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Analysis of Echoes from a Solid Elastic Sphere in Water 

ROBERT HICKLING 

California Institute of Technology, Pasadena, California 

(Received May 3, 1962} 

It is well known in sonar work that the pulse form of a direct echo from a target bears little relation to 
the form of the original signal. This is true even for regularly shaped bodies, such as a sphere. IB this paper. 
the case of a homogeneous elastic sphere in water is examined theoretically and it is shown in comparison 
with experimental results, that the observed effects originate frmn vibrations induced in the sphere by the 
iucident round. Calculated results are presented for a variety o[ solid materials and it seems that echo form, 
could possibly provide information about the size and constitution of a sonar target. 

1. INTRODUCTION 

T is well known in sonar work that the pulse form of the direct echo returned by a stationary insonified 

target in water is usually quite different from that of the 
original signal sent out by the transducer. This effect 
can be observed even when the target has .• regular 
shape as in the case of a sphere. In the experiment.• 
which have been made, the incident sound has consisted 
of single-frequency constant-amplitude pulses of various 
lengths, and the echo pulse generally appears in the 
form of multiple echoes of the original pulse; i.e., com- 
pared to the original pulse, the echo is generally longer 
and subject to amplitude modulation. Presumably 
there are also differences in frequency content, but 
there does not appear to be any quantitative data 
available on the subject. 

If the body has an irregular shape it is possible to 
suppose that this effect is due to echoes returned by the 
individual irregularities. However, in the case of regu- 
larly shaped bodies with no abrupt changes in curvature, 
such an explanation cannot be used. In this event it 
would seem reasonable to suppose that the distortion 
in the echo is caused either by diffraction or by vibra- 

tions occurring within the solid material of the target or 
by both. The frequencies used in sonar usually preclude 
the influence of diffraction, so that the observed effects 
would appear to be due mainly to vibrations in the 
solid. Since the density of an 3' solid does not differ from 
that of water by much more than a factor of 8, it seems 
quite possible for the incident sound to cause vii)rations 
in the solid material of the target. In air the correspond- 
ing density ratio wonld be of the order of 10 • so that a 
target would react more like a rigid body, with a con- 
sequent diminution in echo distortion. 

It is the purpose of this paper to test the validity of 
this hypothesis in the case of a homogeneous solid 
sphere supporting shear and compressional waves. 
Suitable experimental data I have recently become 
available and these are compared with calculated resnhs 
based on known formal solutions? .a The•e results were 

• L. D. Hampton and C. M. McKinney, J. Acoust. Soc •m. 33. 
664 (1961). 

•J. J. Faran, J. Acoust. Soc. Am. 23, 405 
• P.M. Morse and H. Feshbach, Methods of Theoretical Physi• 

(McGraw-Hill Book Company, Inc., Xew York, 1953), Vol. It, p. 
1483. 

obtained using a high-speed computer. Previous calcu- 
lations have been made for fluid • and rigid • sphercq. 

2. FORMULATION OF THE PROBLEM 

The coordinate system for the sphere is shown in 
Fig. 1, where the relationship between the Cartesian and 
spherical polar coordinates is 

x=rsin0cos•, y=r sinOsinck, z=rcosO. (1) 

The sphere is assumed to consist of solid isotropic 
material supporting both compressional and shear 
waves having velocities ½• and co_, respectively. Out,de 
the sphere there is a limitless fluid of density o and 
souud velocity ½ in which there is a continuous train of 

waves emanating from a point source situated on the 
z axis at r=r,, O---•r. The time dependence of these 
waves is of the form exp(-io•t) from which the wave- 
number k in the fluid is obtained by means of the 
relation 

k =%;c= 2•r.,'X, 

where X is the wavelength. Similar relations 

k•=w/ct and 

hold for the compressional and shear waves in the solid. 
The waves emanating from the point source can be 
expressed • as 

p•= P0 exp (ikD)/D 

= ikPo • (2,•+1) (-- 1)•1',, (cosO)j,,(kr)h,•(kro) 
(0<r<r,,), 

where 

D= (r&'+ 2fro cos0+r'-')• 

(2) 

and the P,, are Legendre polynomiMs, and the j,,, h• arc 
spherical Bessel functions. ?Planc waves incident on the 
sphere are obtaiued by making rogo to infinity. Using 

