
Why don't all ocean color satellites measure hyperspectral radiances at meter-scales?

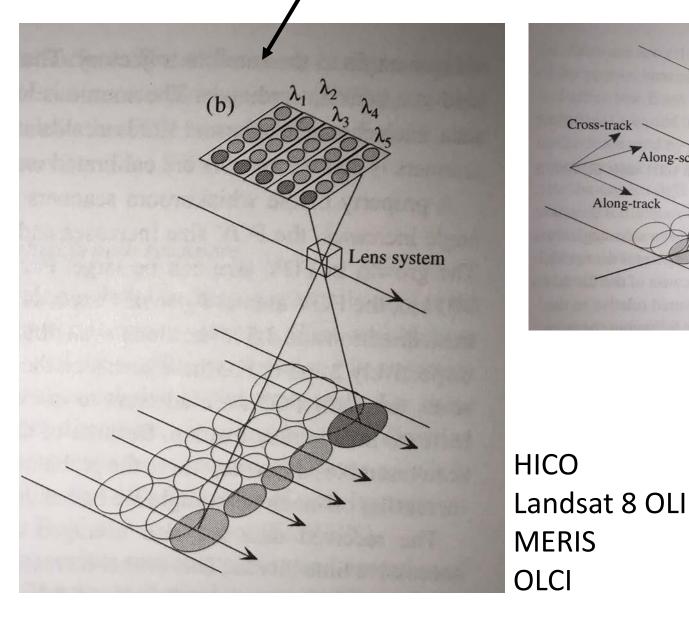
Jeremy Werdell NASA Goddard Space Flight Center

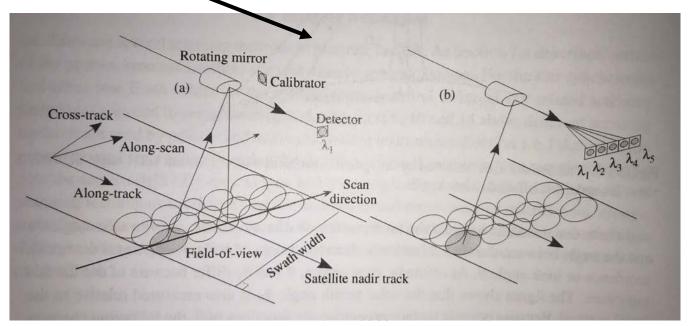
Acknowledgements: Gary Davis, Bryan Monosmith, & Curt Mobley

2021 Ocean Optics Summer Course

why include this talk?

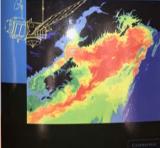
my prediction is that >50% of you will someday:

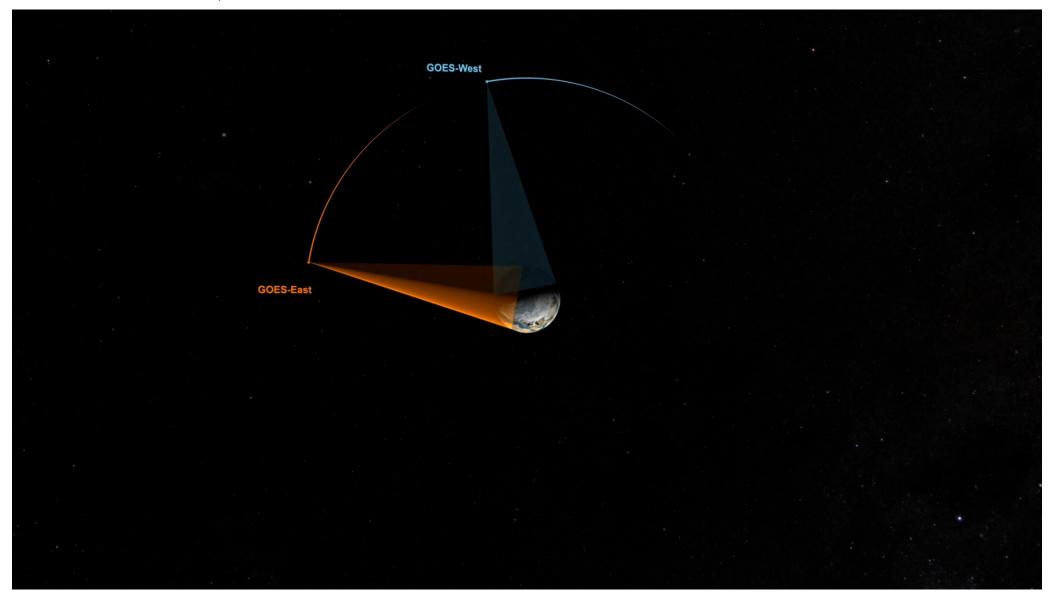

- 1. use satellite data for your research & wish to understand engineering design choices
- serve as members of space agency Science Definition Teams (or equivalent, e.g., 2017 Decadal Survey "designated observable" teams)
- 3. serve on satellite mission review boards or proposal panels
- 4. write proposals for new missions


satellite instruments come in all shapes and sizes and have varying capabilities

how does one choose what to use / build?

how would you design a mission to monitor coastal harmful algal blooms?


pushbroom vs. whiskbroom (scanner)


SeaWiFS MODIS VIIRS

GEO (geostationary) vs. LEO (polar, low earth orbit)

GEO (geostationary) vs. LEO (polar, low earth orbit)

GEO (geostationary) vs. LEO (polar, low earth orbit) 35,786 km altitude

current & future missions – it's a consumer's market

NSOR / TA LINK	AGENCY	SATELLITE	LAUNCH DATE	SWATH (KM)	SPATIAL RESOLUTION (M)	BANDS	SPECTRAL COVERAGE (NM)	SPECTRAL RESPONSE FUNCTION	EQUATORIAL CROSSING TIME	SATELLITE	AGENCY	SENSOR / DATA LINK	LAUNCH DATE	SWATH (KM)	SPATIAL RESOLUTION (M)	# OF BANDS	SPECTRAL COVERAGE (NM)	¢
COCTS CZI	NSOAS/CAST (China)	HY-1D	11 June 2020	3000 950	1100 50	10 4	402 - 12,500 433 - 885		13:30	HY-1E/F (China)	CNSA (China)	CZI	2021	2900 1000	1100 250	10 4	402 - 12,500 433 - 885	P
COCTS CZI	NSOAS/CAST (China)	HY-1C	7 September 2018	3000 950	1100 50	10 4	402 - 12,500 433 - 885		10:30	EnMAP	DLR (Germany)	HSI	2021-2022	30	30	242	420 - 2450	Po
GOCI-II Geostationary	KARI/KIOST (South Korea)	GeoKompsat- 2B	18 February 2020	2500 x 2500	250	13	380 - 900	SRF-link	10 times/day	OCEANSAT- 3	ISRO (India)	OCM-3	end-2021	1400	360 / 1	13	400 - 1,010	Po
MODIS-Aqua	NASA (USA)	Aqua (EOS-PM1)	4 May 2002	2330	250/500/1000	36	405-14,385	SRF-link	13:30	SABIA-MAR	CONAE	Multi- spectral Optical Camera	2023	200/2200	200/1100	16	380 - 11,800	Po
MODIS-Terra	NASA (USA)	Terra (EOS-AM1)	18 Dec 1999	2330	250/500/1000	36	405-14,385	SRF-link	10:30	PACE	NASA	OCI	2023	2000	1000	Hyperspec (5 nm,	350-2250	Pol
MSI	ESA	Sentinel-2A	23 June 2015	290	10/20/60	13	442-2202	SRF-link	10:30					Converting of the		350-890nm + 7 bands NIR-SWIR)	nm	
MSI	ESA	Sentinel-2B	7 March 2017	290	10/20/60	13	442-2186	SRF-link	10:30			SPEXone HARP-2		100 1550	2500 3000	Hyperspec (2 nm) 4 bands	385-770 nm	
OCM-2	ISRO (India)	Oceansat-2 (India)	23 Sept 2009	1420	360/4000	8	400 - 900		12:00								440-870 nm	
OLCI	ESA/ EUMETSAT	Sentinel 3A	16 Feb 2016	1270	300/1200	21	400 - 1020	SRF-link	10:00	GISAT-1	ISRO (India)	MX-VNIR HyS-VNIR	12 August 2021	470 160	42 320	6 158	450-875 375-1000	Geo km)
OLCI	ESA/ EUMETSAT	Sentinel 3B	25 April 2018	1270	300/1200	21	400 - 1020	SRF-link	10:00			HyS-SWIR		190	191	256	900-2500	
SGLI	JAXA (Japan)	GCOM-C	23 Dec 2017	1150 - 1400	250/1000	19	375 - 12,500	SRF-link	10:30	SBG	NASA	*Hyper- VSWIR *TIR-	2026	~185 ~600	30 60-100	>200 8	380-2500	Pola
VIIRS	NOAA (USA)	Suomi NPP	28 Oct 2011	3000	375 / 750	22	402 - 11,800	SRF-link	13:30	GLIMR	NASA	Imager *VNIR-	>2023	TBD	300	141	340-1040	Geo
VIIRS	NOAA/NASA (USA)	JPSS-1/NOAA- 20	18 Nov 2017	3000	370 / 740	22	402 - 11,800	SRF-link	13:30			imager *WFOV- sensor			133			coa: Cari

