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Data on the shapes of 218 genera of free-floating or free-swimming bacteria reveal groupings around
spherical shapes and around rod-like shapes of axial ratio about 3. Motile genera are less likely to be spherical
and have larger axial ratios than nonmotile genera. The effects of shape on seven possible components of
biological fitness were determined, and actual fitness landscapes in phenotype space are presented. Ellipsoidal
shapes were used as models, since their hydrodynamic drag coefficients can be rigorously calculated in the
world of low Reynolds number, where bacteria live. Comparing various shapes of the same volume, and
assuming that departures from spherical have a cost that varies with the minimum radius of curvature, led to
the following conclusions. Spherical shapes have the largest random dispersal by Brownian motion. Increased
surface area occurs in oblate ellipsoids (disk-like), which rarely occur. Elongation into prolate ellipsoids
(rod-like) reduces sinking speed, and this may explain why some nonmotile genera are rod-like. Elongation
also favors swimming efficiency (to a limited extent) and the ability to detect stimulus gradients by any of three
mechanisms. By far the largest effect (several hundred-fold) is on temporal detection of stimulus gradients, and
this explains why rod-like shapes and this mechanism of chemotaxis are common.

The first bacteria to be observed were classified by their
shapes (23), and in the three centuries since, shape has con-
tinued to be used for classification (e.g., coccus or bacillus).
However, only modest efforts have been devoted to the mech-
anistic question of how the shapes of single-cell organisms are
determined (3, 9), and the functional question of why bacteria
have particular shapes has been even more neglected. The
latter question is addressed here.

It seems reasonable to assume that early organisms were
spherical as a result of surface tension (9), but the advent of
cell walls opened up the option of different shapes. I consider
an organism that is initially spherical and ask how its shape
might evolve, if certain properties were important components
of its fitness.

Shape can potentially affect many of the processes necessary
for cell survival, growth, and reproduction. Some of these, like
the transport of metabolites or chromosome segregation, are
internal to the cell; the impact of shape on such processes
depends on the details of the mechanisms and will not be
considered here. Rather, my focus is on fundamental interac-
tions between the organism and its environment that are in-
dependent of specific mechanisms employed by the organism.

Although the concept of the fitness landscape has been
much discussed since its introduction by Wright (25) in 1932,
examples of fitness landscapes in nature have been hard to
come by. However, for small microbes that live free of any but
hydrodynamic constraint on movement, it is possible to rigor-
ously calculate portions of actual fitness landscapes in pheno-
type coordinates and gain insight into why bacteria have cer-
tain shapes and not others. In particular, I asked why rod-like
shapes are common but disk-like shapes are not found.

MATERIALS AND METHODS
Data. I checked each genus of bacteria described in all four volumes of Bergey’s

Manual of Systematic Bacteriology (10). The prime objective was to obtain data

for an unbiased sample of actual microbes, and objective criteria were estab-
lished for the selection of data. Only one set of size range and motility status was
recorded for each genus in the hope of reducing the overrepresentation of
human pathogens that would have occurred if each described species contributed
a data set.

Only genera that appeared to consist of unattached, free-swimming, or free-
floating types were included; genera described as having mycelial growth forms,
gliding motility, or magnetic particles or engaging in intracellular parasitism were
excluded. In most cases, a numerical range for both width and length was given,
and these four numbers were entered into a database. The motility status for
each genus was also recorded in a parameter distinguishing between (i) nearly all
strains (or cells) motile, (ii) nearly all strains (or cells) nonmotile, and (iii) mixed
(some strains [or cells] motile and others not).

If a numerical size range and motility status were not described for the genus,
the type species for the genus was examined; if its description was deficient, the
first species description in the genus that contained the required information was
used. When a genus was described in more than one location, only the first
description was used.

All descriptions indicated that the cells were either spherical (diameter 5
length) or elongated along one dimension into a cylindrical or rod shape (diam-
eter , length). Consequently, I characterized all of the different shapes by their
axial ratio, a (5length/diameter). (The axial ratio appears to be characteristic of
a given strain; when bacteria grow under different conditions, cell volume in-
creases with growth rate, but the axial ratio remains constant (3 [p.217–218]).
Where a range of diameters (D) or length (L) was given, the geometric mean,
which equals the arithmetic mean on a log scale, was used. Thus, log a 5
[log(Lmin) 1 log(Lmax) 2 log(Dmin) 2 log(Dmax)]/2.

