
Estimating phytoplankton 
community structure & particle sizes 
from satellite ocean color

Jeremy Werdell
NASA Goddard Space Flight Center

2021 Ocean Optics Summer Course



2

the act of simultaneously 
accepting two mutually 
contradictory beliefs as correct

doublethink

example:

“advanced ocean color missions will finally 
enable us to identify phytoplankton 
community composition from space”

”ocean color approaches to identify 
phytoplankton community composition are 
limited in their abilities and performance”



http://www.ioccg.org/groups/PFT.html http://ioccg.org/groups/PFT-TM_2015-217528_01-22-15.pdf
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resources:  IOCCG PFT working group
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resources:  recent articles in Frontiers in Marine Science

major gaps identified as:
• mismatch between satellite, in situ, and model data
• lack of quantitative uncertainty estimates
• spectral limitation of current sensors
• limited applicability in regional waters

recommended actions:
• increase communication & round robin exercises
• launch higher spectrally sensors
• launch higher spatially resolved sensors
• develop hyperspectral algorithms 
• develop synergistic satellite + in situ data algorithms



perspective

the faithful & the skeptical surround you

this is pushing the limits of existing (& future?) satellite instruments

many methods have been proposed, most fall into 2 classes

like it or not, this is our future – already big in our community 

spatially, temporally diverse validation data are historically unavailable

HUGE science driver for PACE

this presentation will walk through general methods & issues
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(1) the (increased) number of satellite methods to 
model phytoplankton community composition

(2) the (increased) number of in situ methods to infer 
phytoplankton community composition

(3) the (increased) degrees of separation between the 
satellite & in situ measurements
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why is it more challenging to measure & validate 
metrics of phytoplankton community composition 

than other ocean color products?



terminology for the diverse array of satellite approaches

PSC – particle size class
• micro: > 20 µm
• nano: 2 to 20 µm
• pico: < 2 µm

describes either 
particles or 
phytoplankton

PFT – phytoplankton functional type

• “function” can mean many things
• often class/genus-ish levels – diatom vs. dinoflagellate, etc.
• sometimes functions like “nitrogen fixers” or “calcifiers”
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satellite measured 
Rrs(𝜆)

in situ measured 
Rrs(𝜆)

satellite measured 
Rrs(𝜆)

in situ measured 
Chl, IOPs

satellite modeled 
Chl, IOPs

satellite modeled
Chl, IOPs

in situ measured 
Chl, IOPs

satellite modeled 
PFTs/PSCs

satellite measured 
Rrs(𝜆)

in situ inferred
PFTs/PSCs
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degrees of separation in data products

in situ measured
PFTs/PSCs



key points for our exploration of satellite methods 
to derive phytoplankton community composition
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diverse bio-optical methods to estimate PSCs/PFTs exist

their sensitivities remain unexplored

most folks use proxy data sets for their validation

satellite data compositing matters



roadmap: 2 flavors of algorithms with varied in/outputs
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Methods generally fall 
into 2 categories: 
abundance methods
spectral methods
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Google Scholar searches:
”phytoplankton function type” yielded 473 results
ocean color “phytoplankton community structure” 
& ocean color “phytoplankton community 
composition” both yielded >4,000 results

this is an exploding field … so,we will 
only cover several heritage examples

take home messages:
a diverse array of methods exists

you need a critical eye to select or derive the best 
approach for your application(s)