V. C. Artdemon, J..Xcuu•t. S•Jc. Am. 22, 426 (1950). 
•H. Stenzel, Leitfade•t •ttr Bereclmang ;.on Scltall;',,rg,tgen 

(Springer-Verlag. Berlin, 1939). 
Reference 3, p. 1460. 
Reference 3, p. 1325 ao,l p. 1573. 
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•'\ The above waves p• incident on the sphere result ill 
-•J scattered waves in the fluid which will be of the 

5•..y%. / P,= Po Z c•h•(kr)P.(cosO). (S) 
] .;. 1. C,rdinatc svsn-m. 

tile Iwo limit. exp (ikD)/D --• exp (ikro)cxp (ikrcosO)/ 

h•(kro) --• i-r•+•)exp (ikro)/kro, 

and removing the common factor exp(ikro)/ro gives 

Pi= P0 exp(ikr cos0) 

= Po • (2n+l)i"P,,(cos•)j,,(kr). 
n•-O 

The coefficients c,, have to be determined from the 

approi)riate boundary conditions at the surface of the 
•phcre and can be shown"to I)c 

c.=k(--1)"(2nq-1)h•(kro)sin•,,cxp(--in,.), (6) 
(3) 

where the angle r• is given by 

tann..=-[jdx)F.-id(x)]/[-.•(x)F.-.d(x)] (7 • 

(4) 
w i I.h 

x, j,,'(x,) 2 (u ø- q-n)j,, (x._,) 

p x.? x•jd(x,)--j,,(x,) (nø'q-n--2)j•(x•)+x:"j,,"(xO 

.r•j,,'(x,)--j,,(x,) (n ø- q-. - 2 } j,, (x2) q- x=-*j ,," (xe 

(8: 

and 

The prime.• denote the derivative with respect to the 
argument. This result was first derived by Faran? 
However, there was an error in his presentation in 
which the factor a/(1--2a) was ntisplaced. Finally it 
*hould be noted that the expression on the right-hand 
.-ide of Eq. (6) is of the form f(x)/[f(x)q-ig(x)], where 
i and g are regular on the real axis. Hence there are no 
sngularities when the argument is real, aml the function 
•an be integrated numerically in a straightforward 
manner. It also follows that the solution as presented is 
complete for all frequencies, i.e., the boumlarv condi- 
tions are fully satisfied by the shear and compressional 
waves already postulated. 

Certain limiting cases art' of interest. If F,,--, 0, tht 
•-olution would Ihen apply to scattering by a rigid 
immovable sphere.' This would be the case for instance 
when the density of the solid was very much grealer 
•han that of the lluid. If F, --, • the solntion for scat 

•ering by a free-surface sphere is obtained." This cor- 
responds to the condition where the normal stress at the 
surface of the sphere vanishes, which would result for 
example when the density of the material inside the 
sphere was very much less than that of the flukl. 

a p. M. Morse, Vibration and Sound (McGraw-Hill Bo½•k 
Company, Inc., New York, 1948). p. 354. 

-• Reference 3. p. 1483. 

From the above it follows that the echo returned by 
the solid sphere to the source is given by 

1'0 I- 2 r • P•=--[-- .'0 Y•(2n+l)sinrt,. 
2r0 L ,,-0 

X exp (- ir•.)h,? (.r0)]exp (-.i•ot) 
- ( P,, 2r,)f(x,x,,. rt,x_,)exp (- ixr). (9) 

where xo=kro=xR, and r=ct/a. When the source is a 
large distance from the sphere. 

