Lecture 4*
Inherent optical properties, part I

What properties of a medium affect the radiance field as it propagates through it?

1. Sinks of photons (absorbers)
2. Sources of photons (internal sources)
3. Redirectors of photons (scatterers)

*IOP Theory

\[L_o \rightarrow L_t \]

Incident Radiance
Transmitted Radiance

No attenuation (recap: radiance is constant along a ray)

IOP Theory

\[L_o \rightarrow L_t \]

Incident Radiance
Transmitted Radiance

Demo: Attenuation

Loss due to absorption

\[L_o \rightarrow L_t \]

\[L_a, \text{ Absorbed Radiance} \]

Incident Radiance
Transmitted Radiance

Demo: spectral absorption

Lecture prepared by C. Roesler
Loss due to scattering

\[L_o = L_t + L_a + L_b \]

Demo: Elastic vs. inelastic scattering

Loss due to absorption and scattering (attenuation)

\[C = \frac{L_b + L_a}{L_o} \]

\[C = \frac{L_o - L_t}{L_o} \]

Beam Attenuation Measurement Theory

Attenuance

C = fraction of incident radiance attenuated
Beam Attenuation Measurement Theory

\[c = \text{fractional attenuance per unit distance} \]

\[c = \Delta C / \Delta x \]

\[L_i = L_0 \exp(-c \cdot x) \]

Beer(1852), Lambert(1729), Bouguer (before 1729)

Important characteristics:

Absorption and scattering feature similarly.

c is Linear with concentration or added substances.

Assumes no internal sources.

Class demo: BLB law with food coloring or maalox

Recap: two processes cause attenuation (loss of light):

a- absorption.

b- scattering (re-direction).

\[c = a + b \]

BLB’s law and statistics (e.g. Bohren and Clothiaux, 2006).

Define an optical 'cross-section' of a single particle as the 'area' of energy removed from that of a monochromatic plane wave:

\[W(\lambda) = \sigma(\lambda) \cdot E(\lambda), \quad (\text{efficiency factors: } Q(\lambda) = \sigma(\lambda) / G) \]

\[\Delta E = -E_k \Delta x \]

\[E = E_0 \exp(-N \sigma x) \rightarrow \text{BLB} \]
What is absorption:

Photons 'disappear' due to interaction with matter.

Following absorption energy could be reemitted (or not) at the same or different wavelength (e.g. scattering, fluorescence, thermal emission).

Absorption due to molecular:
Translational, rotational, vibrational and electronic modes (+combinations).

Observation include also spontaneous emission.

Explained by quantum mechanics.

Absorption due to molecular:

Translational, rotational, vibrational and electronic modes (+combinations).

Observation include also spontaneous emission.

Explained by quantum mechanics.

Absorption broadened by:

- Doppler (motion of molecules and source of photons) \(\times T\)
- Self broadening (consequence of inter-molecular forces) \(\times T\)
- Foreign broadening (interactions with other molecules) \(\times \text{pressure, } T\)

\(\rightarrow\) Expect absorption spectra to vary with height and \(T\) in the atmosphere.

Bohren and Clothaux, 2006.

Angular scattering:

\[\frac{d\Omega}{L_0} = \frac{L_t}{L_0} \]

Volume scattering function \([\text{m}^{-1}\text{sr}^{-1}]\):

\[\beta(\Omega_i \rightarrow \Omega_s) = \lim_{\Delta x \rightarrow 0} \lim_{\Delta \Omega \rightarrow 0} \frac{1}{\Delta x \Delta \Omega} \frac{L_t(\Omega_s)}{L_i(\Omega_i)} \]

Most often assume azimuthal isotropy (only \(\theta\) dependence).

Bohren and Clothaux, 2006.

Note: wavenumber=1/wavelength=\(\nu/c\)
What is scattering:

Matter is composed of discrete electric charges which are excited by an oscillating EM field (light). When excited they emit EM waves. Elastic (coherent) scattering- same frequency as the source.

