked and collected a flux measurement at 1 or 2 consecutive
depths within the 2–3 d deployment period with a profile ascent in
between. A float firmware error early in the fieldwork period prevented
collection of upper water column data in some of the profiles, although
this was remedied by the end of the field season. To examine the
general hydrographic setting during each cruise, water-column profile
data were averaged in density space for each cruise from the available
float profile data. Transmissometers on all platforms sampled at
15 min intervals during the platform drift phase. The deployment
times, locations, and target depths during the 5 cruises are summarized
for NBSTs in Table 1 and for Navis floats in Table 2.

2.2. OST data analysis

The OST method uses the rate of change of particle attenuance at
650 nm (ATN(650)), measured from a quasi-Lagrangian, profiling float
drifting at depth (i.e., the “park phase” in the Argo float profiling
sequence). Attenuance is defined as –ln(signal/reference), where
signal is the light intensity at the transmissometer detector and
reference is the source intensity. When measured with a transmiss-
ometer, ATN is equal to the product of the beam attenuation (c),
defined operationally here as c=-ln(signal/reference)/pathlength, and
the transmissometer pathlength. While attenuance is unitless, we can
also think of it as the total attenuation cross section (σc, units of m2;
Mobley, 1994) of particles deposited within the transmissometer beam

Table 1
Summary of NBST deployments.

Deployment date Depth Deployment location Deployment length (d) PC flux replicates PC flux ( ± s.d. or range, mg-C m-2 d-1)

NBST PITs PSD slopeA

5 July 2013 150 31.7°N, 64.2°W 2.92 3 20.9 ± 7.6B 13.9 ± 4.4 3.4
300 2.86 3 9.0 ± 1.4B 5.24 ± 0.70 3.8

1 Aug 2013 150 31.6°N, 64.2°W 2.45 2 21.5 ± 1.8 11.9 ± 6.0 3.5
200 2.48 2 12.9 ± 1.7 8.2 ± 2.8 2.9
300 2.42 3 7.1 ± 1.4 6.4 4.0

17 Sept 2013 150 31.7°N, 64.1°W 2.69 3 12.2 ± 2.5 13.67 ± 0.30 3.1
300 2.67 3 6.6 ± 2.6 5.26 3.4
500 2.70 3 7.8 ± 1.4 3.8

19 Oct 2013 150 31.7°N, 64.2°W 2.65 3 10.6 ± 2.9 5.1 ± 2.3 3.2
300 2.63 2 1.3 ± 3.8 3.68 ± 0.8 3.2
500 2.64 3 5.2 ± 3.4 3.5

4 March 2014 150 31.6°N, 64.2°W 1.47 3 13.7 ± 4.2 26.2 ± 1.1 3.2
300 1.48 3 11.0 ± 2.3 15.0 ± 5.5 3.4
500 1.45 2 11.6 ± 4.7 3.6

A PSD slopes from Durkin et al. (2015).
B Absolute flux values should be treated with caution due to platform vertical motions.

Fig. 1. Left panel: Neutrally-buoyant sediment trap (NBST) carrying 4 sediment trap
tubes and an integrated C-Rover transmissometer (WETLabs C-Rover 6b). Center panel:
Navis BGCi profiling float (Seabird Scientific) also carrying a C-Rover transmissometer
(WETLabs C-Rover 2 K, identical in size and optical specifications to the C-Rover 6b).
Right panel: Close-up photograph of the lower optical window of the C-Rover 2 K.

Table 2
Summary of Navis float deployments.

Deployment date Park depth range (m) Deployment location Number of floats Number of flux measurements Notes

5 July 2013 30–217 31.7°N, 64.2°W 2 2 A, B
1 Aug 2013 133–906 31.6°N, 64.2°W 2 13 C
17 Sept 2013 110, 292 31.7°N, 64.1°W 1 1 B
19 Oct 2013 134, 380 31.7°N, 64.2°W 1 1 B
4 March 2014 490, 425 31.6°N, 64.2°W 1 1 A

A First deployment after service/ballast change, target depths not reached on first few profiles.
B Firmware error; no upper water column data on some profiles.
C Floats continued to profile for 8 days after deployment.
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fluorescence signal decayed, could have contributed to the mid‐March flux events detected by the OST (but
not by any of the other optical proxies for particle flux).