Calculations. The shapes considered were all ellipsoids, defined by semiaxes a,
b, and c. Included among them is the special case of the sphere, where a 5 b 5
c 5 r, the radius of the sphere. In comparisons of different shapes, the volume
was kept constant. Since the volume of an ellipsoid is 4pabc/3 and a sphere is
4pr3/3, the two volumes are equal if r 5 (abc)1/3.

In general, the surface area of ellipsoids can be calculated only by evaluation
of elliptic integrals. This was done by using Mathematica to evaluate equation 3
in reference 15.

The hydrodynamic resistance of rigid ellipsoids can be worked out exactly in
the limit of low Reynolds number (references in reference 5), which easily
applies to bacteria (1 [p. 76, 6, 18), and I assume that the organisms of interest
can be approximated by such ellipsoids. Unfortunately, the general formulas
involve the values of definite integrals that have no solution in common functions
except in special cases. General solutions are as follows:

S~a,b,c! ; E
0

`

@(a2 1 x!~b2 1 x!~c2 1 x!]21/2dx (1)

(16 [equation 3]), and for convenience, the following variations:
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where x is a dummy variable, i refers to any of the three axes, ra 5 a, rb 5 b, and
rc 5 c. A useful relation is Ga 1 Gb 1 Gc 5 S (16 [equation 4]). It is also useful
to define

Hi ;
Gj 1 Gk

rj
2 1 rk

2 (3)

where i, j, and k refer to any permutation of axes a, b, and c.
Motility is most effective when an organism swims along one of its axes of

symmetry, which I call axis a. (If the organism is not motile, it doesn’t matter how
axes are assigned.) I am primarily interested in two types of motion of the
organism: translation parallel to the a axis, and rotation of this axis about any
perpendicular axis (some combination of axes b and c.)

For translation parallel to axis i, the frictional drag coefficient is fi(a, b, c) 5
16ph/(S 1 Gi), which is equivalent to the formulas of Lamb (12 [p. 605, equation
15]) and Perrin (16 [equation 5]). A sphere has a translational frictional coeffi-
cient of fS(r) 5 6phr (16 [equation 11]). Taking the ratio, with r 5 (abc)1/3

fi9 ;
fi~a,b,c!

fS~r!
5 ~8/3!~abc!21/3~S 1 Gi!

21 (4)

At low Reynolds numbers, speed (v) is equal to the force (F) applied to a particle
divided by the appropriate frictional drag coefficient, v 5 F/f. Since power (P) is
work per unit time and work is force times distance, P 5 Fv. Combining these
relations,

v2 5 P/f (5)

and speed is inversely proportional to the square root of the frictional drag
coefficient.

For diffusion in any one direction or rotation about any one axis, the diffusion
coefficient is Di 5 kT/fi, where k is Boltzmann’s constant (1.38 3 10216 erg K21)
and T is absolute temperature (20°C 5 293 K). For diffusion averaged over all
directions, the effective frictional coefficient is the harmonic mean of the coef-
ficients for each of the three orthogonal axes (17 [equation 96), and D 5 (kT/3)
(fa

21 1 fb
21 1 fc

21). Taking the ratio of the diffusion coefficient of an ellipsoid
(D) to that of an equal-volume sphere (Ds),

D9 ;
D
DS

5
1
3 S 1

fa9
1

1
fb9

1
1
fc9
D 5 ~1/2!~abc!1/3S (6)

Brownian motion also causes rotation of particles, and the rotation of any rigid
shape can be described in terms of a time constant (t) during which time the
average of the squares of the angles rotated increases to one radian (1 [p. 82])
and the average of the cosines of the angles of orientation decays from 1 to e21

(20 [p. 437]). For rotation about a single axis or rotation of a sphere, t 5 fR / 2kT,
where fR is the frictional drag coefficient for rotation (20 [equation 25-12]). For
a sphere, fRS 5 8phr3, and the rotational time constant is tS 5 4phr3/kT (16
[equation 94]).