2 major categories: abundance-based & spectral
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these tables 
provide references 
to approaches, at 
least as of 2017 …



abundance methods

assume that a given phytoplankton biomass, defined by 
either Chl or IOPs – in particular, aph(𝜆) – covaries with 
the dominance of or fraction of a particular PFT or PSC
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abundance – Chl as input 

purpose: provide an estimate of %Chl for each PFT/PSC in a pixel 15

see also work by J. Uitz
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abundance – IOPs as input 

purpose: assign a dominant PSC to each satellite pixel
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premise – slope of aph(443) to aph(510) & 
magnitude of aph(443) vary with PSC

micro when 

aph(443) > 0.069 m-1

pico when

aph(443) < 0.023 m-1

nano otherwise 



spectral methods

exploit variations realized in the spectral shape of Rrs(𝜆) 
or IOPs with varying phytoplankton community structure

unlike abundance approaches, these can detect different 
PFTs/PSCs with common total biomass, provided the 
groups have contrasting optical signatures

but, often confounded by variations of spectral 
characteristics of the same PFT/PSC due to growth 
conditions, nutrient availability, & ambient light regimes
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spectral – Rrs(𝜆) as input (1) 

purpose: provide estimate of phytoplankton accessory 
pigment concentration (mg m-3) for each satellite pixel
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purpose: identify the presence of cyanobacteria
in freshwater lakes; assign severity levels



spectral – Rrs(𝜆) as input (2) 

purpose: provide estimate of dominant PFT for each pixel
21

average satellite nLw(l) 
for a range of Chl

nLw(𝜆) anomalies for each PFT

haptophytes Prochlorococcus

Synechococcus-like 
cyanobacteria

diatoms
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spectral – ap(𝜆), aph(𝜆) as input 

purpose: relate pigment absorption features to their presence 
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relationships between spectral derivative absorption 
signatures & phytoplankton pigment communities 

use component Gaussian functions to represent 
absorption by individual or groups of pigments 
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spectral – inversion modeling

25
purpose: use inversion modeling (e.g., Lectures 23) to solve for multiple aph(𝜆)

deconvolve aph(𝜆) from a stepwise inversion 
algorithm into contributions by two size classes

see also Chase et al. 2017
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spectral – bbp(𝜆) as input 

purpose: estimate the relative fraction of 3 PSCs for each pixel

bbp(𝜆) & 𝜂 from Loisel & Stramski 2000
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generated using Mie theory
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what about environmental conditions?
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emerging mathematical & computation methods: what 
about EOFs, NNs, Bayes, AI, machine learning, etc?
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key points for our exploration of satellite methods 
to derive PSCs/PFTs

31

diverse bio-optical methods to estimate PSCs/PFTs exist

their sensitivities remain unexplored

most folks use proxy data sets for their validation

satellite data compositing matters



algorithm sensitivities (a.k.a. your future work)

what we know:
• all PFT algorithms use derived products (e.g., Chl & IOPs) 

or make a priori environmental assumptions
• few PFT/PSC modeling papers include robust analysis of 

the sensitivity of the model outputs to the model inputs

what we don’t know:
• how sensitive are the abundance methods to 

uncertainties in derived Chl & IOPs?
• how sensitive are the spectral methods to uncertainties 

in Rrs(𝜆) & derived aph(𝜆) & other parameters?  
32



sensitivity of chl & inversion algorithms
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Werdell et al. 2013, Applied Optics



key points for our exploration of satellite methods 
to derive PSCs/PFTs
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diverse bio-optical methods to estimate PSCs/PFTs exist

their sensitivities remain unexplored

most folks use proxy data sets for their validation

satellite data compositing matters



measuring PFTs and PSCs in the field
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microscopy
genetic/molecular methods
flow cytometry
coulter counters
video imaging (IFCB, FlowCam)
continuous plankton recorder
spectroscopy
optics (bb, c spectral slopes)
HPLC pigment analyses
etc.

most heritage ocean color 
PFT/PSC algorithms tuned & 
validated using this proxy method

diagnostic pigment analyses (DPA)



summary of validation exercises
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summary of validation exercises
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HPLC measurements as proxy PFT/PSC data
all authors acknowledged the need for 
rigorous validation via microscopic, imaging,
or flow cytometric enumeration of cells

these measurements are [were] scarce, 
whereas HPLC pigment data are abundant & 
globally distributed
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through 2019
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weaknesses in DPA  / CHEMTAX:

• phytoplankton groups share taxonomic 
pigments (e.g., fucoxanthin in diatoms, 
dinoflagellates, & Phaeocystis)

• phytoplankton groups encompass wide 
size ranges (e.g., most diatoms are micro, 
but some are nano)

• methods require a priori knowledge of 
accessory pigment ratios



take home question
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microscopy
genetic/molecular methods
flow cytometry
coulter counters
video imaging (IFCB, FlowCam)
continuous plankton recorder
spectroscopy
optics (bb, c spectral slopes)
HPLC pigment analyses
etc.

satellite modeled
Chl, IOPs

in situ measured 
Chl, IOPs

satellite modeled 
PFTs/PSCs

satellite measured 
Rrs(𝜆)

in situ inferred
PFTs/PSCs

in situ measured
PFTs/PSCs

Given what you know about the in situ methods and the satellite 
algorithms, how would you prepare the in situ data for a validation 
satellite exercise to get as close to apples-to-apples comparisons as 
possible (e.g., common units, observational space, etc.)?
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rigorous validation & metrics of performance assessment

extensive review & re-parameterization of 
an approach to distinguish diatoms from a 
mixed population of phytoplankton

conscientious review of strategies for 
validation & algorithm application



key points for our exploration of satellite methods 
to derive PSCs/PFTs
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diverse bio-optical methods to estimate PSCs/PFTs exist

their sensitivities remain unexplored

most folks use proxy data sets for their validation

satellite data compositing matters



For your consideration:
- horizontal resolution
- temporal resolution
- vertical resolution 

understand how data processing changes the “answers”
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For your consideration:
- horizontal resolution
- temporal resolution
- vertical resolution 

understand how data processing changes the “answers”



For your consideration:
- horizontal resolution
- temporal resolution
- vertical resolution 

understand how data processing changes the “answers”

first optical depth
0.37 = exp(-Kd z) 
-1 =-Kd z



For your consideration:
- horizontal resolution
- temporal resolution
- vertical resolution 

understand how data processing changes the “answers”
0.5 mg m-3 1.25 mg m-3

average

0.95 mg m-3

optically
weighted
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backup



adjusted chl-to-accessory pigment ratios 
– link to fractional chl for each PSC
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using phytoplankton accessory pigments to determine the dominate PSC



abundance – Chl as input 

provide estimate of relative presence (%) of 3 PSCs
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abundance – Chl as input 

use range of Chl & estimate of mixed layer depth (MLD) 
to assign each pixel to 1 of 14 trophic categories
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abundance – Chl as input 

empirically parameterized vertical profiles of PSCs for 9 
stratified & 5 mixed water categories
used to infer column-integrated phytoplankton biomass, 
its vertical distribution, & community size composition

stratified water mixed water
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abundance – Chl as input 

estimates of marine productivity
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spectral – inversion modeling
inversion modeling as described in Lectures 21 & 22, except …

… solve for slope of beam-c

… solve for multiple aph(𝜆)
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spectral – Lt(𝜆) as input
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purpose: provide pixel-by-pixel 
estimates of cyanos & diatoms

• uses differential optical 
absorption spectroscopy (DOAS)

• fits (non-linear optimization) 
differential absorptions

• exploits sharp spectral features
• requires hyperspectral data 

(applied to SCIAMACHY)



methods of validation:  HPLC & scatter plots

Kostadinov et al. 2010
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SeaWiFS global match-ups for 
2 popular algorithms versus 
HPLC/DPA (province-tuned 
following Vichi et al. 2005) 



other methods of validation:  visual inspection

global spatial distributions often inspected to 
verify expected relationships with environmental 
preferences (e.g., diatoms in upwelling zones & 
high production environments, Prochlorococcus 
in oligotrophic waters, and so forth)
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other methods of validation:  spectral slopes
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Werdell et al. 2013, Methods in Oceanography



other methods of validation: algorithm intercomparisons

Brewin et al. 2010
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