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It is well known in sonar work that the pulse form of a direct echo from a target bears little relation to
the form of the original signal. This is true even for regularly shaped bodies, such as a sphere. In this paper.
the case of a homogeneous elastic sphere in water is examined theoretically and it is shown in comparison
with experimental results, that the observed effects originate from vibrations induced in the sphere by the
incident sound. Calculated results are presented for a variety of solid materials and it seems that echo forms
could possibly provide information ahout the size and constitution of a sonar target.

1. INTRODUCTION

T 1s well known in sonar work that the pulse form of
the direct echo returned by a stationary insonitied
target in water is usually quite different from that of the
original signal sent out by the transducer. This effect
can be observed even when the target has a regular
shape as in the case of a sphere. In the experiments
which have been made, the incident sound has consisted
of single-frequency constant-amplitude pulses of various
lengths, and the echo pulse generally appears in the
form of multiple echoes of the original pulse; i.e., com-
pared to the original pulse, the echo is generally longer
and subject to amplitude modulation. Presumably
there are also differences in frequency content, but
there does not appear to be anyv quantitative data
available on the subject.

If the body has an irregular shape it is possible Lo
suppose that this effect is due Lo echoes returned by the
individual irregularities. However, in the case of regu-
larly shaped bodies with no abrupt changes in curvature,
such an explanation cannot be used. In this event it
would seem reasonable to suppose that the distortion
in the echo is caused either by diffraction or by vibra-
tions occurring within the solid material of the target or
by both. The frequencies used in sonar usually preclude
the influence of diffraction, so that the observed effects
would appear to be due mainly to vibrations in the
solid. Since the densily of anv solid does not differ from
that of water by much more than a factor of 8, it seems
quite possible for the incident sound to cause vibrations
in the solid material of the target. In air the correspond-
ing density ratio would be of the order of 10! so that a
target would react more like a rigid body, with a con-
sequent diminution in echo distortion.

It is the purpose of this paper to test the validity of
this hypothesis in the case of a homogenecous solid
sphere supporting shear and compressional waves.
Suitable experimental data' have recently Dbecome
available and these are compared with calculated results
based on known formal solutions.* These results were

1 L. D. Hampton and C. M. McKinney, ). Acoust. Suc Am. 33,
664 (1961).

2]. J. Faran, J. Acoust. Soc. Am. 23, 405 (1931).

3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics

(McGraw-Hill Book Company, Inc., New York, 1933), Vol. I, p.
1483.

obtained using a high-speed computer. Previous caleu-
lations have been made for fluid® and rigid® spheres.

2. FORMULATION OF THE PROBLEM

The coordinate system for the sphere is shown in
Fig. 1, where the relationship between the Cartesian and
spherical polar coordinates is

x=rsinf cosp, y=rsindsing, z=rcosd. (1)
The sphere is assumed to consist of solid isotropic
material supporting both compressional and shear
waves having velocities ¢; and ¢, respectively. Qutside
the sphere there is a limitless fluid of density p and
sound velocity ¢ in which there is a continuous train of
waves emanating from a point source situated on the
z axis at r=rg, 0=m. The time dependence of thesc
waves is of the form exp(—iwt) from which the wave-
number £ in the fluid is obtained by means of the
relation

k=uw/c=2m/\,
where \ is the wavelength. Similar relations

,\’1=w'/61 erld kg=w"62
hold for the compressional and shear waves in the solid.
The waves emanating from the point source can be

expressed? as

pi=Paexp(ikD)/D

=Py Y (2nA1) (= )P, (cost) ju (kr)ha(krs)

n 0
O<r<ry), (2)
where
D= (ro*+ 2rry cosf+7)}

and the £, are Legendre polynomials, and the j,, £, arc
spherical Bessel functions.” Plane waves incident on the
sphere are obtained Ly making re go to infinity. Using

4V, C. Andersou, J. Acoust. Sov. Am. 22, 426 (1950).

sH. Stenzel, Lettfuden zur Berechnunyg onm  Schalliorgagen
(Springer-Verlag, Berlin, 1939).

¢ Reference 3, p. 14006.

