Remote Sensing Reflectance Inversion of Phytoplankton Community Size Structure and Ecological Implications

Colleen Mouw
RTE and Remote Sensing Course - DMC
July 30, 2004
Ecological Importance

- Many biogeochemical processes are directly related to the distribution of phytoplankton size classes in a given environment or time (Longhurst, 1998), and size distribution is a major biological factor that governs the functioning of pelagic food webs (Legendre and Le Fevre, 1991).
Absorption and Cell Size

- Variation in spectral shape can be defined well by changes in the dominant cell size due to pigment concentration and packaging.
- No direct dependence on chlorophyll a.

\[
\tilde{a}^*_{ph} = [(S) \times \tilde{a}^*_{pico}] + [(1-S) \times \tilde{a}^*_{micro}]
\]

(Ciotti et al., 2002)
Cell Size Seasonality

O’Reilly and Zetlin, 1998; Olson et al., 1985; Olson et al., 1990; Cavender-Bares et al., 2001
Forward Model

- Ciotti et al., 2002 $a_{\phi}^{*}(\lambda)$
- Mie calculations to obtain $b_{\phi}^{*}(\lambda)$ and phase function
 - Varied the slope between -3 and -4
 - Spectral calculation for numerous cell sizes within each size fraction.
- Hydrolight
 - ABCASE2
 - Constant chlorophyll (2 μg/L)
 - Low [CDM]
 - NAP set to zero
 - R_{rs} calculated for each size fraction with varying slopes.
Forward Model

- Investigate influences of packaging and particle size distribution (PSD) on R_{rs}.
- Constant slope, vary size \Rightarrow packaging
- Constant size, vary slope \Rightarrow PSD
Inverse Model

• Roesler and Perry, 1995 Inversion Model
• Ciotti et al., 2002 phytoplankton chlorophyll specific absorption size fractionated basis vectors.

\[R(\lambda) = G \frac{b_\phi}{a + b_\phi} \]

- \[b_\phi = b_{bw}(\lambda) + C_{bbp} b_{bp}(\lambda) \]
- \[a = a_w(\lambda) + C_{a\phi} a_{\phi}(\lambda) + C_{CDM} a_{CDM}(\lambda) + C_{NAP} a_{NAP}(\lambda) \]
- \[a_{\phi}(\lambda) = [S(f) a_{pico}(\lambda)] + [(1-S(f)) a_{micro}(\lambda)] \] (Ciotti et al., 2002)
Preliminary Results

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>GM</th>
<th>PS</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% pico</td>
<td>16.5%</td>
<td>10.9%</td>
<td>9.2%</td>
<td>8.3%</td>
</tr>
<tr>
<td>pico chl. (ug/L)</td>
<td>0.11</td>
<td>0.13</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>micro chl. (ug/L)</td>
<td>0.54</td>
<td>1.06</td>
<td>1.20</td>
<td>1.06</td>
</tr>
</tbody>
</table>
Application to Imagery

- \(R_{rs} = L_w / E_d \)
- Calculate \(R_{rs} \) from \(nL_w \) for each band and invert to obtain relative community size structure.
Current View of the Ocean Surface

COMING SOON… maps of cell size distribution and IOPs
Application to Ecology

Production Model

\[PP = \int a_{ph}^* \Phi E_k^* \text{tanh} \left(\frac{E_z}{E_k} \right) \text{chl} \, dz \]

