SMS-204: Integrative marine sciences.

Organizational issues:

Instructors: Emmanuel Boss and Mary Jane Perry. Each teaches a different module (Physics and Chemistry).
Meeting times: Mondays 1-2pm class + two lab modules.
Anybody needing special assistance with the class (e.g. learning disabilities, problems in accessing the facilities) please come see me.
Web site for physics module:
http://misclab.umeoce.maine.edu/boss/classes/SMS_204_2006/Syllabus.htm

Expectations:
In class: I expect you to listen and interact. If you don't understand a topic discussed please raise your hand and say so. If you don't, I will assume that you understand the material and charge ahead. This class is yours and for you. Take advantage to learn as much as you can and do not hesitate to stir the class discussion in direction you are interested.

Out of class: Read the readings posted on the class’s web site for both previous classes and the upcoming one. I will give a quiz in class to assess how much was learned from the readings. Reading out of class will provide us with more time in class to spend on discussion and the implications of the facts and concept we learned from the readings.

Grading:
Grading in the class will be based on participation (20%), weekly assignments and quizzes (50%) a mid-term exam (15%) and a final exam (15%). Late assignment handout will suffer an automatic 10% decrease in grade. The homework will cover class/lab material as well as reinforce skills needed for your future. I strongly encourage you to work on them in groups. Groups are conducive for significant learning experiences as student debate their view of the problem solved. Hand in individual homework.

Some words about the class notes; the class notes are available to you before class (usually one week ahead) and I encourage you to read them. I will underline concepts that we want you to learn and expect you to understand. The notes are provided "as is" without any guarantee. I may find typos in them that I will correct on the web or mention in class (last date of revision is available on each page). I spent a lot of time developing these pages and am posting them on the web for the benefit of the class in particular and the academic community in general. I added the copyright logo (©) so that people will not simply copy these notes and produce a book from which they will derive a profit. I expect users of these notes to provide acknowledgment when due and would appreciate any feedback so as to improve them. The reference list provided in the end of each lecture is not required reading material. It is given so that those interested can get deeper into a subject presented in class.
Web links for material relevant for the class are found at
www.marine.maine.edu/~eboss/classes/SMS_204_2006/links.html
Lecture 1:

Topic 1: Why study physics if you are interested in hugging whales and raise clams?

All aspects of a marine organism’s life are tightly coupled to the physics of their environments. The strategy to find food or a mate and escape a predator are all tightly coupled to the environment. Sound propagates very well in water (much better than light) and indeed we find a lot of organisms using sound in the ocean. Specific swimming behavior have different energetic requirement that change with organisms size; micro-organisms that swim do not swim at all like fish. Sensing the presence of a predator around an organism can be based on sight, sound, pressure perturbation, in ways that are very different from organisms on land. Many marine organisms are filter feeders; designing a good filter is not obvious unless you understand the physics of the fluid on the scale of the organism. Through time organisms have evolved many adaptations to the marine environment. It is a standing puzzle for us to understand how the richness of aquatic organism strategies for mating, evading predator, acquiring food and getting rid of waster product (4 defining trait of living organism, Eric Schulenberger, personal communication) relates to fitness to their environment.

Topic 2: Dimensions and Units

There are a few fundamental dimensions in physics. By fundamental I mean that other physical quantities of interest have dimensions that can be built using the fundamental ones. We will use:

- time-T
- length-L
- mass-M

Example of non-fundamental dimensions:

- Area-$[L^2]$
- Density ($=\text{mass/volume}$) $=[M/L^3]=[M\ L^{-3}]$
- Velocity $=[L/T]$

Knowledge of dimensions is vital in physics. Any relationship between physical variables has to be consistent in terms of dimensions (i.e., both sides of an equation should have the same dimensions).

Units: the tick marks on different rulers all describe the dimension of length but may do so differently. The size of a legal lobster (a keeper) is 6 inches which is approximately 20 cm. If it were 6 cm, there wouldn't be many left... It is important to be consistent with units. Most scientists have adopted an international standard called 'System International' (SI), which we will strive to use in this class as well. Sometimes, I will slip into usage of
a closely related system (cgs for centimeters, grams and seconds) because it may prove more intuitive, but tell me if we don't also provide the SI equivalent.

