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 Encounter rates and functional 
responses

 

An item that is not encountered cannot be eaten.  Hence, the dynamics of encounter
hold a central position in foraging theory.  They also play a central, if too often only
implicit, role in population and community dynamics by determining which and
how many individuals, populations, and species can interact strongly with each other
or with abiotic variables at a specific location.  Encounter rates of immigrants with
unoccupied space can control recruitment and local population growth rates.
Encounter rates (e.g., of organisms with suspended sediments) further dictate many
of the effects that organisms can have on abiotic variables.  Encounter, however, is
only the first step of interaction.  Rates at which organisms handle suspended
particles and each other, for example, can be set by either encounter rates or any
subsequent steps, such as capture, handling, or digestive processing.  The issue of
rate limitation by either encounter or by subsequent steps is so fundamental to so
many biological and interdisciplinary issues that it deserves its own chapter.  

 

Encounter rates

 

A readily generalized approach (Evans 1989) in the estimation of encounter rates [N
T

 

-1

 

] is to identify the boundary length [L] or area [L

 

2

 

] over which encounter occurs,
an effective density of items that can be encountered [N L

 

-2

 

 or N L

 

-3

 

], and a mean
encounter speed [L T

 

-1

 

], where that speed 

 

v

 

e

 

 

 

is defined as the scalar component of
the relative velocity vector of the body doing the encountering with respect to the
body encountered.  In all the subsequent encounter rate equations in this section,
these three terms are set off by parentheses and kept in this same sequence.  The
equations, therefore, often are not in their most compact forms; my intent instead is
to leave their meanings transparent.  

Real geometries of encounter vary in dimensionality.  For the simplest and most
easily visualized two-dimensional case (Fig. 3.1A), consider a predatory individual
crawling on or swimming over the seabed at a constant speed 

 

v

 

d

 

.  Here and
throughout the book, the subscript 

 

d 

 

denotes the predator and 

 

y

 

 denotes the prey
(because they are the first letters of the two nouns that are not held in common).  Set
the density of sedentary prey at 

 

N

 

y

 

 

 

 and detection distance of the prey by the predator
at 

 

d

 

e

 

.  

 

The moving predator cuts a swath 2

 

d

 

e

 

 wide through the prey.  Then encounter
rate per predator, 

 

E

 

,

 

 

 

is given simply by:

. (3.1)E 2 de( ) Ny( ) vd( )=
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Fig. 3.1  

 

Geometric representations of encounte, where prey are small (filled circles) and
predators are large (filled circles).  

 

A.

 

 A predator moves over a surface with velocity 

 

v

 

d

 

  and
detects prey a distance 

 

d

 

e

 

 to either side of its path.  

 

B.

 

 Prey have a unidirectional, uniform
velocity 

 

v

 

y

 

, and the predator is stationary (e.g. prey in the water column migrating vertically
past a predator), yielding an effective encounter velocity 

 

v

 

e

 

 in the coordinate reference frame
centered on the predator when prey enter its detection radius 

 

d

 

e

 

.  Encounter velocity thus
varies with position of encounter on the detection semicircle (with the angle 

 

θ

 

).  Because all
prey are moving from right to left, no detection occurs to the left of the predator.  

 

C.

 

 Prey have
constant, uniform swimming speed but random direction relative to a fixed predator.
Encounter velocity thus depends upon the angle of incidence 

 

(θ

 

) of the prey with the
predator's detection circle.  In 

 

B 

 

and 

 

C

 

 prey not yet detected are shown in gray.  Each of these
two–dimensional geometries can be generalized to three dimensions by rotating the respective
figures about the axes of symmetry labeled 

 

a

 

.

 

This formula works equally well for a benthic (= bottom–dwelling) predator that sits
still and captures prey brought past by a steady current; 

 

v

 

d

 

 

 

is simply reinterpreted as
the relative speed of the predator and its prey field.  

A slight complication of Eq. 3.1—that gives the identical result—adds more
physical insight into the process of encounter and generalizes far more easily to
more complex (than circular or spherical) encounter geometries and situations in
which both predator and prey move.  Its difference and advantage is that it makes
the geometry of encounter explicit.  Consider 
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 to be a radius scribed about the
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predator to form a semicircle in the direction of its swimming (Fig. 3.1B).  Take the
origin fixed at the center of the radial field defined by the position of the predator,
so that prey move with respect to it.  Prey with no component of motion toward the
origin cannot be encountered, leading to the inutility of one-half of the perimeter of
the circular detection field.  (By the arguments of optimal foraging theory, then, if
detection is expensive energetically this swimming predator species probably will
lose evolutionarily the ability to detect prey rearward of its direction of motion.)
Prey will cross the leading half of the detection circle at a speed proportional to the
cosine of the incidence angle 