For ellipsoids, there are generally distinct frictional constants for rotation
about each of the three axes (fRa, fRb, and fRc), and their values are fRi 5 16 ph/3
Hi (16 [equation 6]). For rotation about more than one axis, the effective fric-
tional coefficient is the harmonic mean of the coefficients for each axis involved.
Thus, for rotation of one axis (i) about any perpendicular axis, the time constant
for rotation of the axis is ti 5 (kT)21 (fRj

21 1 fRk
21)21 (16 [equations 90 and 91).

Using the general formulas (16 [equation 6]) and dividing by the time constant
for rotation of an equal-volume sphere,

ti9 ;
ti

tS
5

4
3 abc

~Hj 1 Hk!
21 (7)

where the subscripts i, j, and k refer to any permutation of axes a, b, and c.
Plots. To plot parameter values for all possible ellipsoids without favoring a

particular axis, I take advantage of the trigonometric identity sin(u) 1 sin(u 1
2p/3) 1 sin(u 1 4p/3) 5 0 and choose the semiaxes from

log a 5 d sin (u) (8)

log b 5 d sin (u12p/3)

log c 5 d sin (u14p/3)

where d is the degree of distortion from sphericity (0 to 1) and u varies the
proportion of the three axes. The identity ensures that abc 5 1 and the volume
of all the ellipsoids is 4p/3, for any value of d or u.

The results are presented in polar plots, where the plot radius represents the
minimum radius of curvature of the ellipsoid. The minimum radius of curvature
(R) for an ellipsoid is the minimum of ri

2/rj when ri and rj take on all six

combinations of a, b, and c (13 [p. 78]). R9 is the minimum radius of curvature
relative to the radius of the equal-volume sphere (R9 5 R/r). In the plots
presented, the horizontal and vertical positions are defined by x 5 2 log(R9)
sin(u) and y 5 2 log(R9) cos(u), respectively. The maximum radius in the plots
corresponds to a minimum radius of curvature of 1% of the equal-volume sphere
(R9 5 0.01), which occurs in prolate ellipsoids of revolution with semiaxes (10,
1021/2, 1021/2) and in oblate ellipsoids of revolution with semiaxes (1024/5, 102/5,
102/5).

The equations were evaluated with Mathematica 2.0, the contours were plot-
ted with DeltaGraph Professional 2.0, and the plots were finished with Adobe
Illustrator 5.5 and 6, all on Apple Macintosh computers.

RESULTS

Observed shapes. The selection of data on bacterial shapes
and motility produced usable data for 218 genera, of which 97
were characterized as motile, 94 were characterized as nonmo-
tile, and 27 were characterized as a mixture of motile and
nonmotile types. All descriptions indicated that the cells were
either spherical or elongated along one dimension into a cy-
lindrical or rod-like shape. Figure 1A shows that there are two
clusters of axial ratios. Twenty-one percent of the genera are
described as spherical (log a 5 0), and another peak occurs
near an axial ratio of 3 (log a 5 0.48).

Since some of the possible adaptations apply only to motile
bacteria, the data were separated according to motility. Non-
parametric statistical testing indicated that the probability that

FIG. 1. Distribution of axial ratios. (A) Distribution of axial ratios for 218
genera of unconstrained bacteria. The median axial ratio is 2.82. (B) Cumulative
distributions for the 97 motile and 94 nonmotile genera. On the cumulative
probability scale (19 [p. 118]), a normal distribution falls on a straight line.
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the motile and nonmotile groups are drawn from the same
distribution is only 0.0012 by the Mann-Whitney U test and
0.0001 by the Kolmogorov-Smirnov test. Cumulative distribu-
tions for log a of motile and nonmotile genera are presented
separately in Fig. 1B. A larger fraction of the nonmotile genera
are spherical (34% versus 10%). The nonmotile genera that
are not spherical have nearly a normal distribution of log a, but
among the motile genera, low axial ratios are less common and
large axial ratios are more common than expected for a normal
distribution. Clearly, motile genera tend to be more elongated
than nonmotile genera. Why?