(Mouw and Yoder, submitted)
Production Model

$$PP = \int \tilde{a}_{ph}^* \Phi \; E_k \; \tanh \left(\frac{E_z}{E_k} \right) \; \text{chl} \; dz$$

$$\tilde{a}_{ph}^* = [(S) \; \tilde{a}_{\text{pico}}^*] + [(1-S) \; \tilde{a}_{\text{micro}}^*] \quad \text{(Ciotti et al., 2002)}$$
Production Model

\[PP = \int \tilde{a}^*_{ph} \Phi E_k \tanh \left(\frac{E_z}{E_k} \right) \text{chl} \, dz \]

\[\tilde{a}^*_{ph} = [(1-S) \tilde{a}^*_{pico}] + [(S) \tilde{a}^*_{micro}] \]
(Ciotti et al., 2002)

\[\Phi = \Phi_{max} f_a f_\Delta f_c(N) f_c(\tau) f_c(PAR,inh) f_{E,t} \]
(Woznaik et al., 2002)
Production Model

\[PP = \int \tilde{a}^*_{ph} \cdot \Phi \cdot E_k \cdot \tanh \left(\frac{E_z}{E_k} \right) \cdot \text{chl} \, dz \]

\[\tilde{a}^*_{ph} = [(1-S) \cdot \tilde{a}^*_{pico}] + [(S) \cdot \tilde{a}^*_{micro}] \quad (\text{Ciotti et al., 2002}) \]

\[\Phi = \Phi_{\text{max}} \cdot f_a \cdot f_\Delta \cdot f_{c(N)} \cdot f_{c(\tau)} \cdot f_{c(PAR, inh)} \cdot f_{E,t} \quad (\text{Wozniak et al., 2002}) \]

\[E_k = \frac{P_{b_{\text{max}}}}{\alpha} \quad (\text{Sakshaug et al., 1997}) \]
Production Model

\[
PP = \int a^*_{ph} \Phi E_k \tanh \left(\frac{E_z}{E_k} \right) \text{chl} \, dz
\]

\[
a^*_{ph} = [(1-S) a^*_{pico} + (S) a^*_{micro}] \quad \text{(Ciotti et al., 2002)}
\]

\[
\Phi = \Phi_{max} f_a f_{\Delta} f_{c(N)} f_{c(\tau)} f_{c(PAR,inh)} f_{E,t} \quad \text{(Wozniak et al., 2002)}
\]

\[
E_k = \frac{p^b_{max}}{\alpha} \quad \text{(Sakshaug et al., 1997)}
\]

\[
p^b_{max} = f(T) \quad \text{(Behrenfeld and Falkowski, 1997)}
\]
Production Model

\[PP = \int \tilde{a}_{ph}^* \Phi \cdot E_k \cdot \tanh \left(\frac{E_z}{E_k} \right) \cdot \text{chl} \, dz \]

\[\tilde{a}_{ph}^* = [(1 - S) \cdot \tilde{a}_{pico}^*] + [(S) \cdot \tilde{a}_{micro}^*] \quad (\text{Ciotti et al., 2002}) \]

\[\Phi = \Phi_{\text{max}} \cdot f_a \cdot f_\Delta \cdot f_{c(N)} \cdot f_{c(\tau)} \cdot f_{c(PAR,\text{inh})} \cdot f_{E,t} \quad (\text{Wozniak et al., 2002}) \]

\[E_k = \frac{P_{\text{max}}^b}{\alpha} \quad (\text{Sakshaug et al., 1997}) \]

\[P_{\text{max}}^b = f(T) \quad (\text{Behrenfeld and Falkowski, 1997}) \]

\[\alpha = \tilde{a}_{ph}^* \cdot \Phi \quad (\text{Sakshaug et al., 1997}) \]
Future Directions & Conclusions

• **Future Directions:**
 - Check inversion at multispectral resolution
 - Apply to satellite imagery
 - Sensitivity analysis
 - More insight into differences in packaging and species composition
 - Compare to ocean times series and historical surveys.

• **Conclusions:**
 - Theoretically, cell size can be mapped from ocean color.
 - Lead to greater understanding of ecological structure, function, and dynamics important in carbon cycling and global climate studies.
Acknowledgements

- CM - for helping clarify my fuzzy intuition that mapping cell size was possible from inversion models, idea of the investigation of packaging and PSD with Mie Theory and Hydrolight; and modifying inversion code.
- EB - Mie Theory
- CM - Hydrolight and comic relief
- NASA, ONR, UMaine
- The rest of the gang!!