P0aF2 ,• p, =-- - Y• (- l)"(2nq-1)sin•,. 
2re" L.r ,,--,, 

X exp(- in, ]]exp[ik (2r -- 
-= ( I'.a .'2r,-ø) J'• ( x,x•.x2 lexpE i.r( 2R- ri_•i. ( 10 

Removal of a factor cxp(ikr,,).'ro gives the solution for 
incident plane waves. Eqnalions (9) and (10) can then 
be used to conslruct the echo due to a pressure puL-c 
emanating from the source. Suppose the source emits a 
i}ul• of form P,(t). This can be expressed in terms of 
Fourier components as 

J>'•: [ g(k%xpEik(D--ct)-]dk. (11i t'.(I)= (2a-'eD. 
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(a) 

2.0 

/ 

,5 

FREQUENCY, 

Fro. 2 (a). The pressure amplitude as a function of frequency 
the echo returned by rigid and free-surface spheres to a distant 
source of continuous waves. (b) The phase of the echo from rigid 
and free surface spheres as a function of frequency. 

where D is as defined previously. The frequency spec- 
trum g(k) is found by taking the Fourier transform of 
the given pulse, i.e., 

g(k)= (-•)• J • P,(t)expF--ik(D-c,)],tl. (12) 

With the new variable x=ka, the reflected pulse will 
be 

P•c f'_• g(x) f(x,xo,xx,x2)exp(--ixr)dx, (13) 
and when the point source moves to a large distance 
from the sphere, 

Po P,.(r)= 2 (2•r)•r" • .1_• ' 
Xexp[ix(2R-r)]dx. (14) 

In general the echo given by (14) will differ in form 
from that of the incident pulse (11). Only for high fre- 
quencies in the special cases of a rigid and a free-surface 
sphere will it be the same. It can be shown •ø that in the 
former case .f•--o exp(--2ix) as x becomes large while 
for the free-surface sphere .œ•--•--exp(--2ix). Hence. 
if the frequencies contained in the pulse are in the high 
frequency range, Eq. (14) becomes 

P,(r) - -- g(x)exp[ix(2R- 2-- r)3tx, 
2(br)Ir,r ø .: ' 

which means that the reflected pulse has the same form 
as the emitted pulse, but is returned time 2(to--a)'½ 
later. This travel time indicates that the sound is 

reflected from a point source reflector at the point on 
the surface of the sphere nearest to the source of incident 
sound. A similar result holds for the free stirface sphere 
except that the pulse is inverted. 

2.0 

lf.I 

I.O 

BœRYLLIUt• 

I I [ I I I I I I 
Io 20 3,9 

FREOUENC¾. ko 

FIG. 3. The pressure amplitude as a 
function of frequency of the echo 
returned by a beryllium sphere to a 
distant •ource of continuous waves. 
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F'JSE D S • LIC,t., 

: 

FREGUE•C v, •c 

Fro. 4. The pressure amplitude as a 
function of frequency of the echo 
returned by a fused silica sphere to a 
distant source of continuous waves. 

Reference 3, p. 1554. 
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FIo. 5. The pressure amplitude as a 
function of frequency of the echo 
returned by a sphere of Armco iron to 
a distant source of continuous waves. 

I:xm 6. The phase of the echo from 
the Armco iron sphere as a function 
of frequency. 

I.'to. 7. The pressure amplitude as 
a function of frequency of the echo 
returned by an aluminum sphere to a 
distant source of continuous waves. 

I"IQ. 8. The phase of the echo from 
the aluminum sphere as a function of 
frequency. 
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FIG. 9. The pressure amplitude as a 
function of frequency of the echo 
returned by a sphere of yellow brass 
to a distant source of continuous 
Wltves. 

3. STEADY-STATE SOLUTIONS 

The steady-state solutions given by the functimts f 
in Eqs. (0), i10) were determined for a certain number 
of cases, the calculations being performed on a high- 
speed computer. The results are shown in Figs. 2-15. 

The first results obtained were for the special cases of 
the rigid a and free-surface 9 spheres for a distant point 
source of continuous waves. These are shown in Figs. 
2(a) and (b). The argument of the function foo is pre- 
sented divided by the variable x=ka. The results for 
the rigid sphere are in agreement with those of Stenzel. • 
For low frequencies the function is given by the initial 
terms in the series expansion which in the limit as x 
tends to zero are 

8.0 

6.0 

2.0 

ICE; 

