Modeling of suspended sediment transport

From: http://www.usask.ca/geology/classes/geol243/243notes/243week3b.html
What is sediment transport?

Why does sediment transport take place?

When does sediment transport take place?

Where does sediment transport take place?

Where is the sediment coming from?
Types of sediment transported:

- Total sediment load
 - Wash load
 - Bed material load
 - Moving as suspended load
 - Moving as bed load

Today’s topic
What information do we need to know to model sediment transport?

Flow field (‘physics’)

- Properties of flow away from bottom boundary (wave, mean current), and of the water (e.g. \(\nu \)).

Particle field (‘sedimentology’)

- Bed and wash material characteristics (e.g. density, size distribution, shape).

Within the BBL the two are coupled:

• Stress on bottom due to flow imparts the force that resuspends particles.

• Flow is affected by added water density due to suspension of particles.

• Flow is affected by settling particles.

• Flow is affected by bottom morphology (e.g. ripples).
What information do we need to know to model sediment transport?

Flow field (‘physics’)

- Properties of flow away from bottom boundary (wave, mean current), and of the water (e.g. v).

Particle field (‘sedimentology’)

- Bed and wash material characteristics (e.g. density, size distribution, shape).
The concept of a **boundary layer**:

As flow encounter a wall the velocity right next to the wall has to vanish (no slip).

Away from the wall the velocity is the free flow velocity.

In between we get a ‘boundary layer’.

Laminar boundary layer:

\[
\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0
\]

\[
u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = \nu \frac{\partial^2 u}{\partial z^2}
\]

Scaling:

\[
\frac{U}{L} \sim \frac{U}{\delta^2} \rightarrow \delta = \sqrt{\frac{vx}{U}}
\]

(NS: Non-linear Blasius equ. Can be solved numerically.)

Movie
A more 'realistic' view:

A hierarchy of BBLs:
Example: boundary layer in a pipe:

Comparison of laminar (i) and turbulent (ii) velocity profiles in a pipe for:

(a) The same mean velocity

(b) the same driving force (pressure difference).

→ BBL is smaller and more dissipative in the turbulent case.

Figure 22.16 from Tritton, D.J. 1977. Physical Fluid Dynamics. Van Nostrand Reinhold, NY. p. 277.
Turbulent BBL structure:

The stress in the BBL varies from being dominated by the Reynolds stress away from the wall to being dominated by viscous stress right next the bed.

Fig. 2.04 (a) A vertical profile of mean water velocity through the boundary layer above a smooth surface showing the linear sublayer where viscous stresses dominate the stress between the water and the surface and the logarithmic layer where turbulent or Reynolds stresses dominate. (b) The same profile as in (a) including time series measurements of velocity at three levels to illustrate the increase in the size of the turbulent fluctuations with height above the boundary.

Mann and Lazier, 1996
Example: horizontal flow field in a bottom boundary layer

Geostrophy/buoyancy/tidally Driven (frequency ω)

Transition layer, $du/dz\sim u*/z$(\sim20% of BBL).

Laminar flow, $Re<500$

Constant viscous stress layer, $u\sim z$, (\sim1% of BBL)

Bottom effect parameterized through z_0 and u_*

u_*=$(\tau_0/\rho)^{1/2}$, $\tau_0=\nu du/dz+\rho<u'w'>$

\Rightarrow Two parameter fit to velocity profile.

$u=\bar{u}+u'$

$u=\frac{u_*}{\kappa} \ln \frac{z}{z_0} + u'$

$u=\bar{u} = kz$

$\kappa \sim 0.41$, von Karman’s constant.

Jumars, 1993
Example: horizontal flow field in a bottom boundary layer

Southard, 2000

\[u \]

\[\frac{du}{dz} \propto \frac{u_*}{z} = \frac{u_*}{\kappa z} \]

\[u = \frac{u_*}{\kappa} \ln \frac{z}{z_0} + u' \]

Equivalent to assuming: \(K_{eddy} = \kappa u_* z \)

Slope \(\sim \frac{u_*}{\kappa} \)
Intercept \(\sim u_* \ln z_0 / \kappa \)

\(Z_o \)-roughness length.
Example: horizontal flow field in a bottom boundary layer

Predicting z_0 from D or u_*. Knowing z_0, BBL depth and $u_\infty \to u_*$.