7 Reference 3, p. 1323 and p, 1373,
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L'iG. 1. Coordinate svstem.
the two limits

exp(ikD) /D — exp (ikry)exp(ikrcos), 1y,
Itn(kro) — 1 exp(ikro)/kr,, 3)

and removing the common factor exp(ikro)/ro gives

pi= Po exp(ikr cosf)
=Po Y (A1), (cosh)jn(kr). (4)
n=0

xS ()

Xijd ) —7u(x)  @He—2)j(x)Fx2j (x)
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The above waves p; incident on the sphere result in

scattered waves in the fluld which will be of the
form
pe=Pq Y el (kr) P, (cosh). (5}
n=0

The coefhicients ¢, have 10 be determined from the
appropriate boundary conditions at the surface of Lhe
sphere and can be shown? to be

cn=k(—=1)"Qun4 1)k, (kry)singexp(—in.), (6
where the angle 7, is given by

tany, = — [ jalx)Fo— jo' () V[ () Fr—u'(x)] (73

with

2024-1) j.(x)

oo 2 2L/ (1=20)]j(x0) — " ()} 20824l —22jd () ]

"-lj"l (-‘:1) - jn (xl‘)

and
x=ka: vi=ka; xo=kaa.

The primes denote the derivative with respect to the
argument. This result was first derived by Faran.?
However, there was an error in his presentation in
which the factor ¢/(1—20) was misplaced. Finally it
should be noted that the expression on the right-hand
side of Eq. (6) is of the form f(x)/[ f(x)+ig(x)], where
J and g are regular on the real axis. Hence there are no
singularities when Lhe argument is real, and the function
can be integrated numerically in a straightforward
manner. It also follows that the solution as presented is
complete for all frequencies, i.e., the boundary condi-
tions are fully satisfied by the shear and compressional
waves already postulated.

Certain limiung cases are of interest. If I, — 0, thc
solution would then apply lo scattering by a rigid
immovable sphere. This would be the case for instance
when the density of the solid was very much greater
than that of the fluid. If F. — = the solution for scat
tering by a frec-surface sphere is obtained.? This cor-
responds to the condition where the normal stress at the
surface of the sphere vanishes, which would result for
cxample when the density of the matenal inside the
sphere was very much less than that of the fluid.

8P, M. Morse, Vibration and Sound (McGraw-Hill Book

Company, Inc., New York, 1948). p. 354.
¢ Reference 3. p. 1483,

(w2 4n—2)j,(xa) Fxl i (x2)

From the above it follows that the echo returned by
the solid sphere to the source is given by

P «
pe= ——0[— 2x0 - (2n+1)simy,,

21’u n=u
Xexp(—inn)h,?(.ro)]exp(—iwt)
= (Pv 2r9) f(x,v0.01,00)exp{—ixr), 9

where xo=kro=1xK, and r=ct/a. \When the source is a
large distance from the sphere.

PQ(L 2 o
P<:‘,;|:" 3 (—1)*(2n+1)siny,,

2rly nen

X exp(— in,)]exp[ik(2r —cty]

= (Pua 2rd?) [ (xvpedexpliv(QR— 71, (10
Removal of a factor exp(ikrd), 7o gives the solution for
incident plane waves. Equations (9) and (10) can then
be used to construct the echo due to a pressure pulse
emanating from the source. Suppose the source emits a
pulse of form P, (¢). This can be expressed in terms of
Fourier components as

I)I)C o
Pan=—— [ gexp[ik(D~cNIk. (11}
QD ',
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F16. 2 (a). The pressure amplitude as a function of frequency oi
the echo returned by rigid and free-surface spheres to a distant

source of continuous waves. (b) The phase of the echo from rigicd
and free surface spheres as a function of frequency.

where D 1s as defined previously. The frequency spec-
trum g(%) is found by taking the Fourier transform of
the given pulse, i.e.,

HICKLING

With the new variable x=/ka, the reflected pulse will
be

P w0
P.(r)=— f 2(x) f (2, 0,21, %0)exp (— dx7)dx, (13)
(21!')5070 —0

and when the point source moves to a large distance
from the sphere,

0

[ eofesmm

Pr)=——
2(27[‘)’?02 J e
Xexp[ix(2R—1)]d=.

