SMS-598, Introduction to Acoustical Oceanography. Fall 2005
Answers to assignment \#2.

1. Compute the sound speed values for the following S,T, P values (to simplify your life you may want to use the matlab routine sndspd.m from ftp://acoustics.whoi.edu/pub/Matlab/oceans/programs/):
Using the Chen and Millero, "The Sound Speed in Seawater", J. Acoust. Soc. Am. 62 (1977), 1129-1135:

Conditions	Sound speed
Near surface arctic: $31,2,20$	$1453.2 \mathrm{~m} / \mathrm{s}$
Near surface Red Sea: $41,24,20$	$1538.8 \mathrm{~m} / \mathrm{s}$
Deep Atlantic Ocean: $36,2,5000$	$1544.0 \mathrm{~m} / \mathrm{s}$

2. A normal human can hear sound from 0 db to 100 db without experiencing too much pain. What are the values in term of pressure units (e.g. Pascal)? How do they compare to the atmospheric pressure on the Earth's surface?
$P($ in dB $)=20 \log [P($ in $\mu \mathrm{Pa}) / 20 \mu \mathrm{~Pa}] \rightarrow \mathbf{P}($ in $\mu \mathrm{Pa})=10 \wedge\{\mathbf{P}($ in dB$) / 20\} \times 20 \mu \mathrm{~Pa}$
$P(0 \mathrm{~dB})=20 \mu \mathrm{~Pa}$
$P(100 \mathrm{~dB})=2 \mathrm{~Pa}$
Atmospheric pressure is about $10^{5} \mathrm{~Pa}$ (The atmospheric pressure is similar to the pressure due to the mass of a $10 \mathrm{mx} 1 \mathrm{~m}^{2}$ water column of water $=9.81 \mathrm{~m} \mathrm{~s} \times 10 \mathrm{~m} x$ $1000 \mathrm{~kg} / \mathrm{m} 3 \times 1 \mathrm{~m}^{2} \sim 10^{5} \mathrm{~N} / \mathrm{m} 2=10^{5} \mathrm{~Pa}$).

Thus the pressures associated with audible sounds are less than 5 orders of magnitude relative to observed atmospheric pressures). Our ears are VERY sensitive organs that measure slight pressure changes, not absolute pressure background.
3. A stratified marginal sea has 4 layers with the following sound speed distribution:

	Layer 1	Layer 2	Layer 3	Layer 4
Sound speed	1530	1490	1500	1540
Depth range	$0-100$	$100-400$	$400-800$	$800-1200$

An explosion has occurred at 100m depth. Plot the ray trajectories starting in the zenith angles: $\theta=80^{\circ} 90^{\circ}$ and 100° until you get to 40 km from the source. Assume the bottom and top boundaries to be reflective. How long did it take each ray to reach a 40 km range from the source? At what depth did they arrive there (extra credit: automate the solution by programming it)?

For the solution I will be using Snell's law, and the fact that rays are symmetric as function of reflection when the medium does not vary in the horizontal (i.e the path
up in a layer is the mirror image of the path down within the same layer for the same ray).

The 90° ray: The first ray to get 40 km from the source is that with $\theta=\mathbf{9 0 ^ { \circ }}$. Since sound speed is not varying along the ray it will stay on course at 100 m depth. Assuming an average sound speed of $1510 \mathrm{~m} / \mathrm{s}$, it takes $40000 / 1510=24.49 \mathrm{~s}$ to arrive at depth of 100 m .