How to choose?

Plankton, Aerosol, Cloud, ocean Ecosystem

PACE will support studies of:

- ocean biology, ecology, & biogeochemistry
- atmospheric aerosols
- clouds
- land

Primary hyperspectral radiometer:

• Ocean Color Instrument (OCI) (GSFC)

2 contributed multi-angle polarimeters:

• HARP2 (UMBC)

PACE

• SPEXone (SRON/Airbus)

History:

- 2003-ish preliminary concept studies
- 2011 NASA Climate Change Initiative
- 2012 Science Definition Team
- 2014 first PACE science team
- 2015 mission directed to GSFC

Legacies:

- SeaWiFS, MODIS, VIIRS
- POLDER, MISR

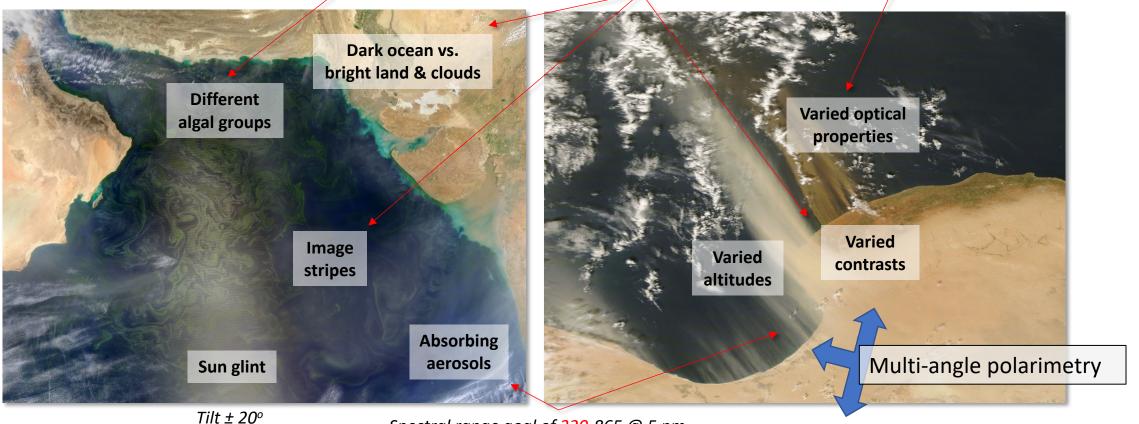
Key characteristics:

- winter 2023/24 launch
- Falcon 9 from KSC/Cape
 Canaveral
- 676.5 km altitude
- polar, ascending, Sun synchronous orbit; 98° inclination
- 13:00 local Equatorial crossing
- 3-yr design life; 10-yr propellant

Extend key systematic **ocean** biological, ecological, & biogeochemical climate data records, as well as **cloud** & **aerosol climate data records**

GSD of $1 \pm 0.1 \text{ km}^2$ at nadir

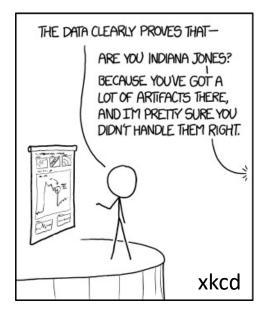
Twice-monthly lunar calibration & onboard solar calibration (daily, monthly, dim)