4.5. Net Primary Production and Export Ratios

Modeled NPP based on float observations exhibited differences in timing and magnitude relative to the
standard, satellite‐based CbPM NPP product (Figure 11). The standard CbPM model predicted a mid‐
February NPP minimum and only a small seasonal springtime peak in mid‐April, instead of the large

Figure 9. Particulate organic carbon (POC) flux at zref summarized from all proxies: optical sediment trap (OST) steady
flux component extrapolated using best fit z* (equation (1) and Figure 7) from shallowest observation depth up to zref
(light blue bars) and OST jump flux component (dark blue bars) are stacked to give total POC flux from OST observations.
The heavy orange line shows magnitude and time period of seasonal iPOC‐bbp export from zref. The heavy green line
shows the same for iPOC‐cp.

Figure 10. Mean derived particle sinking speed (ωs) at zref. (a) Inferred ωs for all particles derived from optical sediment
trap and bbp proxies over time. (b) Histogram of small‐particle ωs. Total population ωs mean ± standard deviation:
1.7 ± 2.0 m/day. (c) Inferred large‐particle particulate organic carbon ωs derived from optical sediment trap and back-
scattering spike large particle proxy. (d) Histogram of large particle ωs. Large particle ωs mean ± standard deviation:
10 ± 19 m day. Note the logarithmic ωs scale used in panels c and d.
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factor of 1.93 larger than HPLC bottle samples, similar to values for the North Atlantic gyre reported by
Roesler et al. (2017). The POC:bbp(700) slope was 32,020 (±7,673) mg‐C/m2 (Type‐I regression, R2 = 0.86,
N = 15), encompassing values reported by Cetinić et al. (2012) for the submixed layer recyling community
that developed following the 2008 North Atlantic spring bloom but with more scatter, consistent with the
greater seasonal span and smaller numbers of samples in the calibration data set used here. The POC:
cp(650) slope was 451 (± 81) mg‐C/m2 (Type‐I regression, R2 = 0.92, N = 15), similarly encompassing the
values reported by Cetinić et al. (2012), but with more scatter and greater similarity to their observed
recycling community relationship.

Calibrated chlorophyll (obtained from nighttime FChl versus HPLC bottle measurements as described above)
averaged over the mixed layer was well correlated with satellite chlorophyll observations (R2 = 0.93,N= 44),
but satellite chlorophyll underestimated the float observations by a factor of 0.39 (Figure S5). Backscattering
from the float observations was not significantly correlated with satellite backscattering. Satellite observa-
tions completely missed the springtime seasonal increase. In this subtropical setting, it may have been the
case that the entire dynamic range of surface backscattering was too low to be easily discriminated by satel-
lite. Alternatively, it is possible that the 8‐day averages of satellite backscattering required to overcome cloud
cover eliminated most of the in situ variability.

Over periods of months, there was no evidence for long‐term fouling of backscattering or chlorophyll sensors
even when floats spent 64% of their parking time at 500 m or shallower (Figure S1). The deep‐water mini-
mum in bbp(700) exhibited an apparent seasonal cycle, reaching its maximum in early May with an annual
amplitude of 8.1 × 10−5 m−1. This is similar to the findings of Poteau et al. (2017) who observed a cycle in
bbp(700) at 900–950 m in the North Atlantic subpolar gyre. Their North Atlantic subtropical gyre measure-
ments were collected at the southern edge of the gyre (approximately 20°N, 50°W), so it seems reasonable
that our observations in the northwest part of the gyre (Figure 1) resembled their subpolar gyre observations
albeit with a smaller amplitude and earlier seasonal maximum. There was evidence for upward drift of the
transmissometer baseline as described above but not to the point where its use as an OST would have been
compromised (Estapa et al., 2017).

4.3. General Patterns in Bio‐optical Proxies

Profiles of POC (from backscattering) and Chl are shown in Figures 2 and 3. The observations indicate a
buildup of biomass in the upper 200 m beginning in mid‐January 2014 and extending until the float 33

Figure 2. Particulate organic carbon (POC) profiles (derived from bbp) observed by floats. Temporal extent of F033 and
F034 deployments are as shown in Figure 1. (a) POC integrated from the surface down to zref (black line) and dynamic
height anomaly referenced to 900 m (red line). (b) POC section from 0 to 1,000 m with superimposed zML (magenta line),
zeu (black line), and zref (white dashed line).
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üWhere proxies fit, why to construct them
üConcentration proxies
üComposition and rate proxies
• Caveats
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Curt’s slide from Monday morning...



Caveats

1. Validate – make sure your proxies are 
based on strong and meaningful
relationship with biogeochemical 
parameters

2. Interpolate rather than extrapolate –
know the limits of your method, 
spatial, temporal and logical

3. Same as Rufus the dog, seize the 
variability and chaos (but remember 
1 and 2)

“PROXIES WORK UNTIL THEY DON’T” –
Mary Jane Perry
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