The units associated with the fundamental dimensions are:

L-meters (m)
T-seconds (s)
M-kilogram (kg)

From them we derive other units as shown in the table below (following Vogel, 1994, with some changes in notation):

<table>
<thead>
<tr>
<th>Quantities (notation)</th>
<th>Dimensions</th>
<th>SI Unit (notation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, distance (l)</td>
<td>L</td>
<td>meter (m)</td>
</tr>
<tr>
<td>Area, surface (A)</td>
<td>L²</td>
<td>square meter (m²)</td>
</tr>
<tr>
<td>Volume (V)</td>
<td>L³</td>
<td>cubic meter (m³)</td>
</tr>
<tr>
<td>Time (t)</td>
<td>T</td>
<td>second (s)</td>
</tr>
<tr>
<td>Velocity, speed (v)</td>
<td>LT⁻¹</td>
<td>meter per second (m s⁻¹)</td>
</tr>
<tr>
<td>Acceleration (a)</td>
<td>LT⁻²</td>
<td>meter per second squared (m s²)</td>
</tr>
<tr>
<td>Mass (m)</td>
<td>M</td>
<td>Kilogram (kg)</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>ML⁻³</td>
<td>Kilogram per cubic meter (kg m⁻³)</td>
</tr>
<tr>
<td>Force, weight (F, W)</td>
<td>MLT⁻²</td>
<td>newton (N or kg m s⁻²)</td>
</tr>
<tr>
<td>Work, Energy (W, E)</td>
<td>ML²T⁻²</td>
<td>joule (J or N m)</td>
</tr>
<tr>
<td>Power (P)</td>
<td>ML²T⁻³</td>
<td>watt (W or J s⁻¹)</td>
</tr>
<tr>
<td>Pressure, stress (p, τ)</td>
<td>ML⁻¹T⁻²</td>
<td>pascal (Pa or N m⁻²)</td>
</tr>
<tr>
<td>Dynamic viscosity (μ)</td>
<td>ML⁻¹T⁻¹</td>
<td>pascal second (Pa s)</td>
</tr>
<tr>
<td>Kinematic viscosity, Diffusivity (ν, D)</td>
<td>L²T⁻¹</td>
<td>square meter per second (m² s⁻¹)</td>
</tr>
<tr>
<td>Surface tension (γ)</td>
<td>MT⁻²</td>
<td>newton per meter (N m⁻¹)</td>
</tr>
<tr>
<td>Salinity (S)</td>
<td>Dimensionless</td>
<td>Practical salinity units (psu). Related to mass of solutes/mass of solution.</td>
</tr>
</tbody>
</table>

In some cases physical quantities do not have dimensions*:

<table>
<thead>
<tr>
<th>Quantity (notation)</th>
<th>SI Unit (notation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (T)</td>
<td>degrees Kelvin (K)</td>
</tr>
</tbody>
</table>

*Note that temperature is proportional to the average kinetic energy of molecules [J] through a constant (Boltzmann's constant, k, [J K⁻¹]). More about it in a future class.

*Table 1: Physical quantities, their associated dimensions and SI units.

Topic 3: Coordinate system, and some basic notation

In this course we will adopt a Cartesian coordinate system. Every point in space is described by three coordinates (x₀, y₀, z₀). In addition, if we want to identify any point a particle occupies along a trajectory, we need the time t₀.
Fig. 1. A trajectory in space and time. Each point along the trajectory is identified by its three spatial coordinates and the time when it was there.

The shortest distance between two points \((x_0, y_0, z_0)\) and \((x_1, y_1, z_1)\) is given by:

\[
L = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}.
\]

The velocity vector is given by:

\[
\vec{V} \equiv (u, v, w) = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right),
\]

where a derivative means:

\[
\frac{dA}{dx} \equiv \lim_{\Delta x \to 0} \frac{\Delta A}{\Delta x}.
\]

When a quantity depends on more than one variable, the derivative with respect to any one variable (the 'partial' derivative) is denoted with the \(\partial\) symbol.

Force, position, acceleration and velocity are the vectors we will work with in this term. All other quantities of interest to us are scalars, they have a magnitude by no direction (can be described by a single number).

Topic 4: Measurements, precision, and accuracy

There is no such a thing as a physical measurement without an uncertainty. The uncertainty may be due to the finite precision of our measuring instrument (e.g., the tick
marks on a ruler). For example, when I last checked, my height was 1.81 ± 0.01 m (on a
good-hair day).

