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The scattering of sound from a spherical fluid obstacle of size comparable to a wave-length is considered, 
neglecting dissipation. Calculations of the acoustic pressure and the total energy in the scattered wave are 
presented graphically; sound velocities and densities of the sphere lie between 0.5 and 2.0 times that of the 
external medium. The limiting cases of Rayleigh scattering and scattering from a fixed rigid sphere are also 
shown for comparison. In the region where the diameter of the sphere, is comparable to a wave-length, the 
scattering is a complicated function of frequency, showing in some cases large maxima and minima. The 
amplitude of the scattered wave in the backward direction from a fluid sphere a few wave-lengths in diameter 
exceeds twice that from a rigid sphere of the same size for the case of the sound velocity 0.8 and density equal 
to that of the surrounding medium. 

I. INTRODUCTION 

HE scattering of sound by marine life is an im- 
portant factor in the problem of sound ranging in 

the ocean. The presence of these biological scatterers in 
the sound beam will cause some of the sound to be 

deflected from its original direction. A portion of this 
sound will be returned to the source giving rise to 
volume reverberation. The attenuation of the trans- 

mitted sound by the scattering of energy out of the 
sound beam will also occur, but is of less importance. 

The exact theoretical study of the acoustic effect of 
the individual scatterers is prohibitive in its complexity 
since no simple geometric form can be attributed to 
marine life, and further, the material of which the 
scatterers are composed is in general not homogeneous. 
However, the kindred problem of the acoustic scattering 
from a homogeneous fluid sphere does lend itself to a 
mathematical analysis and may give an insight into the 
real problems. 

The effect of a fluid sphere in a sound field was first 
investigated by Rayleigh • who considered a sphere of 
dimensions small compared to a wave-length. For 
scattering from a sphere of these dimensions (termed 
Rayleigh scattering), both the zero-order and the first- 
order terms of the series solution are important; the zero 
order being dependent on the compressibility of the 
sphere, and the first order dependent on the density of 
the sphere. Both the diameter and the wave-length enter 
into the scattering in a simple power relationship. 

A large portion of the marine life found in the ocean is 
covered by the theory of Rayleigh scattering. However, 
it is probable that the more important contribution to 
the total acoustic scattering arises from those scatterers 
which are comparable to a wave-length. The scattering 
from spheres of diameter comparable to a wave-length 
has also been treated by Rayleigh for the special case of 
a fixed rigid sphere. 

The present work is concerned with scattering from 

* This work represents one of the results of research carried out 
under contract with the Bureau of Ships, Navy Department. 

•Lord Rayleigh, Theory of Sound (Dover Publications, New 
York), Vol. II, p. 282. 

spheres whose acoustic properties are near those of the 
medium, and of diameters up to several wave-lengths.$ 
To simplify the theory, a fluid spherical scatterer has 
been considered and the effects of viscosity and heat 
conduction neglected. 

II. GENERAL SOLUTION 

The problem to be solved may be set forth in the 
following manner: Consider a sphere of radius a com- 
posed of fluid I which has a density p' and a sound 
velocity c' whose center is located at the origin of the 
polar coordinate system (r, 0, •). Surrounding this 
sphere is an infinite fluid II whose acoustical properties 
differ from those of the sphere in general and will be 
designated by p and c. A plane acoustic wave of angular 
frequency o•, and pressure amplitude 6 ), traveling parallel 
to the polar axis in the -- z direction, impinges upon the 
sphere. (Choosing the incident wave in such a manner 
eliminates the dependence on • so that only the vari- 
ables r and 0 need be considered.) This wave gives rise to 
an internal wave p' and an external spherical wave, p. 
The amplitude of p at large distances from the sphere is 
to be determined. 

At the boundary of the sphere, r--a, both the pressure 
and the normal component of the particle velocity u, 
must be continuous. This condition gives rise to the 
following equations: For the acoustic pressure, p, 

p(a) + po(a) = pt (a), (1) 

and for the radial component of the particle velocity, 

ur(a)+uo. •(a) = u/(a). (2) 

In addition the acoustic pressure, p, must satisfy the 
three-dimensional wave equation 

v•p= (•/c?)(o•p/ot•). 