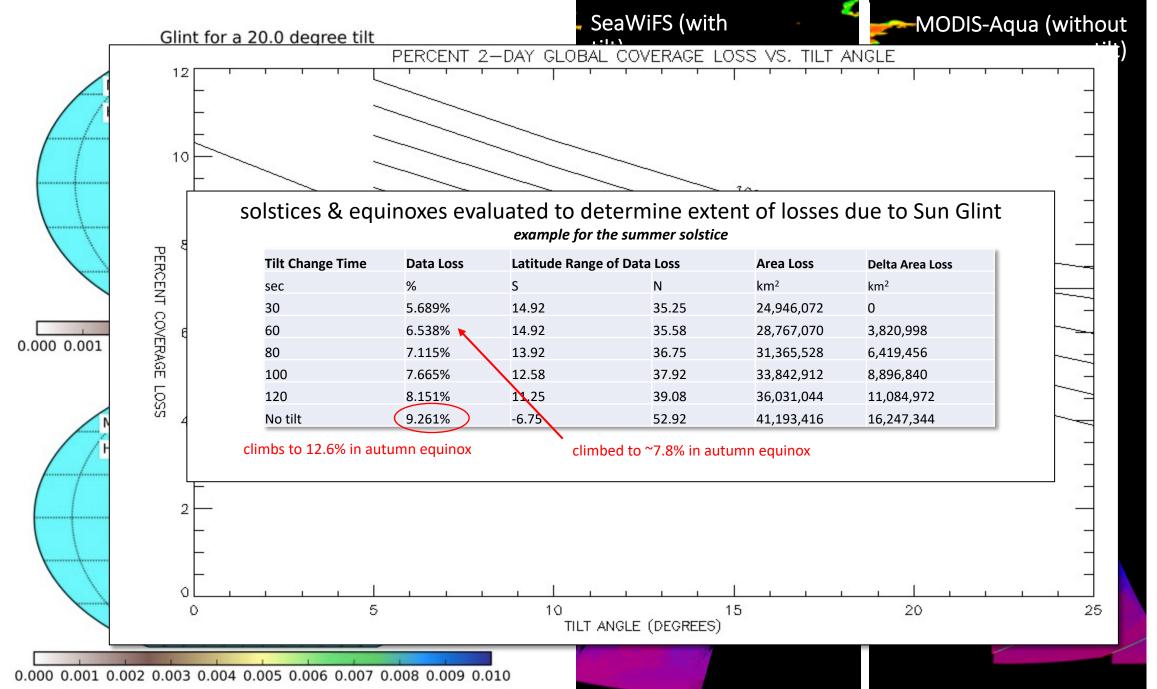

Make **new global measurements of ocean color** that are essential for understanding the global carbon cycle & ocean ecosystem responses to a changing climate

Spectral range from 350-865 @ 5 nm

Collect **global observations of aerosol & cloud properties**, focusing on reducing the largest uncertainties in climate & radiative forcing models of the Earth system

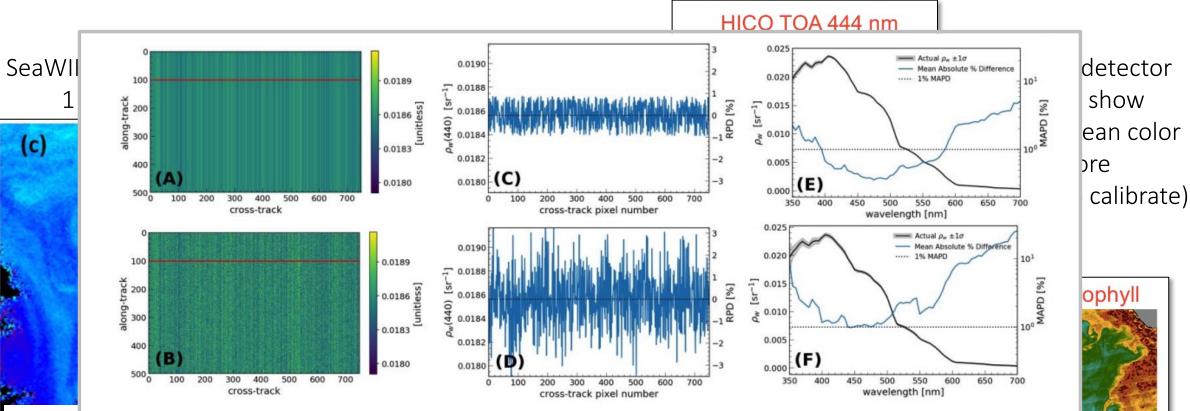
940, 1038, 1250, 1378, 1615, 2130, 2260 nm