Precision denotes the reproducibility of the determination of a quantity. **Accuracy** denotes the ability to measure the "true" value of a quantity. A measuring instrument may be precise but not accurate if it hasn't been calibrated for a while. Similarly, a crude instrument may be accurate but imprecise. Both precision and accuracy are relative; that is, they depend on the values and intent of the beholder. What may be acceptable for a measurement for a certain purpose may not be acceptable for another (e.g., while knowing my height within 1 cm may be good enough to buy a baseball uniform, it is not precise enough to study the distance between molecules in my body).

When we deal with natural systems and turbulent flows, quantities are rarely constant but rather tend to vary around a central value. In this case the average (or median or mode) of a quantity will be given (and specified) as well as some measure of the spread around it (e.g. standard deviation, x% confidence interval).

We often do not measure directly a quantity of interest. For example rather than measure the mass of an object we measure its weight.

Topic 5: Basic statistics

Statistics is a basic tool used to describe and analyze data. When we make measurements we often observe variability in the quantity we measure when we repeat the same measurement. It may be due to changes of the property measured (say the typical size of an adult salmon) or changes in the tool we are using to measure with (which may include ourselves). In order for us to gain some confidence in the measurement representing reality, it is important that we repeat the measurement. Repeating the same measurement enough times allows us to describe the probability distribution function for our measurement. For example, suppose that we were interested in the lengths of adult trouts. We would go to the field and measure a whole bunch of them (say 1000). Plotting a histogram (number of fish of size between L and L+dL) we may get the following histogram:
While we could present the data to the reader of a report we write about our observations, it is often informative (and economical) to describe only a few summary characteristic of the above distribution. For example, it is informative to know the average size of an adult fish (to know if the one we got is a 'larger than average') and the spread around that average (to know whether most fish fall close to or far from the average size).

The average (or mean) is simply computed by summing all the observations and dividing it by the number of observations:

$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The spread around the average is often quantified using the standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2}$$

For example, for the data in Fig. 1, $\langle x \rangle = 0.21$ m and $\sigma = 0.02$ m. These statistics provide very useful information when we know something about the underlying distribution function in the environment. For example, if the distribution is normal, the average is also the median (i.e. there are as many larger fish as smaller fish relative to the average) and about 67% of the distribution lies within 1 standard deviation from the mean.
When the underlying distribution function is unknown (or does not look like any distribution we know something about) it is often still informative to compute directly the median of the distribution (i.e. the size of the fish for which half the population is larger and half is smaller). In order to quantify the spread around the median we use percentiles; For example, the 10th percentile for which 10% the population is smaller and 90% are larger. The distance between the 10th and 90th percentile describe the spread encompassing 80% of the data. The mode of a distribution is the value which occurs most frequently.

![Histogram of fish size](image)

Fig. 3. Another hypothetical histogram of the length of adult trout in a lake. Sample size, 1000.

The data in Fig 3. and Fig. 2 have the same average size (0.21m). However, the median of the population in Fig. 2 is 0.175m, significantly less than that of Fig. 1 (0.2 m). The standard deviation of the new distribution is $\sigma=0.085$m. The mode is 0.1.

Some words regarding observations: Statistics is a branch of mathematics. In statistical analysis of the most common sort, all data points are considered equally informative and independent. In order to assure that treatment, we do not dismiss a datum (say, because it does not fit our hypothesis) unless we have good grounds for doing so (we discovered a faulty connection in the instrument used to get the data). Independence of data means that we do not measure the same fish again and again when studying the population. Similarly, two measurements of temperature will be considered independent if they were done far enough apart in space or time. Having a lot of data collected quasi-simultaneously does not mean that we have a good representation of the distribution of the property under consideration. A good distinction to keep in mind is the target
population (the one to which we would like to generalize) and the sampled population (the one from which we actually drew). Unless the two correspond in known fashion, generalizations are not likely to be valid.

Topic 6: Fluids and Solids

The main distinction between fluids and solids is in our ability to deform them (change their shape). While solids hold their shapes, fluids cannot hold shape. Fluids are further divided into gases which fill whatever container we put them in and liquids that do not. A solid can be held from its edge, a fluid cannot. In solids the molecules support each other. The support of fluids is provided by the container we place them in.

For a solid, the deformation (the angle \(\theta \)) is dependent on the force (stress) we apply (even if we cannot see it by eye). This response is similar to extending of a spring; the more force we apply the more the deformed the solid become (equivalent to the elongation of a spring under load).

![Figure 4. A deforming slab (from position A to B) under the action of a shear stress (\(\tau \), force per unit area, applied parallel to the surface).](image)

Fluids on the other hand can be distorted and are oblivious to their shape past or present. Fluids care about how rapidly they are deformed (the deformation rate).

