Relationship between spectral particulate attenuation and particle size distribution

Peng Wang
Introduction:

• Particle Size Distribution (PSD):
 Information about the ecological dynamics of marine water, particulate sedimentation fluxes and sediment transport;

• Beam attenuation coefficient (C):
 Quantify light propagation in the ocean and to study the concentration of the material affecting light propagation.
PSDs could be well approximated by a hyperbolic (Junge-like) distribution:

\[N(D) = N_0 (D/D_0)^{-\xi} \]

- \(N(D) \): the number of particles with diameters between \(D \) and \(D + dD \) divided by \(dD \);
- \(D_0 \): reference diameter;
- \(\xi \): PSD slope varying between 3 and 5.
The particulate attenuation c_p:

$$c_p(\lambda) = c_p(\lambda_0) \lambda^{-\gamma}$$

The exponent of the particulate attenuation spectrum (γ) and the exponent of the PSD (ξ) are linearly by

$$\gamma = \xi - 3$$

([Diehl and Haardt, 1980]);

The main goal of this study is to test that relationship.
Methods: C_p

$$C_p = C_{pg} - C_g$$
PSDs: Coulter Counter

3-10 μm range used: avoid noise in the small size range ($2<D<3\mu m$); the scarcity of particles $>10 \mu m$ made statistical very bad.
Results:

1. Optical Data:
Super mixed water !!!
Fitted C_p Curves:
Fitted PSDs Curves:

![Graph showing fitted PSDs curves with particle diameter on the x-axis and number concentration on the y-axis. The graph includes a red line with markers labeled "AB surface sample".]
Comparison: ξ for Two Different Particle Size Ranges and Spectral Slope γ

<table>
<thead>
<tr>
<th></th>
<th>$C_p(440)$</th>
<th>ξ for $2<D<10\mu$m</th>
<th>ξ for $3<D<10\mu$m</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB surf</td>
<td>0.6575</td>
<td>7.8273</td>
<td>3.4445</td>
<td>0.4861</td>
</tr>
<tr>
<td>AB 10m</td>
<td>0.6575</td>
<td>9.8067</td>
<td>3.2151</td>
<td>0.484</td>
</tr>
<tr>
<td>CD stn1</td>
<td>3.7436</td>
<td>3.32</td>
<td>3.5679</td>
<td>0.608</td>
</tr>
<tr>
<td>CD stn2 surf</td>
<td>4.098</td>
<td>2.9453</td>
<td>3.7722</td>
<td>0.6998</td>
</tr>
<tr>
<td>CD stn2 10m</td>
<td>4.098</td>
<td>2.8565</td>
<td>3.4784</td>
<td>0.6998</td>
</tr>
</tbody>
</table>
Theoretical and measured relationship:
Conclusions:

• The shapes of the particulate attenuation spectra \(c_p(\lambda) \) were found to be well approximated by a power law with respect to wavelength;

• A single Junge exponent was found not to match very well the whole data from 2 to 10 \(\mu m \); a better fit was found when the size range was limited to \(3 < D < 10 \mu m \);

• The range of observed values of \(\xi \) and \(\gamma \) is relatively consistent with the linear relationship: \(\gamma = \xi - 3 \).