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Not tonight.

I’m still

debugging

my new 3D 

Monte Carlo

code

Hey Curt, 

wanna go to

my place and, 

uh, talk about 

radiative 

transfer theory?



Example 3D Radiative Transfer Problems
(which can’t be solved by the 1D HydroLight)

sloping or patchy bottoms

Mobley, 2018; Lesser et al., 2021Mobley and Sundman, 2002



Example 3D Radiative Transfer Problems
(which can’t be solved by  the 1D HydroLight)

objects in the water, or instrument and ship shadow effects



Monte Carlo techniques refer to the use of probability theory and 

random numbers to simulate a physical process.

An essential feature of Monte Carlo simulation is that the known 

probability of occurrence of each separate event in a sequence 

of events is used to estimate the probability of the occurrence 

of the entire sequence.

In the optics setting, the known probabilities that a light ray (often 

called a “photon packet”) will travel a certain distance, be scattered 

through a certain angle, reflect off a surface in a certain direction, 

etc., are used to estimate the probability that a ray emitted from a 

source at one location will travel through the medium and eventually 

be recorded by a detector at a different location.

Averages over ensembles of large numbers of simulated ray 

trajectories give statistical estimates of radiances, irradiances, 

and other quantities of interest.

Monte Carlo Techniques



Monte Carlo Techniques for Solving the RTE

• Mimic nature in the generation and propagation of light rays

• Build up a solution to the RTE one ray at a time

• The tools for doing this are basic probability theory and a random 

number generator

The basic idea:



Monte Carlo Techniques for Solving the RTE

Topics to be covered:

• Probability distribution functions (PDFs) and cumulative distribution 

functions (CDFs)

• Random number generators

• Using CDFs to randomly select distances, scattering angles, etc.

• Monte Carlo noise

There are web book pages on Monte Carlo techniques starting at
https://www.oceanopticsbook.info/view/monte-carlo-simulation/introduction

and see Chapter 12 of the OOB.

https://www.oceanopticsbook.info/view/monte-carlo-simulation/introduction


Probability Density Functions

A probability density function (PDF) is a non-negative function p(x) such that 

the probability that its variable x is between x and x+dx is p(x)dx.

Example: x = height of  adult humans
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Probability that a person selected 

at random from all humans is 

between 1.0 and 1.3 m tall is

Normalization:                                  that is, the prob is one that a person

will have some height between 0 and ∞

Units of p(x) are always 1/[x]



Cumulative Distribution Functions

A cumulative distribution function (CDF) is a non-negative function CDF(x) 

such that the probability that its variable has a value ≤ x is CDF(x).  For the 

human height example,

Probability that a person selected 

at random from all humans is 

between 1.0 and 1.3 m tall is

CDF(1.3) – CDF(1.0)

Note that CDF(∞) = 1.     That is, the probability is one that a person will 

have some height less than ∞
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U(0,1) Random Number Generators

A Uniform 0-1 random number 

generator is anything (usually a 

computer program) that when called 

returns a number R between 0 and 

1 with equal probability of returning 

any value 0 < R < 1. R ~ U(0,1) 

0 1 R

p
(R
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1

0

0.6314325330

0.2641695440

0.7653187510

0.3009850980

0.9278188350

0.0138932914

0.3010187450

0.1198131440

0.3243462440

0.3493790630

0.1154079510

0.1382016390

0.1065650730

100 bins, 0.01 wide



Which Sequence of Numbers is Probably NOT Random?

452878231035972340523765091082725314057609439765120372140674….

142983211983496178801321756333339673012007362876201847772190….

Which Arrangement of Dots is Probably NOT Random?



Light Rays

A light ray is a hypothetical construct that indicates the direction of 

the propagation of light at any point in space.

This idea is based on the every-day observation that light travels in 

straight lines (in a homogeneous medium).  

Geometric optics is an approximate 

model of light propagation that holds 

when the scattering particles (or 

lenses, mirrors, etc.) are much, much 

larger than the wavelength, so that 

diffraction and interference can be 

ignored. Light rays are the basic 

“objects” of geometrical optics.   

Geometric optics and very 

sophisticated ray tracing programs 

are used to design camera lenses.