I.. I 
I0 

FREQUENCY, 

Fro. 10. The pressure amplitude as a function of frequency of 
the echo returned by an ice sphere to a distant source of continuous 

and 

(2i/x)[j9(x)/ho(x)'] • 2 (1-- ix), 

for the rigid and free-surface spheres, respectively. For 
the rigid sphere this represents the well-known condition 
of Rayleigh scattering where the scattered intensity is 
proportional to the fourth power of the frequency. For 
the free-surface sphere the results are quite different. 
Not only does the scattered intensity reach maximum 
values at low frequencies, but the scattering is uniform 
in all directions. For high frequencies both solutions 
tend to the form exp(--2ix), the free-surface solution 
converging more rapidly than that of the rigid sphere. 
In the previous section, it was shown that this indicates 

2.0 

IO.O 

8.0 

If.I 

6.0 

4.0 

2.0 

LUCITE 

o IO 

FREQUENCY, 

F•o. 11. The pressure amplitude as a function of frequency of 
the echo returned by a Lucite sphere to a distant source of con- 
finuoas waves. 
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that at high frequencies the souud is mainly from a 
small area on the surface opposite the source and this 
wouM agree with physical intuition. At low frequencies 
the echo appears to come from the ceuter of the rigid 
sphere and from a half raditts positiou in the free- 
:urface sphere. As the frequency increa.,.cs, Ihc apparent 
orizin of the echo moves gradually towards lhc region 
on the surface opposite the source. This i.• shown in 
Fig. 2(b), wilere the phase of J;•. divided by .r=ku 
represents distalice along a radius inside the sphere. llt 
lhe case of the rigid sphere these re•,ttlts can be rcadik 
traderstood by suppo.,ing that low-frequency waves arc 
intercepted by the entire cross section, whereas high- 
frequency waves behave as in geometrical optics and 
form a "bright spot" reflector on the surface opposite 
the source. With the free-surface sphere the results at 
low frequencies are not so readily explainable except 
that as expected they differ from those for the rigid 
sphere. 

The maiu body of results were derived for solid 
spheres supporting internal shear and compressioual 
waves. The properties of the materials considered are 
given in Table I. The fluid outside the sphere was 
assumed to be water of density 1 g/cc and compres- 
.-ional velocity 1410 m/sec. 

As an initial test of the programs, the results ob- 
tained by Faran •- were recalculated. Since these were for 
a--• no error could result from the misplacing of the 
factor a/(1--2v) mentioned in the previous section 
since this factor is unity. Good agreement was found. 

.Some of the results for the materials listed in Table I 

are given in detail in Figs. 3-11. As before, these are for 

4.0 

BERYLLIUM 
• 3,0 /USED SILICA 
• /o ARMCO IRON • /UALUMiNUM 
z A.O 

• / FLINT GLASS 

• / •ELLOW BRASS 
CE 

o 2 4 6 8 IO 
S.AR VELOCITY. C z. 

FiC. 12. Average interval in frequency between minimA or 
between peaks in the pressure amplitude of the echo for different 
[..tter[Als • • funct[oD of the •hcar velocity of the material 

Fie,. 13. The pressure amplitude as a function of frequency of 
the echo returned by a rigid sphere to a point source of continuous 
waves distance Ra from the center of the sphere. 

a (li.qant soun:e. (;eneralh' the range of [requct]cy wa.• 
for values of ka u l) to 30, but for Armco iron, ice, and 
I•ucite the range extended to ka=(•), 20, and 10, re- 
spectively. In addilion to the pressure amplitude tile 
phase variation is given for Armco iron and aluminum. 
Ii] all cases the re.•ults begin at low frequencies as though 
the •olid were a rigid body, changing in general into a 
fairIx' regular series of peaks and minima as the fre- 
quency increases. xA'ith a rigid, incompressible material 
such as beryllium, the change from the rigid body 
solution is not very greal. Hmvever, as the material 
I)ccomes more compre•il)le and plianl, the resonances 
tend to become more pronounced and more closeh- 
spaced. In the case of l•ucite and ice the resommces have 
become quite sharp and close together. This general 
Irerid was investigated by considering an average fre- 
quency interval t)etwccn minima or between resonance 
peaks for each material. The results are shown in Fig. 12 
plotted against the shear velocity ca. Parameters other 
than ca were also considered such as the Poisson's ratio, 
but with these the scatter of points was much greater. 
It appears therefore that this feature is most strongly 
dependent on the behavior of shear waves in the mate- 
rial. The successive peaks and minima which occur in 
the direct echo for a continuous frequency were shown 
by Faraft-' to be due to strong lobes of backscattered 
radi;ttion forming and then splitting again into sidelobes 

TABLE I. a Elastic c(mstants. 