(14)

In general the echo given by (14) will differ in form
from that of the incident pulse (11). Only for high fre-
quencies in the special cases of a rigid and a free-surface
sphere will it be the same. It can be shown! that in the
former case f.— exp(—2ix) as & becomes large while
for the free-surface sphere f.-— —exp(—2ix). Hence,
if the frequencies contained in the pulse are in the high
frequency range, Eq. (14} becomes

) x

P’(T)ZNT;AF [_x g(xexp[ix(2R—2—1) dx,

which means that the retlected pulse has the same form
as the emitted pulse, but is returned time 2(ry—2) ‘¢
later. This travel time indicates that the sound is
retlected from a point source refleclor at the point on
the surface of the sphere nearest to the source of incident
sound. A similar result holds for the free-surface sphere
except that the pulse is inverted.

F16. 3. The pressure amplitude as a
function of frequency of the echo
returned by a beryllium sphere to a
distant source of continuous waves.

[

F1G. 4. The pressure amplitude as a
function of frequency of the echo
returned by a fused silica sphere to a
distant source of continuous waves.

g(B)= / PiDexp[— ik(D—e)Jdt.  (12)
@m:) .
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10 Reference 3, p. 1554.
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I'16. 9. The pressure amplitude as a
function of frequency of the echo
returned by a sphere of yellow brass
to a distant source of continuous
waves.
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3. STEADY-STATE SOLUTIONS

The steady-staie solutions given by the functions f
in Egs. (9), (10) were determined for a certain number
of cases, the calculations being performed on a high-
speed computer. The results are shown in Figs. 2-15.

The first results obtained were for the special cases of
the rigid® and free-surface® spheres for a distant point
source of continuous waves. These are shown in Figs.
2(a) and (b). The argument of the function f, is pre-
sented divided by the variable x=kae. The results for
the rigid sphere are in agreement with those of Stenzel.
For low frequencies the function is given by the initial
terms in the series expansion which in the limit as x
tends to zero are

2i[j0’(;t) 3jl’(x)] z°(1 ix’~‘)
= — (1=
cLid(v)  b'(x) 3/

80
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F16. 10. The pressure amplitude as a function of frequency of
the echo returned by an ice sphere to a distant source of continuous
waves

and
i/ ) jo(x)/ Ro(x) ] — 2(1—ix),

for the rigid and free-surface spheres, respectively. For
the rigid sphere this represents the well-known condition
of Rayleigh scattering where the scattered intensity is
proportional to the fourth power of the frequency. For
the free-surface sphere the results are quite different.
Not only does the scattered intensity reach maximum
values at low frequencies, but the scattering is uniform
in all directions. For high frequencies both solutions
tend to the form exp(—2ix), the free-surface solution
converging more rapidly than that of the rigid sphere.
In the previous section, it was shown that this indicates

2.0

LUCITE

201

FREQUENCY, ka

F16. 11. The pressure amplitude as a function of frequency of
the echo returned by a Lucite sphere to a distant source of con-
tinuous waves.



ECHOES FROM SOLID
that at high frequencies the sound is mainly from a
small area on the surface opposite the source and this
would agree with physical intuition. At low frequencics
the echo appears to come from the center of the rigid
sphere and from a half-radius position in the free-
surface sphere. As the frequency increases, the apparent
origin of the echo moves gradually towards the region
on the surface opposite the source. This is shown in
Fig. 2(b), where the phase of f,. divided by a=/ta
represents distance along a radius inside the sphere. In
the case of the rigid sphere these results can be readily
understood by supposing that low-frequency waves are
intercepted by the entire cross section, whereas high-
frequency waves hehave as in geometrical optics and
form a “bright spot” reflector on the surface opposite
the source. With the free-surface sphere the results at
low frequencies are not so readilv explainable except
that as cxpected they differ fram those for the rigid
sphere.

The main body of results were derived for solid
spheres supporting internal shear and compressional
waves. The properties of the materials considered are
given in Table L. The fluid outside the sphere was
assumed to be water of density 1 g/cc and compres-
~ional velocity 1410 m/sec.