Scattering refers also to the redirection of energy of an infinite plane-parallel electro-magnetic wave due to interaction with matter. By interaction we mean that the wave travels at different speed at different location within the medium due to inhomogeneities within the medium. Such inhomogeneities may be caused by particles of different optical properties within the medium or 'fluctuations', regions within the medium that have slightly different concentrations of molecules.

The 'relative' index of refraction (n_r) of a particle relative to the medium in which it is embedded, is the ratio of the speeds of lights: $n_r = c_{\text{medium}}/c_p$.

For a given size and shape of a particle in a medium, the more different the index of refraction is from 1 the more pronounce is the scattering.

Reflection:

Reflection at a boundary of a particle with different n than the medium in which it is embedded, a certain amount of radiation is reflected back.

Refraction:

At a boundary of a particle with different n than the medium in which it is embedded, a certain amount of radiation penetrates into the particle, usually at a different angle than the angle of incidence (Snell).

Diffraction:

The light propagating along the boundary of the particle responds to the boundary causing a change in direction.

Optical regimes and particles in the ocean and atmosphere:

Large particles: scattering is dominated by diffraction, since light going through the particles is likely to be absorbed.

Small particles: scattering is dominated by refraction and reflection, Rayleigh scattering. Response is proportional to particle's volume (insensitive to shape).

In between (for sphere): Mie scattering. Analytical solutions exist for idealized shapes.
Dependence of IOP on properties of particles:

The output of Mie scattering codes for a particle with a given D/λ and n is:

Cross sections (σ, $[m^2]$) or efficiency factors (Q, $[\phi]$) for absorption, scattering and attenuation as well as the phase function (multiply by σ to get angular scattering cross-section).

Example: the attenuation cross-section, σ_{ext}, is the attenuation due to a single particle in a m^3 of medium:

$$c = \sigma_{\text{ext}} 1 = Q_{\text{ext}} \cdot m^2 \cdot 1$$

Since the mass increase with size, it is instructive to study how the mass normalized optical properties vary as function of size and index of refraction.

$$\frac{(c,a,b)}{V} = \frac{(\sigma_{\text{ext}}, \sigma_a, \sigma_b)}{(0.75 \pi r^2)}$$

Another way to look at it:

Define an optical ‘cross-section’ of a single particle as the ‘area’ of energy removed from that of a monochromatic plane wave:

$$W(\lambda) = \sigma(\lambda) E(\lambda), \quad \text{(efficiency factors: } Q(\lambda) = \sigma(\lambda)_{a,b,c} / G)$$

Assuming no overlap in $\Delta x \to 0$:

$$\Delta E = E k \Delta x$$

$$k = N \sigma_a$$

$$E = E_0 e^{-N \sigma_a x}$$

Slab (assuming scattering is negligible): Absorbed radian flux: $AE(x)(1 - \exp(-d/k))$

Thin: absorbed radiant flux per unit volume ($1/A \Delta x \propto k$)

Thick: absorbed radiant flux per unit volume ($1/A \Delta x \propto 1/d$)

Angular dependence of scattering on size:

- Near forward scattering: Strong dependence on size, less on n.
- b/a: Strong dependence on n, less on size.
- Polarization.

Dependence of IOP on properties of particles:

$$a/V = \sigma_{\text{abs}} 1/(0.75 \pi r^2)$$

$$n' = \sigma_{\text{ext}} \lambda / 4\pi$$

Molecular absorption \propto volume.
Dependence of IOP on properties of particles:
\[c/V = \sigma_{\text{ext}} \cdot 1/\{0.75 \pi r^2\} \]

Resonant curve. Change of max with \(n \) (and \(\lambda \)).

\[c \propto a \text{ and } \text{Volume} \]

\[\sigma_{\text{ext}} = 2 \cdot \text{area} \]

\[c/V \propto 1/D \]

Size distributions: summing up contribution of all bins.

A whole calculus.

Write-up on WWW soon.