Compressional Shear 
I)ensity l'oissrm's velocity velocity 

Material (•/cc} ratio •r ½] (m/set) c• (m/sec) 

11ervlliun• 1.87 (I.05 12890 8880 
I: u•etl silica 2.2(I I).17 5968 3764 
1 leavv xilica[c. 

IliB• gl:ts'• 3.8$ 0.]2-1. 39,_q) •380 
Armco irm] 7.711 0.29 5960 .1240 
M,,nel metal ,',4. q•O 0.327 3350 2720 
_Mtnninon• 2.7t! 0.355 6420 304-0 
Vell,)w hi'ass 8.00 0.37t 4700 2110 
I,ucite 1.18 0.40 2680 1100 
1 ,cad 11.34 0.43 1960 690 
Ice b 0.917 0.336 2743 1433 

ß A meritan l.slitute of Ph•tsic$ Handbook (3.lcGraxv- Hill Book Company. 
Inc.. New York. 

h D. L. An4eraon; 'Iranq. End, lnat, Canada, 2. 116-1•2, (1958), 
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o 5 io 

FREQUENCY, ka 

Fro. 14. The pressure amplitude as a function of frequency of 
the echo returned by a free-surface sphere to a point source of 
continuous waves distance Ra from the center of the sphere. 

3.0 

2.0 

o 5 IO 

FREQUENCY, ka 

Fro. 15. The pressure amplitude as a functionof frequency of 
the echo returned by a brass sphere to a point source of contin- 
uous waves distance Ra from the center of the sphere. 

scattering in othcr directions. It seems therefore that 
shear waves play an important role in this process. 
Figs. 3-11 are arranged in ordcr of decreasing shear 
velocity and a gradual process of transition seems to be 
apparent as this parameter is varied. As an independent 
parameter, the density of the material does not seem to 
have a very pronounced effect except at very low fre- 

quencies where the size of the first pressure-amplitude 
peak appears to vary in direct relation with it. As the 
frequency increases there appears to be no tendency 
towards some constant limit as in the cases of the free 

surface and rigid spheres. The peaks seem to recur, but 
in an increasingly ragged form. 

In the phase variations shown in Figs. 6 and 8, jumps 

FREQUENCY SPECTRUM-DOM NANT FREQUENCY ko=245 FREQUENCY SPECTRUM - DOMINANT FREQUENCY Re :25.5 

NCIDENT PULSE I 

2 F I•1. 2• I•1• f. • 

•. .. • • • _ .. 
,, •o • •o • _ ,•o•c, ' ,• •o •, ,o ,• 

ECHO- DOMINANT FREQJ-NCY ,•3 -245 

ECHO-I•OMINANT FREQUENCY ka 25.5 

["lo. 16. Pulse fin'ms o[ echoes returned by an Armco iron sphere for dominant frequencies 
at k• =24,5 and 25.5 with an incident pul• of 5 cyclc•. 
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in pha,•c occur at frequencies corrcsllonding to minima 
in the pressure amplitude. As with the rigid body the 
parameter (--arg f=/ka) is zero at the low-h'equcncy 
limit and varies continuously as the frequency' increases. 
Unlike the rigid sphere, however, this variation does not 
lend towards a limit where the apparent source of the 
echo corresponds to physical reality. The representation 
should therefore be regarded only as a convenient way 
of presenting the phase as a continuously varying 
function. 

In order to determine the effect of di,tance of the 

*ound source from the center of the sphere the function 
.f in Eq. (9) was evaluated for a point source },l various 
distances from a rigid, a free-surface, and a brass 
sphere. The pressure amplitude I./[ multiplied by R is 
shown in Figs. 13 15, allowing a ready comparison with 
lhe solutions for a distant source i./'* - In gcneml it 
appears that j• represents a satisfactory solution when 
the sound source i.- .4tua•ed more than I0 radii from the 

center of the sphere. 