As an initial test of the programs, the results ob-
tained by Faran® were recalculated. Since these were for
o=} no error could result from the misplacing of the
factor o/(1—2¢) mentioned in the previous section
since this factor is unity. Good agreement was found.

Some of the results for the materials listed in Table T
are given in detail in Figs. 3-11. As before, these are for
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Fic. 12. Average interval in frequency between minima or
between peaks in the pressure amplitude of the echo for different
tiraterials as a function of the shear velocity of the material
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I16. 13. The pressure amplitude as a function of frequency of
the echo returned by a rigid sphere to a point source of continuous
waves distance Re from the center of the sphere.

a distant source. Generally the range of frequency was
for values of ka up 1o 30, but for Armco iron, ice, and
Lucite the range extended to ke=060, 20, and 10, re-
spectively. In addition to the pressure amplitude the
phase variation is given for Armco iron and aluminum.
In all cases the results begin at low frequencies as though
the solid were a rigid body, changing in general into a
fairly regular scries of peaks and minima as the fre-
quency increases. With a rigid, incompressible material
such as beryllium, the change from the rigid body
solution is not very great. However, as the material
becomes more compressible and pliant, the resonances
tend to become mare pronounced and more closely
spaced. In the case of Lucite and ice the resonances have
become quite sharp and close together. This general
trend was investigated by considering an average fre-
quency interval between minima or between resonance
peaks for each material. The results are shown in Fig. 12
plotied against the shear velocity ¢a. Parameters other
than ¢, were also considered such as the Poisson’s ratio,
but with these the scatter of points was much greater.
It appears thercfore that this feature is most strongly
dependent on the behavior of shear waves in the mate-
rial. The successive peaks and minima which occur in
the direct echo for a continuous frequency were shown
by Faran® to be due to strong lobes of backscattered
radiation forming and then splitting again into sidelobes

TasLe 1.2 Elastic constants.

Compressional  Shear
Density  Poisson's velocity velocity
Material (a/cc) ratio o a(m/sec) c2(m/sec)
Beryllium 1.87 0.05 12890 8830
Iused silica 220 0.17 3968 3764
Heavy silicaic,

Mint glass RIS 0.224 3980 2380
Armco iron 7.90 0.29 3960 3240
Monel metad 5.90 0.327 3330 2720
Aluminam 270 0.353 0420 3040
Yellow brass 3.00 0.374 4700 2110
Lucite 1.13 0.40 2630 1100
Lead 11.34 0.43 1960 690
Icch 0.917 0.336 2743 1433

& American Institule of Physics Handbaok (McGraw-Hill Baok Company,
Inc., New Vark, 1957).
: D. L. Anderson; Trans. Eng. Inst. Canada, 2, 116-122, (1958).
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FiG. 14. The pressure amplitude as a function of frequency of
the echo returned by a free-surface sphere to a point source of
continuous waves distance Ra from the center of the sphere.

scatlering in other directions. It seems therefore that
shear waves play an important role in this process.
Figs. 3-11 are arranged in order of decreasing shear
velocity and a gradual process of transition seems to be
apparent as this parameter is varied. As an independent
parameter, the density of the material does not seem to
have a very pronounced effect except at very low fre-

FREQUENCY SPECTRUM - DOMINANT FREQUENCY ka=2495
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[1G. 15. The pressure amplitude as a function of frequency of
the echo returned by a brass sphere to a point source of contin-
uous waves distance Ra from the center of the sphere.

quencies where the size of the first pressure-amplitude
peak appears to vary in direct relation with it. As the
frequency increases there appears to be no tendency
towards some constant limit as in the cases of the free
surface and rigid spheres. The peaks seem to recur, but
in an increasingly ragged form.

In the phase variations shown in Figs. 6 and 8, jumps
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Inc. 16, Pulse forms of echoes returned by uan Armco iron sphere for dominant frequencies
at ka=21.5 and 23.5 with an incident pulse of 5 cycles.
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in phase occur at frequencies corresponding to minima
in the pressure amplitude, As with the rigid body the
parameter (—arg f./ka) is zero at the low-frequency
limit and varies continuously as the frequency increases.
Unlike the rigid sphere, however, this variation does not
tend towards a limit where the apparent source of the
ccho corresponds to physical reality. The representation
should therefore be regarded only as a convenient way
of presenting the phase as a continuously varving
function.