Fig. 1. A plot of the qualitative changes observed in near-bed fluid dynamic behavior (roughness Reynolds number) as a function of shear velocity (u_*) and bed grain diameter (D) for a flat (unrippled) bed of uniform grain size. The diagram encompasses the full range of u_* and D values generally encountered in oceanic and riverine conditions. Viscosity ($\mu = 0.01$ poise [g cm$^{-1}$ sec$^{-1}$]) and fluid density ($\rho = 1.0$ g cm$^{-3}$) are taken to be constants for simplicity of illustration. Their ranges of variation are small in comparison with those of u_* and D.

D-bottom grain size
Example: horizontal flow field in a bottom boundary layer

http://cvu.strath.ac.uk/courseware/calf/CALF/bl/equations/eq5a.html

Turbulent boundary layer is more dissipative; Applies more resistance to the flow. Sets up faster.
Example: horizontal flow field in a bottom boundary layer

Data for sand tracked by an epifaunal bivalve:

Burst-Sweep cycle:

Gravity waves:

Effects:
Changes the mean flow field.
Change bottom shear stress.

Wave boundary layer is very shallow, \(\delta \sim (4\pi v T)^{1/2} \), for a 4 sec wave, \(\delta \sim 0.7 \text{cm} \).
Orientation relative to mean current is important:

\[
\mathbf{u}_{*c_w}^2 = \sqrt{u_*^4 + 2u_*^2 u_*^2 \cos \phi_{c_w}} + u_*^4
\]
Finally, we get to particles…

Rouse (1937) approach:

Conservation of particle mass (sources and sinks comes as BCs):

\[
\frac{\partial C}{\partial t} + \nabla \cdot (\bar{u}_s C) = \frac{\partial C}{\partial t} + \frac{\partial (u_s C)}{\partial x} + \frac{\partial (v_s C)}{\partial y} + \frac{\partial (w_s C)}{\partial z} = K\nabla^2 C
\]

Assume no gradient in x and y, and divide into time-mean and fluctuations:

\[
C = \bar{C} + C'; \quad w_s = \bar{w}_s + w'_s
\]

Equation for mean becomes:

\[
\frac{\partial (w_s C)}{\partial z} = \frac{\partial \left(\bar{w}_s \bar{C} + w'_s C' \right)}{\partial z} = 0
\]
Rouse’s (1937) approach:

Convert Reynolds’ stress flux into (eddy-)diffusive flux:

$$K_s \frac{\partial \overline{C}}{\partial z} = -w_s 'C'$$

Combining we get:

$$\frac{\partial}{\partial z} \left[w_s \overline{C} - K_s \frac{\partial \overline{C}}{\partial z} \right] = 0$$

Issues:

w_s is a function of sediment size, excess weight, and shape.

K_s is not necessarily the same as that of the fluid.

Boundary conditions.
Rouse’s (1937) approach; 1D balance:
assume no net flux from top and bottom boundary (reduces to 1st order ODE).
Solution (up to a constant of integration, \(C(z_1)\)):
Near the bottom:
\[
K = \kappa u_\ast z, \quad K_S = \alpha K, \quad 3 \geq \alpha \geq 0.3:
\]

Defining \(R = \frac{w_s}{\kappa u_\ast}\) we get:
\[
\ln \frac{\overline{C}(z)}{\overline{C}(z_1)} = -\frac{w_s}{\alpha \kappa u_\ast} \int_{z_1}^{z} \frac{dz}{z} = -\frac{w_s}{\alpha \kappa u_\ast} \ln \frac{z}{z_1} \Rightarrow \frac{\overline{C}(z)}{\overline{C}(z_1)} = \left(\frac{z}{z_1}\right)^{-R/\alpha}
\]

This profile fits well lower 30% of BBL.