The ellipsoidal model. To assess the effects of changes in
shape systematically, I model the organisms as rigid ellipsoids
in which all three axes are free to change size independently of
one another. This model has the advantages that it does not
bias the study toward certain shapes and rigorous formulas are
available for ellipsoids but not for some properties of other
shapes. Although bacteria rarely have ellipsoidal shapes, the
model can approximate most simple shapes and be used to
rigorously explore the effects of shape on an organism. Simi-
larly, chemists use the ellipsoidal model to study the shapes of
molecules (20, 22), although molecules are even less like el-
lipsoids than are bacteria.

In general, ellipsoids are characterized by three perpendic-
ular semiaxes (a, b, and c), which are analogous to radii of a
sphere. Prolate ellipsoids of revolution (e.g., a . b 5 c) are
representative of cylindrical shapes; oblate ellipsoids of revo-
lution (e.g., a , b 5 c) represent disk-like shapes. An ellipsoid
with all three axes equal (a 5 b 5 c) is a sphere.

To separate the effects of shape from those of size, different
ellipsoids with the same volume are compared, and the prop-
erties of the ellipsoids are presented relative to the equal-
volume sphere. Consequently, all of the properties equal unity
for the spherical shape, and it is immediately evident how the
property differs from that of the spherical shape.

The results are presented in polar plots, where the propor-
tion of the three ellipsoid axes varies with direction from the
center of the plot (azimuth) through all possible combinations,
and the plot radius is a measure of the degree of distortion
from sphericity. For this measure, I chose the minimum radius
of curvature of the ellipsoid, which is thought to provide a good
indication of the difficulty an organism faces in producing the
shape. The range of axial ratios (1 to 32) included in the plots
includes all but 4 (motile) genera of the 218 in Fig. 1.

Surface area. Organisms must take up nutrients and dispose
of waste products across their surface, and bacteria might find
it advantageous to change shape so as to increase surface area.
Figure 2 (Surface area) shows a contour plot of how surface
area changes with shape for equal-volume ellipsoids. The
sphere has the minimum surface area, as is well known. In
addition, the figure reveals that oblate (disk-shaped) ellipsoids
have a larger surface for a given minimum radius of curvature.

Thus, an organism experiencing enhanced fitness from in-
creased surface area is expected to evolve by spreading in two
axes forming a disk-like shape, other things being equal.
Within the limit of radius of curvature equal to 1% of the
equal-volume sphere, the optimal shape has semiaxes (0.158,
2.51, 2.51) and an axial ratio of 0.063, and the surface is in-
creased to 3.198 times that of the equal-volume sphere. Prolate
ellipsoids have a maximal surface area 2.48 times that of the
sphere.

Hydrodynamic constraints. The resistance to movement of a
rigid particle in a fluid is summarized by the frictional drag
coefficient, f. This coefficient generally varies for movement
along different axes or rotation about different axes, and coef-
ficients for different types of motion are distinguished by sub-
scripts to f. At low Reynolds numbers, which easily applies to
bacteria (6), speed varies in proportion to the square root of f
(equation 5).

Approximate formulas for the frictional drag coefficients are
commonly available for prolate ellipsoids of revolution with
the major axis more than five times the two equal minor axes
(1 [p. 57, 84], 20 [p. 436], 22 [p. 95]). However, exact equations
for any ellipsoidal shape are available (16) and used here,
although they require evaluation of definite integrals. The ratio
of the frictional coefficient for any shape to that of the equal-
volume sphere has been called the coefficient of form resis-
tance (11).

Random dispersal. All organisms face the problem of dis-
persing progeny away from one another to avoid competition
and to new environments to avoid extinction when the local
environment changes. Bacteria are small enough that Brown-
ian motion may play an important role in dispersal. The rate of
dispersal is then measured by a diffusion coefficient, and I
asked whether an organism can increase its diffusion coefficient
by changing its shape.