In order to determine the ellect of distance of the
sound source from the center of the sphere the function
fin Eq. (9) was evaluated for a point source at various
distances from a rigid, a free-surface, and a brass
sphere. The pressure amplitude | f| multiplied by R is
shown in Figs. 13-13, allowing a ready comparison with
the solutions for a distant source ;f.i. In general it
appears that f. represents a satisfactoryv solution when
the sound source i~ situated more than 10 radii from the
center of the sphere.

4. ECHO PULSE FORMS

The most obvious general feature in the steady-state
~olution for ordinary metals is the succession of peaks
and minima in the pressure amplitude and it is of
interest to determine how this affects the pulse form of

ELASTIC SPHERIES

IN WATER 1389
the echo when the steady state solutions are used in the
integral expression (14) for a distance source. The
incident pulse form could be chosen arbitrarily. How-
ever, in practice the incident sound is generally pro-
duced by making a transducer resonate over several
cvcles at a particular frequency. Mathematically the
pressure variation which results at a point in the fluid
can be represented as follows:

(=0, (<—Al
=cxp(—iwd), —A<I<AL (15}
=0, 1> Al

where wg is the angular frequency of the transducer at
resonance, and 2A¢ is the duration of the pulse. The
frequency spectrum g(w) is given by the transform

1
elw)=— [ expli{e—aw ) d!

RY RANY:
= (2 'm)sin[ (w—wi)Ar] (w—w).
In the nondimensionalized <vstem of Eq. (14) this
becomes
glxy=(2 msin[(r—x)Ar] (x—xu), (161

where ye=wnr ‘¢ and iz referred to as the dominanu
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1. 18. Pulse forms of echoes returned by an Armco iron sphere for dominant frequencics

at ke=24.5 and 25.3

frequency. By use of Eq. (16) and the previously
derived values of the function f, it is then possible to
obtain the pulse form of the ccho by numerically
integrating Eq. (14).

The nature of the function g in Eq. (16 is shown in
Figs. 16-18 for different pulse lengths Ar. The height of
the main peak occurring at the dominant frequency is
equal to Ar and its “spread” varies inversely with Ar.
If the function /.’ is momentarily idealized as con-
sisting of a series of similar, equally spaced peaks, it
would appear that the form of the echo depends mainly
on the pulse length and on the location of the dominant
irequency relative to the maxima and minima of the
| f|. Two extreme cases would then arise depending on
whether the dominant frequency coincided with a
maximum or with a minimum of | f.|.

Using the data for Armco iron as shown in Figs. 5 and
6 several echo pulse forms were computed for different
lengths of the incident pulse and for dominant frequen-
cies corresponding to values of x or ka at 24.5 and 25.5.
The former frequency occurs at a peak of the pressure
amplitude and the latter at a minimum. The range of
integration over ka for the longer pulses was from 15 to
35, while for the short 5-cycle pulse, it extended from
10 to 40. The incident pulse did not therefore have a
perfectly rectangular form. However, in comparison to
experimental pulse forms, it could be considered a
satisfactory approximation. In addition the irregulari-
lies introduced by restricting the range of integration

with an incident pulse of 30 cvcles.