 

θ

 

 of Fig. 3.1B.  The areal density term, 

 

N

 

y

 

, thus remains
the same, but both the (mean) speed and perimeter terms of Eq. 3.1 are altered:

. (3.2)

The fraction immediately preceding the integral uses the definition of the mean in
dividing the integral by the length of a semicircle on the unit circle.  The solution of
this equation is the right side of Eq. 3.1, noting that 

 

v

 

d

 

 and 

 

v

 

y

 

 can be interchanged.
Now add the seeming complication of prey individuals moving with a fixed,

uniform speed, but with a random or uniform distribution of directions among
individuals (Fig. 3.1C).  The full detection perimeter (of length 2

 

π

 

d

 

e

 

) is effective in
encounter, but one-half of the prey trajectories in each quadrant are of no use to the
predator because they have no component in the direction of the origin (center of
mass of the predator), effectively reducing the prey density by one-half.  Prey
incident on the encounter perimeter can have trajectories ranging from tangential (

 

θ

 

= ±

 

π

 

/2 to normal (

 

θ

 

 = 0) with respect to the encounter circle.  The rate of encounter
thus becomes:

, (3.3)

which again (after exchanging 

 

v

 

d

 

 

 

and 

 

v

 

y

 

) simplifies to the same solution (Eq. 3.1).
Each of these three equations has a homolog in three dimensions that can be

written and solved by the contrivance of rotating the respective two-dimensional
figures about an  axis of symmetry (indicated as 

 

a 

 

in each part of Fig. 3.1).  The areal
density of prey in two dimensions becomes a volumetric density [N L

 

-3

 

].  One can
conceive the detection sphere as sweeping out a cylinder of the same radius as the
sphere:
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. (3.4)

The semicircle of Fig. 3.1B becomes a hemisphere (composed in the unit sphere of
circles of radius sin 

 

θ

 

) upon rotation, and to calculate the mean encounter speed thus
requires division by the area of a unit hemisphere (2

 

π

 

):

. (3.5)

Similarly, if prey have randomly or uniformly distributed swimming directions but
uniform speeds, the solution becomes:

. (3.6)

Again Eq. 3.5 and 3.6 reduce to Eq. 3.4 when 

 

v

 

d

 

 of Eq. 3.4 is exchanged for 

 

v

 

y

 

 

 

in the
other two.  

Frequently, both predators and prey move.  If their speeds are fixed at constant,
predator– and prey–specific values, but direction of swimming varies evenly or
randomly, then the law of cosines in two dimensions and analogous rotational
manipulation can be used to solve for the mean speed of encounter (Fig. 3.2,
adopting for derivational convenience the convention that 

 

v

 

f

 

 refers to the faster and

 

v

 

s

 

 to the slower of the two species):

. (3.7)

Gerritsen and Strickler (1977) came to an identical solution in a different manner.
For this case, then:

. (3.8)
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Fig. 3.2   Encounter geometries for predator and prey when each swims with a constant speed
but direction of swimming is evenly or randomly distributed (all angles θ being equally likely)
among individuals.  Encounter speed ve thus depends on the scalar components of the velocity
vectors of the faster (vf) and slower (vs) swimming of the two species and on the encounter
angle (θ).  One-half of the prey individuals (receding), however, have no component of
velocity toward the predator.  Directions of the encounter velocity vectors ve  are selected
arbitrarily.  The full suite of equiprobable three-dimensional possibilities for ve is generated
by letting θ range from -π/2 to π/2 while rotating about the axis labeled a to produce a sphere
of end points of ve  centered on the intersection of vf with vs.  

Evans (1989) pointed out that this mean is very near (within 6%) the solution for ve

when θ = π/2 (i.e., to ) the scalar sum of the vectors at the mean angle of

incidence  rather  than  the  mean  scalar  sum  of  vectors.   Given  the  oversimplified
geometry (e.g., the perfectly spherical detection perimeter) it hardly seems worth
carrying the added complexity of Eq. 3.8.  Evans (1989) also pointed out that the
simpler solution is more accurate than Eq. 3.8 for  when predator and prey speeds
show well-behaved stochastic variation about their respective mean values.  If
turbulent velocity fluctuations are added to the picture, and one assumes that
turbulence-induced motions of prey and predator are  independent  with  mean  speed

vt, then  becomes  (Evans 1989).  