Instrument performance requirements


Spectral range goal of 320-865 @ 5 nm

Improve our understanding of how aerosols influence ocean ecosystems & biogeochemical cycles and how ocean biological & photochemical processes affect the atmosphere

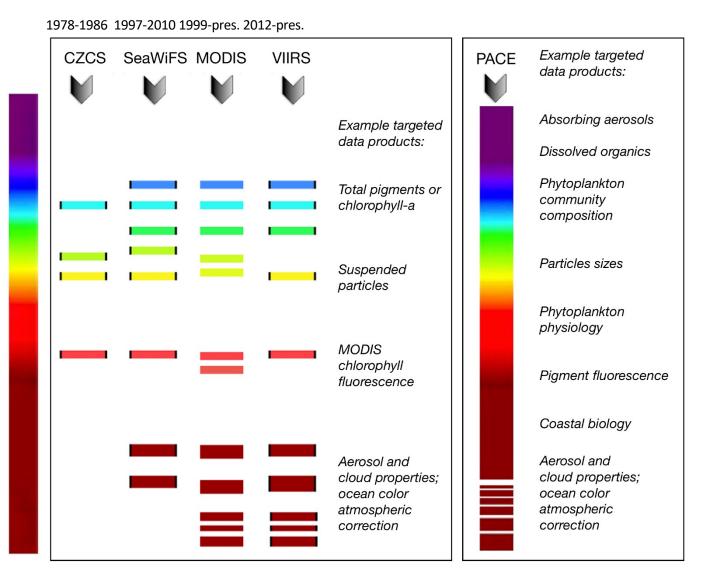
Challenges



Atmospheric correction (week 2) Sun glint Image artifacts Spectral resolution *Conscientious use of the data (tomorrow)*

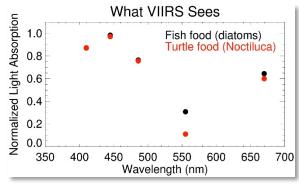
PAR = Photosynthetically Available Radiation (Einstein m⁻² d⁻¹)

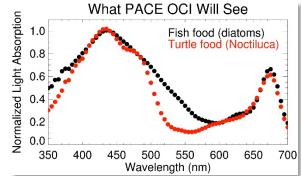
image artifacts & instrument design



Hu et al.

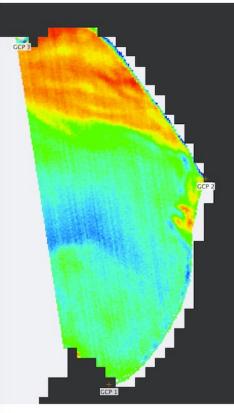
often

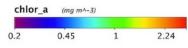

Figure 4.5: Subplots (A) and (B) show simulated pushbroom images of $\rho_w(440)$ for a uniform ocean: (A) is modeled with 0.1% miscalibration error, and (B) is modeled with 0.1% miscalibration error in the presence of noise. Subplots (C) and (D) show variability in $\rho_w(440)$ along a cross-track transect for scan number 100 (denoted as redlines in subplots (A) and (B)). Subplots (E) and (F) show the true $\rho_w(\lambda)$ and the transect-averaged spectral mean absolute percent differences (MAPD).

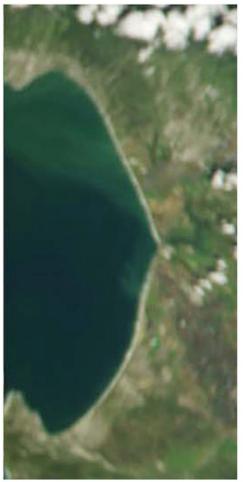

moving from multi-spectral radiometry to spectroscopy

signals from the ocean are small & differentiating between constituents requires additional information relative to what we have today

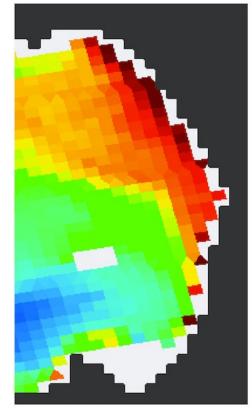
● 1 mm ● 1 mm ● 1 oaquim Goes, LDEO

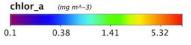

 \geq

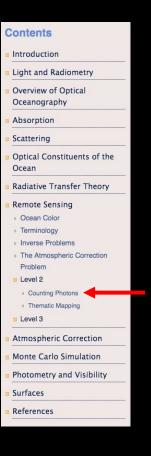



all that said ...