facilitated the recognition of certain features of the
incident pulse in the echo. The calculated echoes are
shown in Iigs. 16-18. The time scale for the incident
ptise is chosen with respect to the time of arrival of the
midpoint of the pulse at the center of the sphere,
whereas the scale for the echo is chosen with respect to
the time of arrival back at the source. All pulses arc
shown traveling from right to left. It can be seen from
these figures that the leading edge of the echo precedes
that of the incident pulse by a time difference of 2 in
each case. In addition the leading edge of the echo is of
the same form us the leading edge of the incident pulsc.
These features indicate that the first part of the echo
consists of a rigid bady reflection from the region of the
surface of the sphere adjacent to the sound source. The
subsequent parts of the echo are affected by the vibra-
tions of the sphere. In the case of the 5-cycle pulse, the
first echo is of identical form to the incident pulse.
while the sccond echo is also of the same form, but
inverted. Subsccuent echoes diminish in amplitude ancd
lose the characteristic features of the incident pulsc.
Whether the dominant frequency occurs at a minimum
or a maximum of the function | /.| does not appear to
make much difference to the form of the echo for the
short 5-cycle pulse, but obviously it is important when
the pulse is longer. The reason can be seen from the
frequency spectra shown in Figs. 16-18. A change in ka
of the order of 1 in the spectrum for the short pulse will
not greatly affect the integral (23); however, this is not
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the case for the longer pulses. The ditferences in form of
the echoes shown in Figs. 17, 18 are in fact quite dis-
tinctive. It seems, moreover, that the changes which
occur when the dominant frequency is moved from a
maximum of | f,| to a minimum, are characteristic of
any ordinary metal. Figure 19 shows the echoes from a
sphere of aluminum for the same type of incident pulse,
where these results were obtained experimentally.! With
allowance for a change of scale and such effects as the
response of the transducer, the differences in the echo
resulting from a change in the dominant frequency are
closely related to those shown in Ifigs. 16-18. The
sphere in this case had a diameter of 3 in. and the change
in dominant frequency was from 120 to 123.5 kc/sec.
This is equivalent to a change in %z of about 1, which
uccording to Fig. 12 is the approximate distance be-
tween a peak and a minimum of the function | f,| for
most metals including aluminum. Using the constants
given above for water and aluminum, it is found that
120 ke/sec does not in fact coincide with a peak of the
steady-state reflection function | f,|. However, this is
not surprising, since the values used referred to rolled
aluminum. In addition if the frequency is to be ex-
pressed in terms of 2z with any accuracy, it would be
necessary to know the velocity of sound in water under
the conditions of the experiment, and also the diameter
of the sphere, to within less than 19). Echoes were
calculated for rolled aluminum at values of ka equal to
34.6 and 33.6 corresponding to frequencies of 122.3 and
125.8 ke ‘sec, the values occurring at a maximum and a

50 L SEG

100 1 SEG

2004 SEG

120 KC

123.5KC

F16. 19. LExperimentally determined echo forms for a 3-in.-
diameter aluminum sphere for various incident pulse lengths. The
sweep is 150 psec/cm.
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minimum, respectively, of the reflection function | f,][.
The pulse lengths Ar were the same as those in Figs.
16-18. Similarly, echoes were calculated for a Dbrass
sphere for frequencies at k¢=20.2 and 21.0. These
echoes were found to have the same features. The lead-
ing edge was a rigid body reflection and the same kind
of transition in pulse form occurred when the frequency
and the pulse length were varied. With vellow brass the
secondary echoes in the multiple echo forms had a
bigger amplitude than the primary echo.

5. DISCUSSION

Although this paper represents only a preliminary
study, it may he worthwhile to consider the significance
of the results in relation to the problem of using sonar
echoes to obtain information about a target.

In the first place, it would seem that solid materials
could be divided roughly into two groups, metallic
Hint-like substances and substances which are fairly
pliant. This can be seen from the steadv-state solutions,
where the former is characterized by a succession of
peaks and minima roughly the same distance apart,
while the latter has sharper, stronger peaks more closcly
spaced. Although all the echo forms which were cal-
culated belong only to the first type, it is evident from
the steady-state solutions that there would be a differ-
ence in the general nature of echoes between the two
groups. Hence there would exist the possibility of
distinguishing, for instance, between a bare rock and a
large fish.

Secondly, if the sonar target is known to be a homo-
geneous metallic sphere, then it is possible to determine
its approximate radius by using data of the type shown
in Fig. 19. The features of the transition between a peak
and a minimum of the steady-state reflection function
[ fo| for the long incident pulses is characteristic of
most ordinary metals, as shown in the previous section.
The transition is accomplished during a change in ke
of the order of 1. Hence given an actual change in
frequency in cycles per second, it is then possible to
determine the radius ¢ of the sphere. For example, the
transition in pulse form shown in Fig. 19 is achieved
through a frequency change of 3.5 kc/sec corresponding
to a change in ke of about 1 which therefore makes the
radius of the sphere approximately 2.5 in. In general,
however, such an estimate would not be quite so
accurate. It also seems possible to estimate the size of
the sphere by varyving the pulse length rather than the
frequency, since the individual echoes occurring in the
<hort pulse become contingent when the incident pulse
length is approximately equal to the diameter of the
sphere (see Tig. 19).