The 80° ray: For this ray, $1530 / \sin 80^{\circ}=1553.6$ is constant along the path. The ray will reach the surface and reflect at horizontal distance $x_{1}=\Delta z$
 length $/$ speed $=0.3764 \mathrm{~s} . \Delta \mathrm{z}$ denotes the layers depth (100 m for layer $\mathbf{1}$) Upon reflection the mirror image ray propagate from the reflection point back to the 100 m depth ($\mathrm{x}=2 \mathrm{x}_{1}, \mathrm{z}=100, \mathrm{t}=2 \mathrm{t}_{1}$).
As it enters layer 2 the ray changes zenith angles from 80° in Layer 1 to 180° -
$73.55^{\circ}=106.45^{\circ}$ in layer 2. $\mathrm{x} 2=\Delta \mathrm{z}_{2} \tan 73.55^{\circ}=1016 \mathrm{~m}$, pathlength $=\Delta \mathrm{z} / \cos 73.55^{\circ}=1059.4$ and $\mathrm{t}_{2}=0.711 \mathrm{~s}$.
As it enters layer 3 the ray refracts and changes zenith angle to 180$74.9055=105.0945^{\circ} . x 3=1483 \mathrm{~m}$, pathlength $=1536$ and $t_{3}=1.024 \mathrm{~s}$.
As it enters layer 4 the ray refracts and changes zenith angle to 180$82.4125=97.5875^{\circ} . \mathrm{x} 4=3002.9 \mathrm{~m}$, pathlength $=3029.4$ and $\mathrm{t}_{4}=1.9671 \mathrm{~s}$.
Thus a trajectory between the top and bottom boundaries has a total horizontal length of: $\Sigma x_{i}=6069 \mathrm{~m}$, and takes $\Sigma \mathrm{t}_{\mathrm{i}}=4.0785 \mathrm{~s}$. Since the problem is symmetric, we can propagate the rays as close as we can to $40 \mathrm{~km}-\mathrm{x}_{1}$ without additional work, i.e 6 times. At which time we are at the top boundary $(\mathrm{z}=0$) after covering $\mathrm{x}_{1}+6 \Sigma \mathrm{x}_{\mathrm{i}}=36,981 \mathrm{~m}$ at $\mathrm{t}_{1}+\Sigma \mathrm{t}_{\mathrm{i}}=24.8474 \mathrm{~s}$.
It turns out that at the bottom of the third layer $(\mathrm{z}=800 \mathrm{~m})$ the total horizontal length covered by the ray will be: 40047 m , at $\mathrm{t}=26.9588 \mathrm{~s}$. Correcting for a horizontal distance of 47 m at layer 3 we backtrack to a depth of $\mathbf{8 0 0 - 1 2 . 6 8 m = 7 8 7 . 3 2 m}$ and a time of $26.9588-0.0325=26.9263 \mathrm{~s}$.

The 100° ray: For this ray, $1490 / \sin 100^{\circ}=1513 \mathrm{~m} / \mathrm{s}$ is constant along the path. The ray will totally reflect from any layer where the sound speed is faster than $1513 \mathrm{~m} / \mathrm{s}$ and will thus only propagate in layers 2 and 3.
Within layer 2 the ray propagates a horizontal distance of $x_{2}=\Delta z_{2} \tan \left(180-100^{\circ}\right)$ $=1701.4 \mathrm{~m}$, covering a path of $\Delta \mathrm{z}_{2} / \cos 80^{\circ}=1727.6 \mathrm{~m}$ at $\mathrm{t} 2=1.1595 \mathrm{~s}$.
As it enters layer 3 the ray refracts and changes zenith angle to 180-
$82.4879=97.5121^{\circ} . \mathrm{x} 3=3033.4 \mathrm{~m}$, pathlength $=3059.6$ and $\mathrm{t}_{3}=2.0397 \mathrm{~s}$.
One ray trajectory from top of layer 2 to the bottom of layer 1 cover a horizontal distance of $\Sigma x_{i}=4761 \mathrm{~m}$ and takes $\Sigma \mathrm{t}_{\mathrm{i}}=3.1992 \mathrm{~s}$
Again, using symmetry we propagate rays and their mirror images as close as possible to the 40 km mark, that will take 4 pairs of rays and their mirror images to bring us to the top $(\mathrm{z}=100)$ at a distance of: 38088 m and time: $\mathbf{2 5 . 5 9 3 6}$.
Adding another travel in layer $2, \mathrm{z}=400 \mathrm{~m}, \mathrm{x}=\mathrm{x}_{2}+6 \Sigma \mathrm{x}_{\mathrm{i}}=39789 \mathrm{~m}$, and $\mathrm{t}=26.7531$. We need to go an extra 420.2 m in layer 3 to get to $x=40 \mathrm{k}$. This will bring us to a depth of $\mathrm{z}=400+55.41=455.41 \mathrm{~m}$ at a time $\mathrm{t}=26.7531+\mathbf{0 . 2 8 2 6}=27.0357$