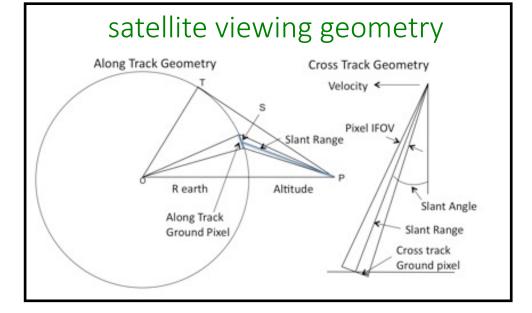
Chlorophyll-a Concentration


HawkEye / SeaHawk 21 March 2019




HawkEye True Color Monterey Bay MODIS / Aqua 20 March 2019

Chasing photons – considerations for making & maintaining useful satellite ocean color measurements



Alternative title: the trade space within which you will work when creating an instrument design concept

Why don't all ocean color satellites measure hyperspectral radiances at meter-scales?

3 case studies:

- (1) stationary satellite staring at 1 m^2 for 1 s
- (2) moving satellite staring at 1 m²
- (3) moving satellite scanning side to side

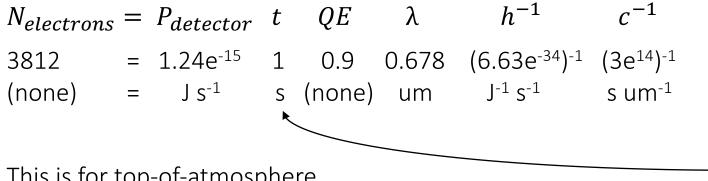
What we will (hopefully) learn:

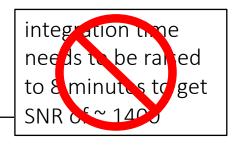
- how many photons leave a 1 m² of ocean surface
- how many photons from this patch reach the satellite detector
- ow many photons must the detector collect to achieve useful SNR

consider a satellite instrument with the following characteristics

Optical efficiency (OE)	= 0.66	
Quantum efficiency (QE)	= 0.9	solid angle of aperture
View angle	= 20 deg	(sensor) as seen from
Aperture	= 0.009 m (90 mm)	earth's surface = 1.3 e ⁻¹⁴ sr
Altitude	= 650,000 m (650 km)	ground velocity = 6838 m s ⁻¹
Slant Range	= 700,000 m (700 km) _	giound velocity – 0858 m S -

let's focus on a fluorescence channel:


Wavelength Bandwidth (Δλ) Typical TOA radiance Desired SNR = 0.678 um (678 nm) = 0.01 um (10 nm) = 14.5 W m⁻² um⁻¹ sr⁻¹ = 2000 $SNR = \frac{N_{electrons}}{\sqrt{N_{electrons}}}$ (oversimplification; assumes no dark current or noise)


consider a stationary satellite taking a quick peek at Earth

power reaching detector for 1 m^2 areal footprint & 1 s integration time:

P _{detector}	=	L	$\Omega_{aperature}$	Area _{surface}	OE	$\Delta\lambda$
1.24e ⁻¹⁵	=	14.5	1.3e ⁻¹⁴	1	0.66	0.01
W	=	W m ⁻² sr ⁻¹ um ⁻	¹ sr	m ²	(none)	um

photoelectrons reaching detector:

This is for top-of-atmosphere.

If we consider that the ocean contributes ~5% of this signal, then the number of photoelectrons from the ocean surface reaching the detector is ~190. SNR = ~62

consider a moving satellite that stares at 1 m² at nadir

ground velocity = distance / time 6838 m s^{-1} = 1 m / t integration time = 0.000146 s

repeat calculations with new integration time:

photoelectrons from ocean surface reaching detector = 0.028

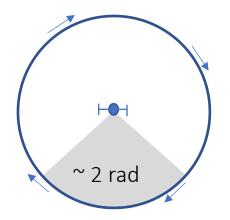
repeat calculations with new area and integration time:

photoelectrons from ocean surface reaching detector ~ 28,000,000

major reason why pushbroom instruments are attractive ... SNR ~ 2900 for a 250 m pixel

consider a moving satellite that scans from side-to-side

instantaneous field of view (IFOV) = pixel size / altitude 0.0014 rad = 1 km / 700 km