In these formulations (Eqs. 3.1–3.6) there is only one explicit spatial scale, de.
An implicit spatial scale, however, is at least as important if these equations are to
be approximately correct.  Namely, all these velocities must hold steady over the
mean separation distance between points on the encounter boundary and approach-
ing prey (and hence over the time to travel this distance).  Assuming that prey are
substantially more abundant than predators and that the detection distance de is
much smaller than the average distance between prey, this mean separation distance

is of order    (but see Chapter 10 for a more accurate and less restrictive

Poisson approximation of separation distance and see Chapter 14 for relaxation of
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other assumptions of particle-particle encounter).  A further stricture for this
parameterization of the effects of turbulence, then, is that velocity fluctuations at

separation distances of  be strictly independent (move predator and prey

independently).  For several reasons, this formulation of encounter speed must be
considered an upper bound.  It is clearly in the prey's best interests to reduce the
encounter speed (yet the above parameterization takes no account of the prey's
sensory or escape responses).  As separation distances of interest fall below the
smallest scales of turbulence, fluid-imposed relative velocity plummets to levels
produced by laminar shear.  Eqs. 3.3 and 3.6 further use the oversimplification of
perfect isotropy both of swimming and of turbulent motion.

At the opposite extreme of starting assumptions for calculating encounter rates
is that prey or predator motions are entirely diffusive over their characteristic
separation distance.  Movement may be by turbulent velocity fluctuations in the
fluid, by active swimming with frequent directional changes produced either
spontaneously or by collisions with other individuals, by Brownian motion in the
case of small prey individuals, or by molecular diffusion in the case of dissolved
“prey” molecules.  Assuming that in any of these cases prey movement relative to
the origin defined by a predator can be characterized by a diffusion coefficient, Dy
[L2 T-1], then the problem becomes one of diffusion in spherical coordinates:

, (3.9)

where r is radial distance from the predator.

Assume that prey density initially (t = 0) is uniform at Ny0 for all r > de, that the
predator consumes all prey entering the sphere enclosed by de (Ny  = 0 for t  > 0 and
r  ≤ de), and that the predator is unable to affect the far-field concentration of prey
(Ny  = Ny0 for t  ≥ 0 and r  → ∞).  Solving Eq. 3.9 with these boundary conditions
yields (Friedlander 1977):

, (3.10)

where erf x is defined as .  From Fick's first law the flux, J, per unit of

area of the sphere is

.
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Combining Eqs. 3.10 and 3.11 gives

. (3.12)

For   the term in parentheses can be dropped.  Multiplying by the surface area

of a sphere to get the total encounter rate and inserting parentheses to separate the
terms in the same manner as in Eqs. 3.1–3.6 gives

. (3.13)

Although the last term is the diffusive transfer velocity (inward radial component of
instantaneous speed of prey crossing the detection threshold), it should be
remembered that this velocity will not hold as a mean over the separation distance.
The contrast can be emphasized by calculating under what conditions an encounter
rate due to steady prey swimming (vy) equals the encounter rate due to diffusive
motion over the characteristic separation distance:  This equivalence requires (from
Eqs. 3.6 and 3.13) that

.  (3.14)

It is possible for both prey and predators to move or be moved diffusively.  In
effect the origin of the frame of reference (in my derivation centered on the predator)
also diffuses.  If prey and predators do so independently, then the effective diffusion
coefficient, De, for predator and prey encounter is simply Dy + Dd (Friedlander
1977).  Thus if predator and prey are moved independently by turbulence or are of
the same size and moved by Brownian diffusion, the effective diffusion coefficient
for encounter is twice that measured for the diffusion of one component.  All of the
above encounter equations take the perspective of a single predator.  If one wishes
to calculate total predator–prey encounter rate rather than encounter rate per
predator, then both sides of the encounter equations should be multiplied by Nd.  

Functional responses

A predator may not capture, handle or digest prey at the rate of encounter.  The
kinetics of postencounter steps of prey processing by predators, however, are not as
easy to generalize because there are many such steps.  As a crude dichotomy,
biological responses often are classified as due either to changes in individual
behavior or to changes in numbers of individuals.  The former are called functional
responses, wheras the latter are called population responses.  It is safe to say that
some high encounter rate  with  prey  will  saturate  any  predator's  ability  to  process
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Fig. 3.3  Types of functional responses.  Rate of ingestion is taken as the example, and
concentration of prey is used as a surrogate for encounter rate.  The simplest response (type
I) is rectilinear and indicates an abrupt shift from overall rate limitation by encounter rate to
limitation by some subsequent step.  The hyperbolic curve (type II) shows very gradual
saturation of post-encounter processing.  A sigmoidal response (type III) suggests some
inefficiency or behavioral change that reduces encounter or its effectiveness at low
concentrations and yet saturates rapidly at high concentrations.  Type I–III curves are roughly
linear in concentration, respectively, right up to (2Km, Vmax), only well below Km, and only
near Km.  For purposes of illustration, all three curves are forced through the point (Km, Vmax/
2), where Vmax is the maximal ingestion rate (reached asymptotically in curves of Type II and
III).  For further explanation of this choice of notation, see text.

them, and then density of prey within the encounter boundary will rise. This increase
has no affect on encounter rate with later-arriving individuals in the formulations
that contain only steady motion (Eq. 3.1–3.6), but it decrements encounter rate in the
diffusive formulation (cf. boundary conditions) in proportion to the relative increase
in prey density within the encounter sphere.  