From knowledge of the frictional drag coefficients for the
three orthogonal axes, it is possible to rigorously calculate the
diffusion coefficient for any ellipsoidal particle (equation 6).
The value of the diffusion coefficient relative to that of the
equal-volume sphere is plotted in Fig. 2 (Diffusion).

All values are less than 1, except for the central point rep-
resenting a sphere. Thus, a spherical shape has the largest
diffusion coefficient for any given volume. If an organism were
originally spherical because of surface tension, selection for
more rapid dispersal would not lead to changes in its shape.

Reduction of sinking. Most organisms are denser than water,
and those that do not attach to a substrate face the potential
problem that they will sink away from resources such as oxygen
or sunlight. Shape influences the rate of sinking, and some
bacteria may adopt shapes that minimize sinking rate.

The theory for sinking rate has been well documented and
exploited to estimate the size and shape of macromolecules by
measuring sedimentation rates in centrifuges (1 [p. 59], 20 [p.

FIG. 2. Contour plots of possible fitness components for equal-volume ellipsoids of all shapes. The values of the contours are relative to an equal-volume sphere.
The sphere (a 5 b 5 c) is at the center, and the distance from the center is proportional to the negative log of the minimum radius of curvature occurring in each
ellipsoid compared to the radius of the equal-volume sphere. At the outer edge of the plots, ellipsoids have a minimum radius of curvature of 1% that of the sphere.
The three axes of the plots encompass the shapes in which two axes of the ellipsoid are identical (ellipsoids of revolution). At one end of each axis, prolate ellipsoids,
with semiaxes equal to some permutation of (10, 1021/2, 1021/2), resemble rods, with axial ratios of 32; at the opposite end, oblate ellipsoids with semiaxes (1024/5, 102/5,
102/5) resemble disks with axial ratios of 0.063. (Left) in Surface area, the contour values are the surface area of equal-volume ellipsoids; in Diffusion, the contours are
the diffusion coefficients of equal-volume ellipsoids (equation 6); in Drag, the contour values are the frictional drag coefficient (fa9) for translation along axis a (equation
4). For the latter, the values within the innermost contour are less than 1, indicating that these shapes have a lower drag than an equal-volume sphere. (Right) Contour
values are measures of the sensitivity a free-swimming organism can have in detecting the direction of a stimulus gradient by one of three mechanisms. In all three plots,
the contour value is the log of a parameter proportional to the signal-to-noise ratio and sensitive to the shape of the organism. In Temporal, the parameter is (ta93/2

fa921/2), which is proportional to the maximum signal-to-noise ratio for organisms employing temporal mechanisms and swimming in the direction of axis a. In Fore/aft,
the parameter is (a ta91/2), which is proportional to the maximum signal-to-noise ratio for organisms employing fore-and-aft comparisons. In Lateral, the parameter
is (bt91/2), which is proportional to the signal-to-noise ratio for organisms employing lateral comparisons, and t9 is the smaller of ta9 or tb9.
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365] 22 [p. 116]). Assuming that the volume and total mass of
an organism are constant and that the organism is randomly
oriented, its sedimentation velocity is proportional to its diffu-
sion coefficient (1 [p. 59], 20 [p. 380]). Thus, sedimentation rate
is maximum for a spherical shape and can be reduced by
changing to any other equal-volume shape. Examination of
Fig. 2 (Diffusion) indicates that the minimum sinking rate with
minimum distortion of shape is obtained by elongating along
one axis into a prolate ellipsoid or toward a rod-like shape.
Within the curvature limit, the sinking rate would be reduced
to 0.415 that of the sphere. The smallest value for oblate
ellipsoids is 0.601.

Swimming efficiency. Many bacteria expend precious energy
on swimming, and shape influences the efficiency of locomo-
tion. Bacteria may adopt a shape that allows faster swimming
with less energy, because of streamlining. If we assume that a
particular organism requires a certain volume and devotes a
certain amount of power to locomotion, we can obtain specific
predictions about the speeds it can obtain if it adopts different
shapes. In particular, what shape minimizes the frictional drag
coefficient and thus maximizes the efficiency obtained?