Random Determination of Ray Path Lengths

Recall Beer’s law (for a collimated beam in a dark, homogeneous ocean):

The exponential decay of radiance can be explained if the individual rays 

have a probability of being absorbed or scattered out of the beam between τ
and τ+dτ that is

We want to use our U(0,1) random number generator to randomly determine 

ray path lengths τ that obey the pdf p(τ) = exp(-τ).  Going from R to τ is a 

change of variables:



Random Determination of Ray Path Lengths

Solving

gives

Draw a U[0,1] random number R, and then the 

corresponding ray path length is

or 

for distances r in meters.



Fundamental Principle of MC Simulation

The equation R = CDF(x) 

uniquely determines x

such that x obeys the 

corresponding pdf p(x) 
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General procedure:

1. Figure out the pdf p(x) that governs the variable of interest, x

2. Compute the corresponding CDF(x)

3. Draw a U[0,1] random number R 

4. Solve R = CDF(x) for x

5. Repeat steps 3 and 4 many, many, many times to generate a 

sample of x values that reproduces the behavior of x in nature



Mean Free Path

The pdf for the distance a ray travels is p(τ) = exp(-τ).  

What is the average distance <τ> that a ray travels?  

Called the mean free path.

or, since τ = cr, 

<𝒓> = 1/c (meters)

What is the variance about the mean distance traveled?

so the standard deviation is also 1/c (meters)



Random Determination of Scattering Angles

Scattering is inherently 3D:

ψ is polar scattering angle

χ is azimuthal scattering angle

phase functions can be 

interpreted as pdfs for 

scattering from (ψ′, χ′)

to (ψ, χ)



Random Determination of Scattering Angles

For isotropic media and unpolarzed light, ψ and χ are independent, 

so the bivariate pdf is the product of 2 pdfs: 

Any azimuthal angle 0 ≤ χ < 2π is equally likely:

solve for ψ 

(usually must solve 

numerically) 



Example:  Isotropic Scattering



Example:  Isotropic Scattering

For isotropic scattering, 

gives

Isotropic means equally likely to scatter into any element of solid angle, not 

equally likely to scatter through any polar scattering angle ψ



Tracing Rays

The albedo of single scattering, ωo = b/c, is the probability that a ray (or 

photon) will be scattered, rather than absorbed, in any interaction

What nature does:

• draws a random number and gets the distance

• draws another random number and compares with ωo : 

▪ if R > ωo the ray (photon) is absorbed; start another one

▪ if R ≤ ωo the ray (photon) is scattered; compute the scattering 

angles

Any ray that is absorbed never contributes to the answer and is wasted 

computation.  Nature can afford to waste rays; scientists cannot.



Tracing Ray Bundles

Rather that lose some rays to absorption, consider each ray to be a 

bundle of many parallel rays starting with power w = 1 Watt.  At each 

interaction, multiply the current weight w by ωo to account for loss of  

some of the original power to absorption.  This increases the number 

of rays that contribute to the answer (although some may still miss the 

target).

Usually kill the ray when w < 10-8, for example, if it hasn’t hit the 

target.



Visualizing 

Ray Paths



Visualizing Ray Paths

Monte Carlo simulation gives 

understanding at the individual 

ray level, which can’t be 

obtained from radiance (e.g., 

from HydroLight)

30 deg 

off axis



Statistical Noise

The answer you get depends on random numbers and on the number 

of rays collected, so it has statistical noise, aka Monte Carlo noise.

Repeated runs 

(different sequences 

of random numbers) 

with the same 

number of rays per 

run.

Note that as more 

runs are done, the 

distribution of 

computed values 

(errors) approaches 

a Gaussian: 

The Central Limit 

Theorem in action

distribution of errors in the estimated mean



Statistical Noise

Is the spread of the estimates (coefficient of variance) too large?  

Trace more rays...

The same numbers 

of runs , but with 

more rays per run.

The variance in the 

computed values is 

~1/N, N = number 

of rays detected

To reduce the std 

dev of the 

estimate by a 

factor of 10, must 

detect 100 times 

more rays



Variance Reduction

You now know enough to do the Monte Carlo lab.

However, before writing your own MC code to do extensive 

simulations, read about other ways to get more rays onto the target 

without more computer time (see the Web Book Monte Carlo chapter).  