4. ECHO PULSE FORMS 

The most obvious general feature in tile sleadv-state 
>olution for ordinary metals is the succession of peaks 
and minima in the pressure amplitude and it is of 
interest to determine how thi• affects the pulse form of 

I.he echo when the steady slate solutions are u.•ed in the 

integral expressiou (14• for a distance source. The 
incident pule form could be chosen arbitrarily. How- 
ever, in practice the incident sound is generally pro- 
duced by making a transducer resonate over several 
cycles al a particular frequency. Mathemalicalh- the 
pressure variation which results at a point in the fluid 
can be represented as follows: 

1', (l) = 0, l < - At, 
= cxp(-/o•,/), --At<t<.sl, (15) 

O, l > .51, 

where wa is the angular frequency of the transducer at 
resonance, and 2At is the duration of the pulse. The 
frequency spectrum g(w) is given by the transform 

•(• - )- _• j •, c-•p[i(•-oJ ,)t]d! 
- (2 ',r)sin[(o•-•,,)_xt] '(o•-•,,). 

In tile non(limensiomdized •x'stem of Eq. (14) this 
becomes 

g(xl= (2 7r)sinEf.r--x,)Ar• (x--3',,), (161 

where x.=co,½t 'c and is referred to a•. Ihe dominant 

17. Pulse forms of echoes returned hv an Armco iron sphere for dominanl frequencies 
at ka-24.5 and 25.5 wil• an incident pulse of 25 cycles. 
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Iqc,. 18. Pulse iorms of echoes returned by an 
at k•.=24.5 and 25.5 with an 

Armco iron sphere for dominant frequencies 
incident pulse of 50 cycles. 

frequency. By use of Eq. (16) and the previously 
tierived values of the function .f• it is then po.•sible to 
obtain the pulse form of l]•e echo by numerically 
integrating Eq. (14). 

The nature of the function g in Eq. (16• 
Figs. 16-18 for different pulse lengths •r. The height of 
the main peak occurring at the domi•mnt frequency 
equal to •r and its "spread" varies inversely with •z. 
If the function j•' is momentarily idealized a• con 
sisting of a series of similar, equally spaced peaks, 
would appear that the form of the echo depends mainly 
on the pulse length and on the location of the dominan• 
frequency relative to the maxima and minima of the 
] f•j. Two extreme cases would then arise depending on 
whether the dominant frequency coincided with 
maximum or with a minimum of 

Using the data for Armco iron as •hown in Figs. 5 and 
6 several echo pulse forms were cornpuled for different 
lengths of the incident pulse and for dominant frequem 
ties corresponding to values of .r or ka at 24.5 and 25.5. 
The former frequency occurs at a peak of the pressure 
amplitude and the latter at a minimum. The range of 
integration over ka for the longer pulses was from 15 to 
35, while for the short 5-cycle pulse, it extended from 
10 to 40. The incident pulse did no• therefore have a 
perfectly rectangular form. However, 
experimental pulse fo•s, h could be considered a 
satisfactory approximation. In •tddition the irregulari- 
lies introduced by restricting the range of integration 