$ A solution to the general problem of absorption and scattering 
by a sphere in terms of its boundary impedance is given by Lax and 
Feshbach (J. Acous. Soc. Am. 20, 108 (1948)) using the phase shift 
analysis which is well suited to problems involving spheres with 
acoustic coatings of known impedance. The problem of a fluid 
sphere is included in the theory, but, in view of the complicated 
dependence of the boundary impedance on frequency for this case, 
the elegance of the phase shift method for computation is nullified. 
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As in most physical problems, the solutions of this 
differential equation which are of interest are those in 
which the time dependence is sinusoidal of the form 
exp(-io•t). In the polar coordinate system chosen the 
general solution for axial symmetry is given in terms of 
spherical harmonics :2 

o, [ jm(kr) ] exp(-icot), p= E ) m•0 

where Pm is the Legendre function, u=cos0, jm is the 
spherical Bessel function and nm is the spherical 
Neumann function. 

Choosing the most general solution finite in the region 
r < a, the internal wave may be expressed by the series' 

p'= Y'. BmPm(u)jm(k'r) exp(-icot). (3) 
rn•0 

Similarly for the region r> a the scattered wave will be' 

p= Y'. AmPm(u)gjm(kr)q-inm(kr)• exp(-io•t). (4) 

The spherical Neumann function is included here since 
the origin where nm becomes infinite lies outside the 
region. The incident acoustic wave may also be ex- 
panded in a series of spherical harmonics, • 

p0=(P0 Y'. (-i)m(2m+l)Pm(t•)jm(kr) exp(-icot). (5) 
rn•0 

Using the relation for the radial component of the 
particle velocity, 4 

the expressions for the particle velocities of the three 
waves are obtained' 

ur= (-i/pc) •. [Am/(2mq- 1)-] 

XPm(tz)[am(kr)+i•m(kr)'] exp(-icot). (6) 

Uo. r = (-i/pc)(Po Y'. (-i)mpm(u)am(kr) exp(-i•0t), (7) 
rn•0 

and 

ur'= (-i/p'c') Y'. [Bm/(2mq- 1)-] 
m-•O 

XPm(U)am(k'r) exp(-icot), (8) 
where 

am(kr)---- (2m+ 1)O[jm(kr)•/O(kr) 
= mjm_•(kr)- (mn t- 1)jm+•(kr} 

and 

•m(kr)--= (2m+ 1)O[nm(kr)•/O(kr) 
= m,•_• (kr) - (mn t- 1)nm+• (kr). 

•?. M. Morse, Vibration and Sound (McGraw-Hill Book 
Company, Inc., 1948), second edition, p. 319. 

a Lord Rayleigh, see reference 1, p. 334. 
4 ?. M. Morse, see reference 2, p. 295. 

Substituting Eqs. (3)-(5) in (1), and (6)-(8) in (2), two 
equations in the unknown, 8Am and Bm are obtained. 
Solving these equations simultaneously for 

where 
Am= --(½o(--i)m(2m+ 1)/(l+iCm), 

-- [Bm (ka) / am (ka)']gh 
:[:C,•= (9) 

[ am (k' a)/ am(ka)-][jm(ka) /jm (k' a)-] - gh 
and 

g- p'/p, h = 

Using this expression for Am, the pressure of the scat- 
tered wave at any point outside the sphere is given by 

P= -(P0 Y'. [(-i)m(2m-+- 1)/(lnt-iCm) -] 
m•-0 

X P•,(•)[j,•(kr)+in,•(kr)• exp(-i•ot), 

which is the general solution for the scattered wave. 
At large distances from the sphere a simpler expres- 

sion for the pressure of the scattered wave may be 
obtained by replacing jm(kr) and nm(kr) by the limiting 
expressions :5 

jm(kr)-•-•-•(1/kr) cos[kr- (m+ 1)r/2-], 
nm(kr)-----•(1/kr) sin['kr- (mn t- 1),r/2-]. 

The following approximation is then valid for kr>>l, 

(-i)m•jm(kr)+inm(kr)•--• (-i/kr) exp[+ikr•(- 1)% 
and the pressure at a point far removed from the sphere 
is given by 

p=6'o(q-i/kr) exp(q-ikr-icot) 

X Y'. Pm(t•)(--1)m(2mq -1)/(lq-iCm). (10) 

This expression for p may be considered the applicable 
solution to the problem. In the following sections, 
different forms of this solution will be set up to facilitate 
computation. 

