
Modeling of suspended sediment transport

SMS-618, Particle Dynamics, Fall 2003 (E. Boss, last updated: 11/3/2003)

From: http://www.usask.ca/geology/classes/geol243/243notes/243week3b.html



What is sediment transport?

Where is the sediment coming from?

When does sediment transport take place?

Where does sediment transport take place?

Why does sediment transport take place?



Types of sediment transported:

Total sediment load

Wash load Bed material load

Moving as suspended load Moving as bed load

Today’s topic



What information do we need to know to model sediment transport?

Flow field (‘physics’) Particle field (‘sedimentology’)

Bed and wash material 
characteristics (e.g. density, size 
distribution, shape)

Properties of flow away from 
bottom boundary (wave, mean 
current), and of the water (e.g. ν).

Within the BBL the two are coupled:

•Stress on bottom due to flow imparts the force that resuspends particles. 

•Flow is affected by added water density due to suspension of particles.

•Flow is affected by settling particles.

•Flow is affected by bottom morphology (e.g. ripples).



What information do we need to know to model sediment transport?

Flow field (‘physics’) Particle field (‘sedimentology’)

Bed and wash material 
characteristics (e.g. density, size 
distribution, shape)

Properties of flow away from 
bottom boundary (wave, mean 
current), and of the water (e.g. ν).



Example: horizontal flow field in a bottom boundary layer

Bottom effect parameterized through 
z0 and u*=(τ0/ρ)1/2. τ0=νdu/dz, ρ<u’w’>

Two parameter fit to velocity profile.

κ~0.41, von Karman’s constant.



Example: horizontal flow field in a bottom boundary layer

Ln z
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Slope ~ u*/κ
Intercept ~ u* lnz0 /κ

u*
κ



Example: horizontal flow field in a bottom boundary layer

D-bottom grain size

Jumars & Nowell. 
1984. Am. Zool.
24: 45-55

Predicting z0 from D or u*. Knowing z0, BBL depth and u∞ u*. 



Example: horizontal flow field in a bottom boundary layer

http://cvu.strath.ac.uk/courseware/calf/CALF/bl/equations/eq5a.html

Turbulent boundary layer is more dissipative; 
Applies more resistance to the flow.
Sets up faster.



Example: horizontal flow field in a bottom boundary layer

Nowell, A.R.M., P.A. Jumars
and J.E. Eckman. 1981. Effects
of biological activity on the
entrainment of marine
sediments. Mar. Geol.
42: 155-172.

Data for sand tracked by an Data for sand tracked by an epifaunalepifaunal bivalve:bivalve:



Gravity waves:

Effects: 
Changes the mean flow field.
Change bottom shear stress.

Wave boundary layer is very shallow, δ~(4πνT)1/2, for a 4sec wave, δ~0.7cm. 
Orientation relative to mean current is important: 

4
*

2
*

2
*

4
**

2 cos2 wcwwcccw uuuuu ++= φ



Finally, we get to particles…

Rouse (1937) approach:
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Conservation of particle mass (sources and sinks comes as BCs):

Assume no gradient in x and y, and divide into time-mean and fluctuations:
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Rouse’s (1937) approach:
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Convert Reynolds’ stress flux into (eddy-)diffusive flux:
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Combining we get:

Issues:

ws is a function of sediment size, excess weight, and shape.
Ks is not necessarily the same as that of the fluid.
Boundary conditions.



Rouse’s (1937) approach; 
assume no net flux from top and bottom boundary (reduces to 1st order ODE).

Solution (up to a constant of integration, C(z1)):
Near the bottom:
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Higher up in the water column:
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This profile fits well upper 80% of BBL. 

This profile fits well lower 30% of BBL. 
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Comparison with laboratory observations (See Allen, 2001)



Taylor and Dyer (1977) approach; Add effects of sediment concentration on 
density. Let’s the eddy coefficient vary relative to that of the unstratified fluid.
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Where the Monin-Obukov-length, L, is defined as (based on shear stress and 
buoyancy flux being the two fundamental processes):  

β and γ are constant (e.g. 4.7-5.2 and 0.74 respectively, Styles and Glenn, 
2000) and z/L is termed the stability parameter. 

Problem with the Rouse equations near the bottom when 
the sediment concentration is large.



Taylor and Dyer’s (1977) approach; Add effects of sediment concentration on 
density. Let’s the eddy coefficient vary relative to that of the unstratified fluid.

Since:
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Assuming all sediment classes have the same density:



Taylor and Dyer’s (1977) approach; Add effects of sediment concentration on 
density. Let’s the eddy coefficient vary relative to that of the unstratified fluid.
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Denoting by                  (with β=5.2 and z/L from above) and Rouse number
and for small roughness length scale z0, close to the bed, where 

K=κu*z, the analytical solution for the flow and particle concentration is:

LzA β=
*uwR snn κ=

Note that both flow and concentration field is affected and that for an unsorted 
sediment there is a need to find a way to characterize the effect of all size classes 
on velocity (through Rn), e.g.:
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Boundary conditions (needed when there is no continuous field data)
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To solve the particle concentration equations we need to BCs.

BC at (near) the bottom:

Concentration BC (Sn=(τd- τcn)/τcn ):

The top BC is less important (in the limit of infinite ocean, C 0 there. For shallow 
waters specify no flux. Can incorporate flux from a productive ML if needed.
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A problem with this approach is that γ0 varies by 3 orders of magnitudes across 
studies and by 2 orders of magnitude within a single study over a short time. 



Boundary conditions

Flux BC:
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with Ce an empirically determined erosion rate coefficient and pn the 
probability that a falling particle makes contact with the bed and remains 
there. 
Two models for pn are used: 
pn=1 for all shear stresses, in which case erosion balances diffusion in the 
BC. The second model assumes: 

The depositional shear stress of class n, τdn, defines the stress below which 
sediment is able to remain on the bed after contacting it. 



Boundary conditions
Because the eddy coefficient goes to zero at the boundary, there is no mechanism 
to raise the sediments into the water column, which, for the flux BC, provides 
physical solutions only when  pn=1and Jdi=0. 
This problem is addressed in some models by adding a well-mixed near-bed layer 
of thickness δa where the eddy coefficient increases (convenient mathematically
but not observed). 

Another approach is to incorporate injection of sediments from the bed at various 
heights above the bottom (which are not resolved in the 1-D case and are the 
result of averaging in x and y). In this case the conservation equation is
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With, for example:

The BC condition in this case is that erosion equals deposition at the bottom. 



Summary:

•Momentum and material flux are not mutually independent.

•1-D steady state equation describe adequately observed 
data when local data is used in parameter fit.

•Current approaches almost always ignore aggregation 
dynamics.

•High resolution data (velocity & size fractionated particles) is
lacking.

•Current approaches vary from a mix empirical fits to physical 
approaches tuned with empirical data.



In case you wondered about who cares, and whether there is money
to be made:
Some commercial players (based on a simple google search):

Some government agencies in the US funding sediment transport modeling:
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