Figure 2 (Drag) demonstrates that an organism benefiting
from increased swimming efficiency should evolve from the
spherical shape at the center to the minimum drag shape above
the center. Although it is often stated that the sphere is the
shape with minimum drag (24 [p. 247]) (e.g., see reference 22
[p. 95]), in fact the minimum drag occurs for a prolate ellipsoid
of revolution with semiaxes in the ratio (1.562, 0.800, 0.800).
This ellipsoid has an axial ratio of 1.952, and its drag is 0.9555
that of an equal-volume sphere. For more elongated shapes,
the frictional coefficient increases because the increase in sur-
face area increases drag more than the reduction in cross-
sectional area reduces it (24 [p. 247]).

Thus, if swimming efficiency were commonly the major com-
ponent of fitness, we would expect motile bacteria to have
shapes similar to prolate ellipsoids of axial ratio approximately
2 and swim parallel to their long axis. In fact, most bacteria are
like this except that 69% have axial ratios greater than 1.952
and the median axial ratio is 2.83. Efficiency of swimming
provides no explanation for why such long rods might evolve.

Following stimuli. Swimming is most useful when it is di-
rected in a favorable direction, and most motile bacteria are
probably capable of moving up or down chemical gradients. To
determine the direction of a gradient, its concentration must
be determined at two points separated by some distance, d, and
for the small distances of interest here, the difference in con-
centration is proportional to d (6). Detection will also be in-
fluenced by the noise in measuring the two intensities, and the
effect of noise is generally reduced in proportion to the square
root of the time (t) over which the measurement is integrated
(6). However, for free-swimming organisms, this time is limited

by the rate at which orientation is lost as a result of rotational
diffusion caused by Brownian motion (2, 6), which is influenced
by shape. These general considerations lead to the expectation
that the signal-to-noise ratio (S/N) is influenced as S/N }
Gdt1/2, where G is the stimulus gradient (6). Since S/N . 1 at
the limit of detection, the shallowest detectable gradient is
proportional to 1/(dt1/2), and dt1/2 is a measure of the relative
sensitivity for gradient detection.

There are several ways in which an organism can separate
the two positions at which intensity is determined. With tem-
poral (sequential) comparisons the organism moves between
the two positions, and d # vt, where v is the speed of swimming
and t is the time between measurements. This is the only
mechanism currently known to be employed by free-swimming
bacteria (14). As an estimate of the maximum time useful to
the organism, I use the relaxation time (t) for decay of an
initial orientation (equation 7). Since at any particular specific
power consumption, v is inversely proportional to the square
root of the frictional drag coefficient (equation 5), for move-
ment along axis a, S/N } d ta

1/2 5 v ta
3/2 } ta

3/2 fa
21/2, where

fa is the frictional drag coefficient for translation along axis a
(equation 4) and ta is the relaxation time for loss of orientation
of the axis (equation 7).

This relationship is plotted in Fig. 2 (Temporal), which in-
dicates that spherical organisms could improve gradient detec-
tion by elongating along the axis parallel to the direction of
swimming. Within the curvature limit, gradient detection is
improved by a factor of 102.81 5 647 over the equal-volume
sphere.

An alternative mechanism for gradient direction is to em-
ploy spatial (simultaneous) comparisons (7 [p. 415]), in which
receptors on different parts of the organism are compared. In
this case, d represents the distance between these body parts. If
the comparison is fore-and-aft, d # 2a, and at best S/N } a
ta

1/2. (I ignore the complication that swimming may cause a
difference in stimulation between the front and back [2] be-
cause the organism could compensate for this effect.) This
relationship is plotted in Fig. 2 (Fore/aft), which demonstrates
that the greatest gain with minimal departure from a spherical
shape is again obtained by elongating along the axis parallel to
the direction of locomotion, toward rod-like shapes. The same
shape is optimal, but performance is superior to a sphere by
the smaller factor of 101.98 5 96.