III. REFLECTIVITY AND SCATTERING 
CROSS SECTION 

A convenient yardstick for investigating the results of 
the previous section may be found in the idealized case 
of uniform scattering from a perfectly reflecting sphere 
(which is commonly called geometrical scattering). In 
this case, the total energy intercepted by the sphere of 
radius a from the incident plane wave of pressure 

:• It has been pointed out that the Lax-Feshbach phase shifts 
(see $ p. 2), r/,• are related to the C,• by the equation: 

n•=•r/2+arctan(--C•). 
• P.M. Morse, see reference 2, p. 317. 
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Fro. 1. Rayleigh scattering from small fluid spheres in the 
backward direction i.e., 0=0. The quantity R/(ka) 2 is presented as 
a function of the relative density g, and the relative sound velocity 
h of the scattering sphere. 

amplitude (P0 is considered to be scattered uniformly 
through a solid angle of 4•r steradians. The pressure 
amplitude of the scattered wave at a distance r from' the 
sphere may be written as 

I P•om[ =(Po(•ra2/4•rr2)«=(Poa/2r. 

Using this geometrical scattering for comparison, a 
reflectivity factor is defined' 

go-IPl/IPgeoml 

- 2/kal Y'. P•(u)(- 1)•(2mq - 1)/(l+iC•)l. 
m---•O 

In the special case of scattering directed b•ck toward 
the source of the incident wave, (i.e. 0=0), which is of 
special interest here, the expression for Ro becomes 

g=2/ka] •. (-•)•(2m+•)/(•+iC•)l. 
m•O 

(11) 

It may be pointed out here that since the acoustic 
cross section of a scatterer is determined by the relative 
strength of the echo returned from it, it is evident that 
the reflectivity, Ro, is related to the acoustic cross 
section. For example, the acoustic cross section for back 
scattering of a sphere whose geometric cross section is S 
units will be the product of the geometric cross section 
and the square of the reflectivity, R2S. 

The total power scattered by the sphere is also of 
interest. Again the result is compared to geometrical 
scattering and, since the total power in a geometrically 
scattered wave is just that arriving at the sphere 
through a cylinder of radius a, the ratio of total scattered 
power to geometrically scattered power may be written, 

where s is a spherical surface of radius r0 surrounding 

the scatterer and ro>>a. From Eq. (10) 

n= I E P,•(u)(-1)m(2m+l)/(l+iC,•)[ • 

X 2 •rro • sinOdO/•ra•k•ro 2, 

making use of the orthogonality of the Legendre func- 
tion Pm(U), over the surface s, 

II= (4/k2a •) 5'. (2m+ 1)/(l+Cm•). 
m•0 

This quantity II is a measure of the amount of power 
the scatterer diverts from the original wave and as such 
is related to the total scattering cross section of the 
sphere (a measure of the energy removed by the 
scatterer); the product IIS will be equal to the total 
scattering cross section of a sphere whose geometric 
cross section is S units. 

In the process of' computing R, the terms 
(-1)m(2m-l-1)/(l+Cm •) occurred, making it a simple 
operation to obtain II. Since the curve for II is much 
smoother than that for R, it serves as a useful check on 
possible computational errors of individual points. 

IV. LIMITING CASES 

A. Rayleigh Scattering 

As the radius of the sphere becomes much less than a 
wave-length, and ka approaches zero, only the first 
terms in the series for the spherical Bessel and Neumann 
function need be considered. The following approxi- 
mations are then valid '5 

j,•(ka)•-•o (ka)m/1. 3 . . . (2mq- 1), 
n,•(ka) >- 1.3... (2m- 1)/(ka) (m+l). 

ka...O 

Using these limiting values in Eq. (11) and neglecting 
higher order terms in ka, the reflectivity coefficient 
becomes, 

Ro= 2(ka)•[ (1--gh•)/(3gh•)-]-cos0(1 - g)/(lq-2g) l , 

which is essentially the expression obtained by Rayleigh 
for this case. 