facilitated the recognition of certain features of the 
incident pulse in the echo. The calculated echoes are 
shown in Figs. 16-18. The time scale for the incident 
pulse is choseu with respect to the time of arrival of the 
midpoint of the pulse at the center of the sphere, 
whereas the scale for the echo is chosen with respect to 
the time of arrival back at the source. All pulses are 
shown traveling from right to left. It can be seen from 
these figures that the leatding edge of the echo precedes 
that of the incident pulse by a time difference of 2 in 
each case. In addition the leading edge of the echo is of 
the same form •ts the leading edge of the incident pulse. 
These features indicate that the first part of the echo 
consists of a rigid body reflection from the region of the 
surface of the sphere adjacent to the sound source. The 
subsequent p•trts of the echo are affected by the vibra- 
tions of the sphere. In the case of lhe 5-cycle puke, the 
first echo is of identical form to the incident pulse. 
while the second echo is also of tl•e same form, 
inverted. Subsequent echoes diminish in amplitude and 
lose the characteristic features of the incident pulse. 
Whether the domiuant frequency occurs at a minimum 
or a maximum of the function [j•[ does not appear to 
make much difference to the form of the echo for the 
short 5-cycle pulse, but obviously it is important when 
the pulse is longer. The reason can be seen from the 
frequency spectra shown in Figs. 16-18. A change in ka 
of the order of 1 in the spectrum for the short pulse will 
not greatly affect the integral (23); however, this is not 
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the ca•e for the longer pulse•. The differences in form of 
the echoes shown in Figs. 17, 18 are in fitct quite dis- 
tinctire. It seems, moreover, that the changes which 
occur when the dominant frequency is moved from a 
maximum of ]f•l to a minimum, are characteristic of 
any ordinary metal. Figure 19 shows the echoes from a 
•phere of aluminum for the same t.•)e of incident pulse, 
where these results were obtained experimentally. • With 
allowance for a change of scale and such effects as the 
response of the transducer, the differences in the echo 
resulting from a change in the dominant frequency are 
closely related to those shown in Figs. 16-18. The 
sphere in this case had a diameter of 5 in. and the change 
in dominant frequency was from 120 to 123.5 kc/sec. 
This is equivalent to a change in ka of about 1, which 
according to Fig. 12 is the approximate distance be- 
tween a peak and a minimum of the function I.L,[ for 
most metals including aluminum. Using the constants 
given above for water and aluminum, it is found that 
120 kc/sec does not in fact coincide with a peak of the 
steady-state reflection function Ifil- However, this is 
uot surprising, since the values used referred to rolled 
aluminum. In addition if the frequency is to be e,r- 
pre--ed in terms of ka with any accuracy, it would be 
necessary to know the velocity of sound in water under 
the conditions of the experiment, and also the diameter 
of the sphere, to within less than 1%. Echoes were 
calculated for rolled aluminum at values of ka equal to 
34.6 and 35.6 corresponding to frequencies of 122.3 and 
125.8 kc 'see, the value,occurring at a maximum and a 
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FIG. 19. Ir. xperimentally determined echo forms for a 5-in.- 
diameter aluminum sphere for various incident pulse lengths. The 
sweep is 150 •sec/cm. 

minimum, respectively, of tile reflectiou function 
The pulse lengths Ar were the same as those in Figs. 
16-18. Similarly, echoes were calculated for a bra•s 
sphere for frequencies at ka=20.2 and 21.0. These 
echoes were found to have the same features. The lead- 
ing edge was a rigid hody reflection and the same kind 
of transition in pulse form occurred when the frequency 
and the pulse length were varied. With yellow bra•s the 
secondary echoes in the multiple echo forms had a 
bigger amplitude than the primary echo. 

5. DISCUSSION 

Although thi• paper represents only a preliminary 
study', it may be worthwhile to conskier the significance 
of the results in relation to the problem of using sonar 
echoes to obtain information about a target. 

In the first place, it would seem that solid materials 
could be divided roughly into two groups, metallic 
flint-like substances and substances which are fairIx- 
pliant. This can be seen from the steady-state solutions, 
where the former is characterized by a succession oœ 

peaks and minima roughly' the same distance apart, 
while the latter has sharper, stronger peaks more closely 
spaced. Although all the echo forms which were cal- 
culated belong only to the first t}•e, it is evident from 
the steady-state solutions that there would be a differ- 
ence in the general nature of echoes between the two 
groups. Hence there would exist the possibility of 
distinguishing, for instance, between a bare rock and a 
large fish. 

Secondly, if the sonar target is known to be a homo- 
geneous metallic sphere, then it is possible to determine 
its approximate radius by using data of the type shown 
in Fig. It). The features of the transition between a peak 
and a minimum of the steady-state reflection function 
[f•ol for the long incident pulses is characteristic of 
most ordinary metal% as shown in the previou• section. 
The trausition is accomplished during a change in ka 
of the order of 1. Hence giveu an actual change in 
frequency' in cycles per second, it is then possible to 
determine the radius a of the sphere. For example, the 
transition in pulse form shown in Fig. 19 is achieved 
through a frequency change of 3.5 kc/sec corresponding 
to a change in ka of about 1 which therefore makes the 
radius of the sphere approximately 2.5 in. In genera], 
however, such an e-timate would not be quite so 
accurate. It also seems possible to estimate tile size of 
the sphere by varying the pulse length rather than the 
frequency, since the individual echoes occurring in the 
•hort pulse become contingent when the incident pulse 
length is approximately equal to the diameter of the 
sphere (see Fig. 19). 