The other mechanism for spatial comparison is with recep-
tors lateral to the direction of swimming. Taking the b axis in
the direction between receptors, d # 2b. To detect the gradi-
ent, axis b must maintain its orientation for a sufficiently long
period. The organism can then turn in the appropriate direc-
tion. However, the orientation of this axis might be maintained
while more rapid rotations occurred around the axis. These
latter rotations would not interfere with detecting the gradient,

TABLE 1. Optimal shapes for different adaptations

Adaptation Optimal shape Dimensionsa

(a, b, c)
Improvement

factor

Increased surface area Oblate ellipsoid of small axial ratio 0.158, 2.51, 2.51 3.20
Increased diffusion Sphere 1, 1, 1 1.00
Reduced sinking Prolate ellipsoid of large axial ratio 10, 0.316, 0.316 2.41
Low translational drag Prolate ellipsoid of axial ratio about 2 1.56, 0.80, 0.80 1.05
Gradient detection by temporal mechanism Prolate ellipsoid of large axial ratio 10, 0.316, 0.316 647
Gradient detection by fore-and-aft mechanism Prolate ellipsoid of large axial ratio 10, 0.316, 0.316 96
Gradient detection by lateral mechanism Prolate ellipsoid of large axial ratio 0.316, 10, 0.316 12

a For volume of 4p/3 and limited to a minimum radius of curvature of 1% of the radius of the equal-volume sphere. Locomotion occurs along axis a, and lateral
detection occurs across axis b. For surface area and sinking, the three axes are equivalent to one another.
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but once the organism had turned to the gradient, such rota-
tions would randomly point the organism up, down, and across
the gradient. Thus, this mechanism requires that rotations
around all three axes be minimized, in contrast to previous
mechanisms where symmetry made rotation around one axis
inconsequential. For calculation, I use the smaller of the time
constants for rotation around the a or b axis.

Consequently, S/N } b t1/2, where t is the smaller of ta and
tb. This relationship is plotted in Fig. 2 (Lateral). A spherical
organism maximizing this component of fitness with minimal
change in shape should evolve along a path toward a prolate
ellipsoid of revolution around axis b. Within the curvature
limit, the optimal shape has semiaxes (0.32, 10, 0.32), swims
perpendicular to its long axis, and is superior to the sphere by
the still smaller factor of 101.06 5 11.5. The relatively small
improvement explains why this behavior is not observed.

DISCUSSION

The results for all of the different types of adaptation are
summarized in Table 1. We see that evolution toward in-
creased surface area should lead to disk-like shapes, and the
fact that these are rarely observed suggests that increasing
surface area is not a major component of fitness for bacteria.

Adaptation to increase rates of dispersal via Brownian mo-
tion does not explain nonspherical organisms because the
spherical shape has the largest diffusion coefficient, but some
bacteria may have retained spherical shapes for this reason.

Reduction of sinking rate occurs with elongation, and this
could be the reason that some nonmotile bacteria are elon-
gated. For random orientations, the minimum sinking rate is
0.415 that of the equal-volume sphere (Fig. 2, Diffusion). If
horizontally oriented, the sinking rate would be 0.349 (51/
2.869 from Fig. 2, Drag). If vertically oriented, the value is
0.548 (51/1.826).

Reduction of translational drag for increased swimming ef-
ficiency can occur by elongation in the direction of swimming,
but the effect is small, and an optimum is reached at an axial
ratio of only 1.95, while most motile bacteria have axial ratios
greater than 2.8. It might be noted here that a recent report (4)
suggesting much larger effects of axial ratio on frictional drag,
with an optimum at larger ratios, is based on approximate
formulas that are accurate only for slender shapes (21) and are
thus inappropriate for this application.

In contrast to these relatively small effects, shape has a large
impact on a bacterium’s ability to detect stimulus gradients, no
matter which sensory mechanism is employed. This results
primarily from decreases in rotational diffusion that allow the
organism to measure stimulus intensities over longer time pe-
riods. The effect is largest for temporal mechanisms with the
potential to increase the signal-to-noise ratio several hundred-
fold (Table 1). A recent analysis suggests that contrary to
common notions, spatial gradient detection mechanisms are
not inherently less sensitive than temporal mechanisms for
spherical free-swimming organisms (8). However, the finding
here that temporal mechanisms can be enhanced more effec-

tively by changes in shape provides a clear explanation for why
rod-like shapes and temporal detection mechanisms are com-
monly observed.
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