a swath width of ~2 rad translates to ~1,400 pixels: = swath width / IFOV 1,400 = 2 rad / 0.0014 rad

dividing the 28M photoelectrons by 1,400 pixels leaves ~19,900 photoelectrons from the ocean surface reaching the detector

useful duty cycle of of scan mirror is < 1/3, so really, we're talking about ~6,000 ocean surface photons

propagate this to TOA results in ~120,000 photons reach detector

SNR =~ 346

consider a moving satellite that scans from side-to-side

Pre-Aerosol, Clouds, and ocean

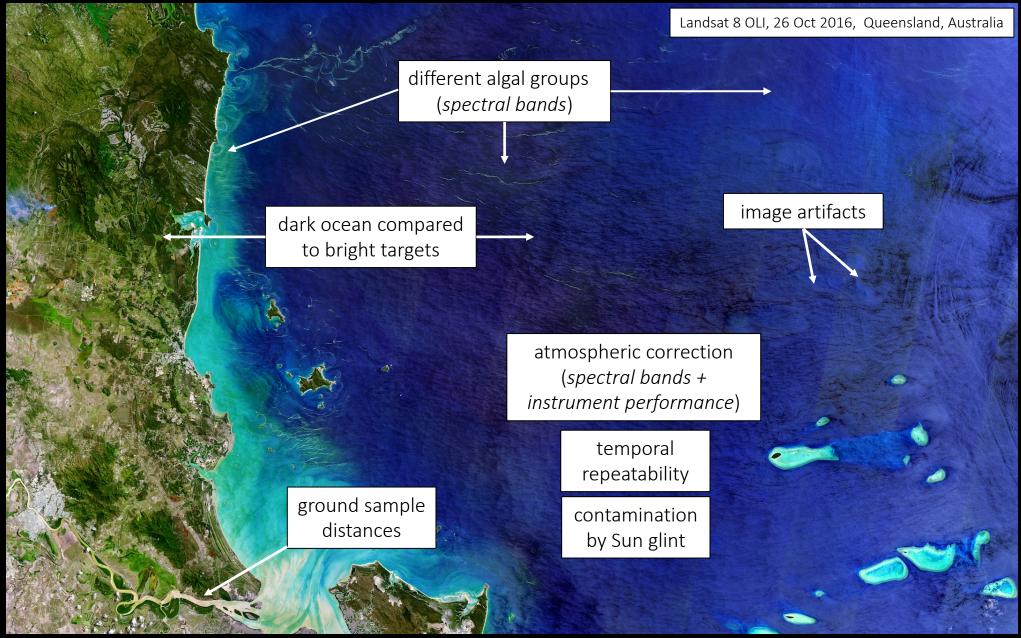
Requires >16x photons reaching the detector <section-header>

October 16, 2012

useful duty cycle of of scan mirror is < 1/3, so really, we're talking about ~6,000 ocean surface photons

propagate this to TOA results in ~120,000 photons reach detector

λ	Band Width (nm)	Spatial Resol. (km ²)	L _{typ}	L _{max}	SNR- Spec
350	15	1	7.46	35.6	300
360	15	1	7.22	37.6	1000
385	15	1	6.11	38.1	1000
412	15	1	7.86	60.2	1000
425	15	1	6.95	58.5	1000
443	15	1	7.02	66.4	1000
460	15	1	6.83	72.4	1000
475	15	1	6.19	72.2	1000
490	15	1	5.31	68.6	1000
510	15	1	4.58	66.3	1000
532	15	1	3.92	65.1	1000
555	15	1	3.39	64.3	1000
583	15	1	2.81	62.4	1000
617	15	1	2.19	58.2	1000
640	10	1	1.90	56.4	1000
655	15	1	1.67	53.5	1000
665	10	1	1.60	53.6	1000
678	10	4	1.45	51.9	2000
710	15	1	1 1 9	48.9	1000
748	10	1	0.93	44.7	600
820	15	1	0.59	39.3	600
865	40	1	0.45	33.3	600
1240	20	1	0.088	15.8	250
1640	40	1	0.029	8.2	180
2130	50	1	0.008	2.2	15


SNR =~ 346

#NASAESABakeoff

Different instruments & missions offer different capabilities

Notes for next time

- Needs and use and history of lunar and solar cal
- Maybe lunar maneuver, pushbroom vs. scanner