Higher up in the water column (post Rouse):
\[
K_s = \text{const.} = \alpha \kappa u_\ast H_{BBL}
\]

\[
\ln \frac{\overline{C}(z)}{\overline{C}(z_1)} = -\frac{|w_s|}{\alpha \kappa u_\ast H_{BBL}} \int_{z_1}^{z} dz = -\frac{|w_s|}{\alpha \kappa u_\ast H_{BBL}} (z - z_1) \Rightarrow \overline{C}(z) = \overline{C}(z_1) \exp\left\{ -\frac{R(z - z_1)}{\alpha H_{BBL}} \right\}
\]

This profile fits well upper 80% of BBL.
Comparison with laboratory observations (See Allen, 2001)

\[
\ln \frac{\overline{C}(z)}{\overline{C}(z_1)} = - \frac{w_s}{\alpha ku_*} \int_{z_1}^{z} dz = - \frac{w_s}{\alpha ku_*} \ln \frac{z}{z_1} \Rightarrow \frac{\overline{C}(z)}{\overline{C}(z_1)} = \left(\frac{z}{z_1} \right)^{-R/\alpha}
\]

\[
\ln \frac{\overline{C}(z)}{\overline{C}(z_1)} = - \frac{|w_s|}{\alpha ku_* H_{BBL}} \int_{z_1}^{z} dz = - \frac{|w_s|(z-z_1)}{\alpha ku_* H_{BBL}} \Rightarrow \overline{C}(z) = \overline{C}(z_1) \exp \left\{ - \frac{R(z-z_1)}{\alpha H_{BBL}} \right\}
\]

The two solutions are matched at \(z \sim H_{BBL}/5 \)
Problem with the Rouse equations near the bottom when the sediment concentration is large.

Taylor and Dyer (1977) approach; Add effects of sediment concentration on density. Let’s the eddy coefficient vary relative to that of the unstratified fluid.

\[K_{s,\text{strat}} = \frac{K}{\gamma + \beta \frac{z}{L}} \]

Where the Monin-Obukov-length, \(L \), is defined as (based on shear stress and buoyancy flux being the two fundamental processes):

\[L = \frac{u_*^3 \bar{\rho}}{\kappa g \rho' w'} \]

\(\beta \) and \(\gamma \) are constant (e.g. 4.7-5.2 and 0.74 respectively, Styles and Glenn, 2000) and \(z/L \) is termed the stability parameter.
Taylor and Dyer’s (1977) approach; Add effects of sediment concentration on density. Let’s the eddy coefficient vary relative to that of the unstratified fluid.

\(\rho' = \sum_{n} \left(\frac{\rho_{sn} - \rho_{0}}{\rho_{0}} \right) C_{n}' \)

\(\Rightarrow \rho' w' = \sum_{n} \left(\frac{\rho_{sn} - \rho_{0}}{\rho_{0}} \right) w' C_{n}' \)

\(\bar{\rho} = \rho_{0} \left[1 + \sum_{n} \left(\frac{\rho_{sn} - \rho_{0}}{\rho_{0}} \right) C_{n} \right] \)

Since:

\(L = \frac{u_{*}^{3} \bar{\rho}}{\kappa g \rho' w'} \)

Assuming all sediment classes have the same density:

\(\frac{z}{L} = \frac{z \kappa g (\rho_{s} - \rho_{0})}{u_{*}^{3} \rho_{0} \bar{\rho}} w_{sn}' C_{n}' \)
Taylor and Dyer’s (1977) approach; Add effects of sediment concentration on density. Let’s the eddy coefficient vary relative to that of the unstratified fluid.

Denoting by $A = \beta z/L$ (with $\beta=5.2$ and z/L from above) and Rouse number $R_n = w_{sn}/\kappa u_*$ and for small roughness length scale z_0, close to the bed, where $K=\kappa u_* z$, the analytical solution for the flow and particle concentration is:

$$
\ln\left(\frac{C(z)}{C_0}\right) = -R_n \left[\ln \frac{z}{z_0} + \frac{1}{R_n} \ln \left\{ 1 + \frac{AR_n}{(1-R_n)} \left[\left(\frac{z}{z_0}\right)^{1-R_n} - 1 \right] \right\} \right]
$$

$$
u(z) = \frac{u_*}{\kappa} \left[\ln \frac{z}{z_0} + \frac{1}{R_n} \ln \left\{ 1 + \frac{AR_n}{(1-R_n)} \left[\left(\frac{z}{z_0}\right)^{1-R_n} - 1 \right] \right\} \right]
$$