Then, at some encounter rate, postencounter processing becomes rate limiting.
Ingestion rate is the postencounter functional response most often measured and is
often plotted as a function of prey abundance.  Prey abundance, in turn, is a surrogate
for encounter rate.  One of three patterns (Fig. 3.3) usually is found, and they often
are denoted by Roman numerals as type I, II, and III, respectively.  In the simplest
rectilinear case, ingestion rate increases linearly with abundance until the saturation
level is reached abruptly.  The hyperbolic case results whenever some post-
encounter step required before or for ingestion takes a fixed amount of time before
the mechanism can be used to handle another item; it fits a wide array of ingestive
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activities from enzymatic uptake of nutrients by plant cells, to ingestion of particles
by protozoans, to capture of prey by much larger animals (Real 1977).  

The most complex, sigmoidal curve has two frequent and related
interpretations.  One is that predators require some learning experience to handle
prey effectively (and that they quickly forget what they learned when prey densities
again drop) or that the handling mechanism for some mechanical reason becomes
more efficient per prey item with increasing numbers of prey items handled at the
same time (before it again becomes less efficient near saturation).  The other
interpretation is that at the lowest prey abundances the benefits do not repay the costs
of foraging, but that the predator continues occasionally to sample the food
environment at very low densities of prey to test whether conditions have changed.
Recently, Mangel and Clark (1988) have suggested that a sigmoidal response will
be typical of visual predators (those that use sight to locate their prey).  At the lowest
densities on average at any one time no prey can be seen.  Therefore, ingestion rates
are very low.  Intermediate densities entail prey frequently sighted or continuously
in view, and at the highest densities of prey the predator's processing (e.g., digestive)
capabilities are saturated.  Whatever the correct mechanistic interpretation for the
functional response under discussion, this sigmoidal pattern of processing clearly is
the least prone of the three to produce prey extinction since predation on a given prey
type begins to drop so strongly when its abundance falls to low levels.  

There is no standard notation for the parameters on the ordinates and abscissas
of functional–response plots.  To limit the diversity of notation introduced, to
anticipate the section on osmotrophy (see Chapter 4), and to follow Real (1977) for
Fig. 3.3 I have adopted symbols normally used in enzyme-substrate research.  To
emphasize shape differences and varying degrees of linearity, the functions chosen
for curves I, II, and III are, respectively:

V = Vmax  for C ≥ 2Km,  for C < 2Km, (3.15)

, and (3.16)

. (3.17)

Although the functional forms (if not the symbols) used for responses of type I and
II are reasonably invariant, a great many alternative functional forms are roughly
sigmoidal and occasionally are used to model responses of type III.

In practice, the scatter and dynamic range limitations of data frequently make it
impossible to distinguish which of these alternative patterns holds.  Often the
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patterns have been considered characteristic of particular predators, but recent
evidence shows that the same predator can change between type I and type II as a
function of prey size (Rothhaupt 1990).  Thus, the functional response should be
considered characteristic of the predator–prey pair.  A further difficulty with
generalization and quantification and an important reason for the observed scatter is
apparent time dependence of ingestion rate—due to recent feeding history.  General
application of the patterns presupposes rapid approach to a steady state defined by
them.  Predators cease feeding for various reasons and periods, however, and it is
clearly possible to ingest material at more rapid rates for longer periods when the gut
has been emptied recently.  Thus one can expect more rapid feeding at a given food
concentration when that concentration is approached from below rather than from
above.  Other generalizations about unsteady behavior are as yet difficult to draw.
Hence most models of predator–prey interaction continue to use formulae that
represent curves of type I, II or III without hysteresis, implicitly assuming steady
state.  Mangel and Clark’s (1988) methods would appear to provide ideal means to
retain mechanistic description of the feeding process and explore predator response
to temporally and spatially varying prey abundances.

Further readings

Rothschild, B.J. 1991. Food-signal theory: population regulation and the functional
response. Journal of Plankton Research 13: 1123–1135.   One approach to the
relation between unsteady or stochastically varying encounter rates with prey and
functional responses of predators.

Rothschild, B.J., and T.R. Osborn. 1988. Small-scale turbulence and plankton
contact rates. Journal of Plankton Research 10: 465–474.  Further discuss the
interactions of turbulence with predator and prey swimming to effect encounter
rates.
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