These differences are summed up in the following mathematical relationships:

For solids: \(\tau = G\theta \) (\(G \) is called the shear modulus).

For fluids: \(\tau = \mu \frac{d\theta}{dt} \) (\(\mu \) is called the dynamic viscosity, and is roughly constant for most fluids with which we are interested, i.e., air and water). Strictly, this equation holds only for small angles, \(\theta \), and short time, \(t \). Note that for small \(\theta \), \(\frac{d\theta}{dt} = \frac{dU}{dz} \) and that for all \(\theta \), \(\tau = \mu \frac{dU}{dz} \). A fluid for which there is a proportionality between stress and shear is called a "Newtonian fluid". Non-Newtonian fluids include gels (think about gelatin and yogurt that have elastic characteristic and memory of their previous shape).
If the force per unit of area is kept constant on a solid object, its deformation (strain) will be constant and proportional to G. If force per unit area of fluid is kept constant, its strain rate will be constant and proportional to μ.

Topic 7: Continuum hypothesis.

We treat fluids as a continuum (infinitely distortable and divisible) rather than as an ensemble of particles (molecules). This approach simplifies a lot the physical descriptions of fluid; instead of describing $3 \cdot 10^{25}$ molecular trajectories per L, we deal with a fluid entity whose smallest scale of interest is many molecular lengths. Some properties of fluids arise from its molecular nature (in particular temperature and viscosity) but are simply parameterized in the continuum description.

Topic 8: No-slip condition (demo, dye near the boundary of a container).

Fluid sticks to solid surfaces at the molecular level. To some extent, the effect is due to molecular-scale roughness. No matter how carefully prepared, the surface still has bumps that are large with respect to the size of a water molecule. Infinitesimally close to the surface, the fluid moves with the solid: Fluids do not slip with respect to adjacent solids. This assertion is true no matter how rough or smooth a surface is or whether it was lubricated with a hydrophilic substance (e.g., oil). An example of the consequences is that when you stir coffee or tea in a cup, eventually all the fluid comes to rest with respect to the boundary of the cup.

The no-slip condition implies that a fluid flowing along a stationary solid, experiences shear, i.e., the velocity has to change from its non-zero value away from the interface to zero at the interface. Shear is the change of the velocity along a different axis than the axis of flow (in this case the change is with time, it is called acceleration).
Figure 5. Due to the no-slip condition, the velocity next to an interface has to match the velocity of that interface (at rest in the figure). Since there is a flow above the interface, the flow velocity \(U \) is decreasing as we near the interface (where \(U=0 \)). Thus there is shear, \(dU/dz \neq 0 \). For this situation, note that \(\tau = \mu dU/dz \) (from: http://www.grc.nasa.gov/WWW/K-12/airplane/boundlay.html)

Topic 9: Air vs. water.

Air and water are two fluids we need to learn in order to understand the behavior of marine organisms. Below is a table comparing air and water properties important for the next few lessons.

<table>
<thead>
<tr>
<th>Property</th>
<th>Air (Dry, on ground)</th>
<th>Water (surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, (\rho), [kg/m^3]</td>
<td>1.13→1.29 (from 40 to 0°C)</td>
<td>1000→1028 (from 0 to 35 PSU) T effect less than 5%</td>
</tr>
<tr>
<td>Dynamic viscosity, (\mu), [N s m^{-2}]</td>
<td>1.72·10^{-5}→1.91·10^{-5}(from 0 to 40°C)</td>
<td>0.65·10^{-3}→1.79·10^{-3}(from 40 to 0°C), S effect less than 10%</td>
</tr>
<tr>
<td>Kinematic viscosity, (\nu = \mu/\rho), m^2 s^{-1}</td>
<td>1.33·10^{-5}→1.7·10^{-5}(from 0 to 40°C)</td>
<td>0.66·10^{-6}→1.79·10^{-6}(from 40 to 0°C), S effect less than 10%</td>
</tr>
</tbody>
</table>

Table 2. Comparison of properties of air and water. S and T stand for salinity and temperature. Based on Denny, 1993.

Notice that water weighs approximately one thousand times more than water. Interestingly, the weight of the atmosphere per unit area is approximately the same as the weight of a 10m tall column of water. If the atmosphere was of constant density (it isn’t) how tall would it be?

References and additional reading:

©Boss, 2006
This page was last edited on 1/20/2006