IOP inversion from shallow waters

Peng Wang
\[R_{rs} = f(a, b_b) \]

\[\frac{L_u(0^-)}{E_d(0^+)} \]

\(L_u(0^-) \): upwelling radiance
\(E_d(0^+ \): downwelling irradiance
PBR approach:

- Basis vectors
- absorption
- \(a_\phi(\lambda) = a_\phi(\lambda_0) \left[S_f a_{\text{micro}}(\lambda_0) + (1-S_f) a_{\text{pico}}(\lambda_0) \right] \)
- \(a_{dg}(\lambda) = a_{dg}(\lambda_0) \exp(-S(\lambda-\lambda_0)) \)
- backscattering
- \(b_{bp}(\lambda) = b_{bp}(\lambda_0) (\lambda/\lambda_0)^{-Y} \)
- Radiance Reflectance equation [400:10:650]
- \(R_{rs} = 0.0949(b_b/(b_b+a)) + 0.0794 (b_b/(b_b+a))^2 \)
- Linear regression method
- Data set: simulated by hydrolight (Rrs, a and b_b)
Some results:
IOP comparison (a and b_b)

Total Absorption Comparison

average of relative difference: 11.9%
total backscattering comparison

average of relative difference: 14.2%
Now story changed......
Rrs from shallow waters:

Strange rrs
Matlab complain
No solutions !!!
$R_{rs} = L_u/E_d = (L_u^{dp} + L_u^B)/E_d$

$$= L_u^{dp}/E_d + L_u^B/E_d = R_{rs}^{dp} + R_{rs}^B$$

downwelling irradiance, upwelling radiance from water column and bottom
simple idea, hard application; fortunately……

basically:

\[r_{rs} \approx r_{rs}^{dp}[1-\exp(-2KH)] + r_{rs}^B \exp(-2KH) \approx \]

\[r_{rs}^{dp}(1-A_0 \exp\{-[(1/\cos \theta_w)+D_0(1+D_1u)^{0.5}]\alpha H\}) + \]

\[A_1 \rho \exp\{-[(1/\cos \theta_w)+D’_0(1+D’_1u)^{0.5}]\alpha H\}. \]

\(r_{rs} \): subsurface remote-sensing reflectance, sr\(^{-1}\)
\(r_{rs}^{dp} \): subsurface remote-sensing reflectance for deep waters, sr\(^{-1}\)
\(r_{rs}^B \): subsurface remote-sensing reflectance for the bottom, sr\(^{-1}\)
\(K \): diffuse attenuation, m\(^{-1}\)
\(H \): bottom depth, m
\(\theta_w \): subsurface solar zenith angle, rad
\(u \): \(b_b/(a + b_b) \)
\(\alpha \): attenuation coefficient (=\(a + b_b \)), m\(^{-1}\)
\(\rho \): bottom albedo
\(A_{0,1} D_{0,1} D’_{0,1} \): from Lee et al, 1998
After subtracting the bottom influence, we get…

Now matlab smiled and we got solutions !!!
Coefficient of Variance:
(express sample variability relative to the mean of the sample)

Total absorption:

Total Backscattering:
IOP inversion results from shallow waters:

Total Absorption:

Total Backscattering:
Conclusions:

• Bottom reflectance has a huge impact on the remote sensing reflectance;
• Current semi-analytic algorithm can be successfully applied to invert IOPs after bottom correction;
• PBR approach can find strange r_{rs} which is caused by the environment or bad measurements?
Acknowledgements