Note that both flow and concentration field is affected and that for an unsorted sediment there is a need to find a way to characterize the effect of all size classes on velocity (through R_n), e.g.:

$$
\tilde{w}_s = \sum_n \frac{C_n w_{sn}}{\sum_n C_n}
$$
Boundary conditions (needed when there is no continuous field data)

To solve the particle concentration equations we need to BCs.

\[
\frac{\partial}{\partial z} \left[\bar{w}_s \bar{C} - K_s \frac{\partial \bar{C}}{\partial z} \right] = 0
\]

The top BC is less important (in the limit of infinite ocean, \(C \to 0\) there. For shallow waters specify no flux. Can incorporate flux from a productive ML if needed.

BC at (near) the bottom (\(\tau_{cn}\)-critical shear stress):

Concentration BC \((S_n=(\tau_d-\tau_{cn})/\tau_{cn})\): \(\bar{C}_n(\delta^+, t) = \begin{cases} \frac{\bar{C}_n(\delta^-, t)}{1 + \gamma_0 S_n} \gamma_0 S_n & S_n > 0 \\ 0 & \text{otherwise} \end{cases} \)

A problem with this approach is that \(\gamma_0\) varies by 3 orders of magnitudes across studies and by 2 orders of magnitude within a single study over a short time.
Boundary conditions

Flux BC:

\[
-w_{sn} \overline{C_n} - K_s \frac{\partial C_n}{\partial Z} \bigg|_{z=0^+} = J_{ei}(0^-, t) + J_{di}(0^-, t)
\]

\[
J_{ei}(0^-, t) = \begin{cases}
C_e S_n & S_n > 0 \\
0 & \text{otherwise}
\end{cases}, J_{di}(0^-, t) = -p_n w_{sn} C_n(0^+, t)
\]

with \(C_e\) an empirically determined erosion rate coefficient and \(p_n\) the probability that a falling particle makes contact with the bed and remains there.

Two models for \(p_n\) are used:

- \(p_n=1\) for all shear stresses, in which case erosion balances diffusion in the BC.
- The second model assumes:

\[
p_n = \begin{cases}
1 - \tau_0 / \tau_{dn} & \tau_0 > \tau_{dn} \\
0 & \text{otherwise}
\end{cases}
\]

The depositional shear stress of class \(n\), \(\tau_{dn}\), defines the stress below which sediment is able to remain on the bed after contacting it.
Boundary conditions

Because the eddy coefficient goes to zero at the boundary, there is no mechanism to raise the sediments into the water column, which, for the flux BC, provides physical solutions only when $p_n=1$ and $J_{di}=0$.

This problem is addressed in some models by adding a well-mixed near-bed layer of thickness δ_a where the eddy coefficient increases (convenient mathematically but not observed, could be justified by a wave BBL).

Another approach is to incorporate injection of sediments from the bed at various heights above the bottom (which are not resolved in the 1-D case and are the result of averaging in x and y). In this case the conservation equation is

$$w_{sn} \frac{\partial C_n}{\partial z} = \frac{\partial}{\partial z} \left(K_{sn} \frac{\partial C_n}{\partial z} \right) + D_n$$

With, for example:

$$D_n = A_{sn} \exp\left(-\frac{z}{\delta_e}\right)$$

The BC condition in this case is that erosion equals deposition at the bottom.
Summary:

• Momentum and material flux are not mutually independent.

• 1-D steady state equation describe adequately observed data when local data is used in parameter fit.

• Current approaches almost always ignore aggregation dynamics.

• High resolution data (velocity & size fractionated particles) is lacking.

• Current approaches vary from a mix empirical fits to physical approaches tuned with empirical data.
In case you wondered about who cares, and whether there is money to be made:

Some commercial players (based on a simple google search):

- **Hydrau-Tech, Inc.**
- **BOSS INTERNATIONAL**
- **Sea Engineering, Inc.**
- **QEA**
- **MOHID**
- **Stillwater Sciences**
- **HydroQual, Inc.**
- **W.L. Delft Hydraulics**

Some government agencies in the US funding sediment transport modeling:
References