B. Scattering from a Fixed Rigid Sphere 

It is of interest to obtain as a limiting case the 
scattering for a fixed rigid sphere which has been studied 
in great detail by Stenzel. 6 Allowing g and h to approach 
infinity, the term C• from Eq. (9) has a limiting value, 

C•----->•m(ka)/a•(ka). 

In this case, the reflectivity from Eq. (11) becomes 

Ro-2/kal • P•(u)(-1)•(2mq-1)/ 
m=O 

[l +i•(ka)/a•(ka) • ] , 
• H. Stenzel, E. N. T. 15, 71 (1938). 
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which has the same form as that given by Stenzel.** For 
the total reflectivity, the expression is, 

II=4/(k•'a •) Y'. (2m+ 1)/[l+•,•'(ka)/a,,•'(ka)•. 
•'•-•-0 

V. NUMERICAL EVALUATION 

The numerical evaluation of the preceding equations 
giving the scattering from a fluid sphere whose dimen- 
sions are comparable to a wave-length would not have 
been feasible except for the recent publication of a table 
of spherical Bessel Functions. 7 In spite of the aid of these 
tables considerable computation was still required. Ex- 
clusive of checking, the numerical examination pre- 
sented in the accompanying graphs, consisting of more 
than 600 points, required the full time services of two 
computers for a period of about two months. The possi- 
bility of using one of the large automatic computing 
machines was investigated but it was soon discovered 
that the problem did not lend itself feasibly to auto- 
matic computation. 

2 

g:l.0 2.0 4 .6 

(a) 

1.0 1.4 2D 3.04.0 
k0 

2 

2 2.0 - ß ß .4:6 2.03.04.0 
ko 

(b) 

** The definition of R differs by a factor of 2 from the reflexions 
faktor, •, defined by Stenzel. 

7 Mathematical Table Project, Table of Spherical Bessel Func- 
tions, I-II (Columbia University Press, New York, 1947). 
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(d) 

Fro. 2. Reflectivity, R, for direct backward scattering from fluid 
spheres of dimensions comparable to a wave-length. Figure 2a and 
2b show the reflectivity as a function of acoustic radius ka and 
relative sound velocity, h, for two values of relative density g. 
Figures 2c and 2d give the reflectivity in terms of ka and g for two 
values of h. 

A. Investigation of the Reflectivity 

An insight into the general nature of the scattering 
from a fluid sphere may be gained by investigating first 
the scattering in the Rayleigh region. Figure 1 is a 
graphic presentation of' Rayleigh scattering from fluid 
spheres whose acoustic properties do not differ greatly 
from those of the surrounding medium. It is apparent 
that to this approximation the reflectivity becomes large 
without limit as the relative sound velocity (h) and the 
relative density (g) both become small; of the two 
factors, the dependence on the relative sound velocity h 
is more pronounced. For very small values of g and h, R 
increases as 1/ghh This quantity, 1/gh •' is simply the 
ratio of the compressibility inside the sphere to that of 
the surrounding medium. On the other hand, for g and h 
large (an incompressible fixed particle), the reflectivity 
approaches the finite limit, R-->5(ka)•'/6. In Fig. 1, a 
curve of zero reflection for a small fluid sphere may be 
observed. It is interesting to note that this condition for 
zero reflection is not gh= 1 as in the reflection from a 
plane boundary. The point g-h- 1 is an exception, but 
this is a trivial case. 

As the value of ka approaches 1.0, the simple Rayleigh 
solution no longer holds and more terms of the series 
solution must be considered. In this region, which may 
be termed the critical region, some of the general 
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Fro. 3. Reflectivity R for direct backward scattering as a func- 
tion of acoustic radius ka for two fluid spheres whose relative 
densities are 1.0 and whose relative sound velocities are 1.2 
and 0.8. 

characteristics of the scattering in the Rayleigh region 
are still apparent. Figures 2a and b show the dependence 
of R on the relative sound velocity of the sphere and the 
acoustic radius (ka) while Figs. 2c and d show the 
dependence of R on the relative density (g) and acoustic 
radius (ka). Comparing the figures, the most striking 
difference is the presence of large slopes for the small 
values of h compared with the gradual rate of change of 
R with the relative density g. The difference between the 
dependence of R on h and on g seems to become even 
more pronounced in this region than in the Rayleigh 
region, particularly for the larger values of (ka). Here 