Finally, it has been showu n that there are signilicant 
differences in the steady state reflection function f• for 
rigid bodies of different shapes. Although these effects 
would be rendered more complicated by allowing for the 

tt R. Hickling, J. Acoust. Soc. Am. 30, 137-139 (1958). 
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vibrations of the solid material, it may be possible to 
use them to derive some information about the shape of 
a sonar target. 
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The scattering strength of the sea surface was measured for a range of wind velocities, grazing angles, and 
frecluencics, in octave bands in the frequency range from 400 to 6400 cps. An empirical equation was obtained 
relating the scattering strength of the sea surface to the above variables, for grazing angles below 40 ø. At 
low grazing angles, scattering of sound from a subsurface layer of isotropic scatterers, probably of biological 
origin, frequently masked the reverberation due to scattering from surface roughness. For a given wind 
speed, the scattering strengths measured in this study at grazing angles below 20 ø were appreciably less 
than those obtained by other observers at higher frequencies. At higher grazing angles, of the order of 40 ø, 
there was little systematic difference between the measurements made at high and low frequencies. 

INTRODUCTION 

A NUMBER of systematic studies of the back- scattering of sound from the sea surface have 
been carried out at frequencies of tens of kilocycles per 
second, • • but none has been reported for low frequen- 
cies. This report describes an investigation designed to 
measure the variations of surface scattering strength 
with wind velocity, grazing angle, and frequency, in 
octave bands in the frequency range from 400 to 6400 
cps. A number of characteristics of the surface scatter- 
ing process are discussed and an empirical relationship 
obtained relating surface scattering strength to wind 
velocity, frequency, and grazing angle. At low grazing 
angles, the scattering strengths tended to become inde- 
pendent of grazing angle. This arose because the sound, 
scattered from the sea surface at the longer ranges, was 
masked by the scattering of sound from a laver of 
isotropic scatterers, probably of biological origin, in the 
volume of the sea. 

SEA TRIALS AND ANALYSIS 

The sea Irial was carried out over a 52-h period in 
March 1961 in deep water north of Bermuda (35øN, 
65 ø W). The water was isothermal from the surface to 

t R. J. Urick and R. M. Hoover, "Backscattering of Sound from 
the Sea Surface; Its Measurement, Causes, and Application to 
the Prediction of Reverberation Levels," J. Acoust. Soc. Am. 
28, 1038 (1956). 

• G. R. Garrison, S. R. Murphy, and D. S. Potter, "Measure- 
merits of the Backscatterlng of Underwater Sound from the Sea 
Surface," J. Acoust. Soc. Am. 32, 10-• (1960). 

at least 1200 ft. During the trial, in which reverberation 
measurements were made at random times between 

9 a.m. and midnight, the winds, measured on the ship's 
anemometer, ranged from zero to 30 knots, and the sea 
w• estimated to range from zero to state 6. 

Measurements of reverberation were made with an 

omnidirectional hydrophone connected by an armored 
cable to a magnetic tape recorder on the ship. Suspended 
below the hydrophone, five l-lb charges of TNT were 
spaced at 5-ft intervals. The charges were detonated at 
1-min intervals after being lowered to the desired 
depth. Experiments were carried out with the hydro- 
phone at nominal depths of 300, 600, and 1200 ft. 

The recordings were played back through octave 
band filters and the output displayed on a logarithmic 
Sanborn recorder. The scattering strengths at various 
times after the explosion were obtained from these 
recordings using the following equation derived in 
Appendix I: 

10 logS= 20 1ogP-- 10 1ogE+30 log/-- 42, (1) 

where 10 logs represents the scattering strength oœ the 
sea surface; 20 logP represents the contribution to the 
experimental reverberation levels, in decibels relative 
to 1 dyn/cm 2, in the band considered due to the shock 
pulse at a time t after the explosion. At frequencies 
above 800 cps, the bubble pulse energy made an in- 
significant contribution to the measured reverberation 
level. In the 400-800 cps band, corrections of from 1 
to 3 dB had to be made to allow for the contributions of 