These are generally called “variance reduction” techniques, and there 

are many (“backward ray tracing”, “importance sampling,”, “forced 

collisions”,...)

In general:

• First, figure out how to simulate what nature does

• Then figure out how to redo the calculations to maximize the 

number of rays detected (i.e., solve a different problem that has the 

same answer as the original problem—variance reduction)

• The goal (seldom attained) is to Never Waste a Ray



Variance Reduction:  Backward Monte Carlo

Emit rays from the detector with weight w = 1 and the angular distribution of 

the detector response, and trace to the source.  Then weight the “detected” 

rays at the source to apply the correct source weight. Only ray paths 

conecting the true source (e.g., the sky) and the true detector are then traced. 

The Principle of 

Electromagnetic 

Reciprocity says that a ray 

will trace the same path 

going in either direction

(If I can see you, you can 

see me.)

Mobley and Sundman, L&O, 2003



Forward MC: an Ed

detector has a cosine 

response

Backward MC: an Ed

detector has a cosine 

emission pattern

Each sky quad 

records the fraction of 

power emitted from 

the detector that 

reaches the quad.

After ray tracing (with 

rays from the detector to 

the sky) is complete, 

then apply a sky 

radiance model to 

compute the total power 

from the sky that would 

reach the Ed detector 

(with the rays going from 

sky to detector)

Variance Reduction:  Backward Monte Carlo



Example:  Backward Monte Carlo

(from Shang et al, 2017)

Developing a shadow correction for the Lee method.



Example:  Backward Monte Carlo

First they compared their BMC code with HydroLight, for no 

instrument present (1 D geometry); agreement to within 1%

Then they compared their 

BMC results with Gordon 

and Ding (1992) for the 

geometry of GD92 

(cylindrical instrument, didn’t 

study backscatter effects)

Then they did simulations on 

a super computer for their 

instrument geometry and 

developed a shading 

correction for their specific 

instrument as a function of 

a, bb, sun zenith angle.



▪ They are conceptually simple. The methods are based on a 

straightforward mimicry of nature.

▪ They are very general. Monte Carlo simulations can be used to 

solve problems for any geometry (e.g., 3D volumes with imbedded 

objects), incident lighting, scattering phase functions, etc.  It is 

relatively easy to include polarization and time dependence.

▪ They are instructive. The solution algorithms highlight the 

fundamental processes of absorption and scattering, and they 

make clear the connections between the ray-level and the energy-

level formulations of radiative transfer theory.

▪ They are relatively simple to program. The resulting computer 

code can be simple (compared to other techniques), and the 

tracing of rays is well suited to parallel processing.

Monte Carlo Strengths



Monte Carlo Weaknesses

▪ They can be computationally very inefficient. Monte Carlo 

simulation is inherently a “brute force” technique.  If care is not 

taken, much of the computational time can be expended tracing 

rays that never contribute to the solution, e.g., because they 

never intercept a simulated detector.

▪ They are not well suited for some types of problems. For 

example, computations of radiance at large optical depths can 

require unacceptably large amounts of computer time because 

the number of solar rays penetrating the ocean decreases 

exponentially with the optical depth.  Likewise, the simulation of 

a small source and a small detector is difficult.

▪ They provide no insight into the underlying mathematical 

structure of radiative transfer theory. The simulations simply 

accumulate the results of tracing large numbers of rays, each of 

which is independent of the others.



Following Marco Polo Along the Silk Road in Western China



Tang tri-color horse and camel 

Shaanxi Provincial Museum, Xi’an; Tang 618–907)



Bronze wine jug, Western Zhou Dynasty (1000-900 BC), 

Shaanxi Provincial Museum, Xi’an



Tomb bricks, Gobi Desert near Jiayuguan, Gansu Province. Wei-Jin era (200-400 AD)



Gold ibex (?) and Teapot, Shaanxi Provincial Museum, Xi’an



http://www.xrez.com/blog/mogao-caves-vr/

Mogau Grottos near Dunhuang (c 400 – 1500 AD)



https://www.askideas.com/30-most-beautiful-paintings-inside-the-mogao-caves-in-dunhuang-china/



The Flying Horse of Gansu, Han (25-200 CE) 

Gansu Provincial Museum, Lanzhou 