Finally, it has been shown!! that there are signilicant
differences in the steady state retlection function f,, for
rigid bodies of different shapes. Although these effects
would be rendered more complicated by allowing for the

U R. Hickling, J. Acoust. Soc. Am. 30, 137-139 (1958).



1592 ROBERT

vibrations of the solid material, it may be possible to
use them to derive some information about the shape of
a sonar targef.
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The scattering strength of the sea surface was measured for a range of wind velocities, grazing angles, and
frequencies, in octave bands in the frequency range from 400 to 6400 cps. An empirical equation was obtained
relating the scattering strength of the sea surface to the above variables, for grazing angles below 40°. At
low grazing angles, scattering of sound from a subsurface layer of isotropic scatterers, probably of biological
origin, frequently masked the reverberation due to scattering from surface roughness. For a given wind
speed, the scattering strengths measured in this study at grazing angles below 20° were appreciably less
than those obtained by other observers at higher frequencies. At higher grazing angles, of the order of 40°,
there was little systematic difference between the measurements made at high and low frequencies.

INTRODUCTION

NUMBER of systematic studies of the back-

scattering of sound from the sea surface have
been carried out at frequencies of tens of kilocvcles per
second,! ? but none has been reported for low frequen-
cies. This report describes an investigation designed to
measure the variations of surface scattering strength
with wind velocity, grazing angle, and frequency, in
octave bands in the frequency range from 400 to 6400
cps. A number of characteristics of the surface scatter-
ing process are discussed and an empirical relationship
obtained relating surface scattering strength to wind
velocity, frequency, and grazing angle. At low grazing
angles, the scattering strengths tended to become inde-
pendent of grazing angle. This arose because the sound,
scattered from the sea surface at the longer ranges, was
masked by the scattering of sound from a laver of
isotropic scatterers, probably of biological origin, in the
volume of the sea.

SEA TRIALS AND ANALYSIS

The sea trial was carried out over a 52-h period in
March 1961 in deep water north of Bermuda (35°N,
65° W). The water was isothermal from the surface to

L R. J. Urick and R. M. Hoover, *‘Backscattering of Sound from
the Sea Surface; Its Measurement, Causes, and Application to
the Prediction of Reverberation Levels,” J. Acoust. Soc. Am.
28, 1038 (1956).

2 G. R. Garrison, S. R. Murphy, and D. S. Potter, “\easure-
ments of the Backscattering of Underwater Sound from the Sea
Surface,” J. Acoust. Soc. Am. 32, 104 (1960).

at least 1200 ft. During the trial, in which reverberation
measurements were made at random times between
9 a.m. and midnight, the winds, measured on the ship’s
anemometer, ranged from zero to 30 knots, and the sea
was estimated to range from zero to state 6.

Measurements of reverberation were made with an
omnidirectional hydrophone connected by an armored
cable to a magnetic tape recorder on the ship. Suspended
below the hydrophone, five 1-1b charges of TNT were
spaced at 5-it intervals. The charges were detonated at
1-min intervals after being lowered to the desired
depth. Experiments were carried out with the hydro-
phone at nominal depths of 300, 600, and 1200 ft.

The recordings were played back through octave
band filters and the output displayed on a logarithmic
Sanborn recorder. The scattering strengths at various
times after the explosion were obtained from these
recordings using the following equation derived in
Appendix I:

10 logS= 20 log”?— 10 log £+ 30 log!— 42, 1)
where 10 logS represents the scattering strength of the
sea surface; 20 logP represents the contribution to the
experimental reverberation levels, in decibels relative
to 1 dyn/cm?, in the band considered due to the shock
pulse at a time ! after the explosion. At frequencies
above 800 cps, the bubble pulse energy made an in-
significant contribution to the measured reverberation
level. In the 100-800 cps band, corrections of from 1
to 3 dB had to be made to allow for the contributions of