• 

4- 

R 

3- 

2- 

I- / B curve A- g = 2.0, h -- 2.0 
// ••-- •',gid'-s'phe•-e'- 

curve G- g=0.5, h=0.5 

0 I 2 $ 4 5 6 

Fro. 4. Reflectivity R for direct backward scattering as a 
function of acoustic radius ka for various values of relative density 
g and relative velocity h. 

again as for Rayleigh scattering, the solution approaches 
a finite limit as g and h become large, the reflectivity for 
g-h-2.0 being nearly that of the rigid sphere shown 
in Fig. 4. 

The major difference between the Rayleigh region and 
the critical region lies in the dependence on acoustic 
radius (ka). In the critical region the reflectivity no 
longer varies as (ka) •, but becomes a c6mplicated func- 
tion of (ka) having maxima and minima, indicating 
resonance phenomena. These resonances are well defined 
and particularly numerous in the case of h--g=0.5 
which is shown in Fig. 4. The resonances of the rigid 
sphere and the case h--g-2.0 on the other hand are 
moderate fluctuations which gradually decrease in 
amplitude as (ka) increases. 

Computations were carried out in detail to large 
values of ka for an arbitrary case for which the relative 

3 
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Fro. 5. Total scattering II as a function of acoustic radius ka 
for the two spheres considered in Fig. 3 and also for a sphere for 
which g--0.5, h-- 1.0. 

sound velocity h-0.8 and the relative density g-1.0. 
Figure 3 gives the results of these computations and also 
shows a few points which were computed for the case of 
h=1.2, g-1.0. It is interesting to note that the re- 
flectivity for h-- 0.8 continues to rise through the range 
of ka considered while that of h-- 1.2 remains at a com- 

paratively low value. For the large values of ka the 
reflectivity for h=0.8 becomes more than twice as great 
as that for a rigid sphere which approaches 1.0 as in 
Fig. 4. These large values of R bear out the statement 
made earlier that the dependence of R on relative 
velocity h for h< 1 is more pronounced in this region 
than in the Rayleigh region. 

The previous discussion has been concerned with 
scattering directed back toward the source of the inci- 
dent sound. It is also of interest to briefly investigate the 
value of the reflectivity R0, at other angles. Figure 7 
shows a polar plot of R0 for two values of (ka) for each 
of the cases considered in Fig. 3. As would be expected 
these semi-transparent spheres scatter chiefly in the 
forward direction--for the larger spheres this might be 
attributed to the effect of refraction. In general these 
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patterns possess lobes, the number of lobes increasing 
with increasing ka and with decreasing h. The presence 
of a strong lobe for h=0.8 at 0-0 accounts for the large 
values of Ro for this case which occurred in Fig. 3. It 
should be pointed out that the quantity Ro does not give 
directly the diffraction pattern due to a spherical 
obstacle; it represents only the pressure amplitude in 
the spherically scattered wave and must be combined 
with the incident plane wave to give the true diffraction 
pattern. The difference will be important only in the 
forward direction. 

B. Total Scattering 

The total scattering, II, was defined neglecting the 
effect of the incident wave. Actually, energy in the 
scattered wave is cancelled by the incident wave, 
forming the shadow zone. Thus, II if computed for 
geometrical scattering would yield a value of 2.0 rather 
than unity. Figure 5 shows the total scattering, II, for 
the cases considered in Fig. 3. In contrast to the large 

difference in reflectivity, the value of II for both of these 
cases approaches that of geometrical scattering, 2.0. 
These semi-transparent spheres, although transmitting 
a good portion of the incident sound, divert this sound 
from its original direction by the effect of refraction. 
This effect of refraction is emphasized by comparing 
these cases with curve C of Fig. 5 in which the relative 
velocity is unity so that no refraction occurs; here, the 
scattering for large ka can be attributed entirely to 
reflection due to the relative density, g=0.5. In this 
case, II approaches a much lower value as ka increases; 
the majority of the sound being transmitted through the 
sphere with no change in direction. 
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