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ABSTRACT

The dynamics of Lagrangian particles and tracers in the vicinity of a baroclinically unstable zonal jet are
investigated in a simple two-layer model with an initially quiescent lower layer. The presence of a growing
wave induces a particle drift dominated by Stokes drift rather then the contribution of the wave to the mean
Eulerian velocity. Stable and unstable waves have zonal Stokes drift with similar meridional structure while
only unstable waves possess meridional drift, which is in the direction of increasing meridional wave displace-
ment. Particle dispersion in the upper layer is maximum at critical lines, where the jet and phase speeds are
equal. In the lower layer, dispersion is maximum where the wave amplitude is maximum. Zonal mean tracer
evolution is formulated as an advection–diffusion equation with an order Rossby number advection and an order-
one eddy diffusion. The latter is proportional to two-particle dispersion.

Finite amplitude simulations of the flow reveal that small amplitude theory has predictive value beyond the
range for which it is strictly valid. Mixing (as opposed to stirring) is maximum near cat’s-eye-like recirculation
regions at the critical lines. In the lower layer the pattern of convergence and divergence of the flow locally
increases tracer gradients, resulting in stirring yet with a much slower mixing rate than in the upper layer.
Meridional eddy diffusion (or particle dispersion) alone is not sufficient for prediction of mixing intensity.
Rotation, which is quantified by the cross-correlation of meridional and zonal displacements, must also be present
for mixing.

These results are consistent with observations of tracer and floats in the vicinity of the Gulf Stream.

1. Introduction

Floats and tracers in the ocean have been used by
physical oceanographers to infer both the Eulerian struc-
ture of the flow field and the mixing geometry associated
with the flow. The primary goal of this paper is to study
tracer mixing and Lagrangian particle behavior in a bar-
oclinically unstable jet. In addition, we wish to study
the link between the kinematics of floats and tracer and
the underlying flow field. The geophysical motivation
for this work comes from the Gulf Stream, a region in
the ocean in which floats have been used intensively.
Lagrangian floats and tracer studies (e.g., Bower et al.
1985; Bower and Rossby 1989; Bower and Lozier 1994;
Song et al. 1995) in the Gulf Stream region have high-
lighted two main characteristics: on the one hand, the
Gulf Stream seems to provide a barrier that separates
slope water from Saragasso Sea water; while on the
other hand, it is an intense area of mixing (Song et al.
1995). The sharp potential vorticity (PV) gradient ob-
served in the vicinity of the jet has been assigned the
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role of a barrier to mixing across the jet (Bower and
Lozier 1994), while mixing has been associated with
critical (or steering) lines where the phase speed of the
meanders matches the zonal jet speed (e.g., Owens
1984; Bower 1991; Pratt et al. 1995). Likewise, the
presence of a critical level1 has been invoked to explain
the enhanced particle dispersion (Lozier and Bercovici
1992) below the thermocline. Tracer gradients have been
found to be smaller at depth (Bower et al. 1985), con-
sistent with potentially enhanced mixing there (Bower
1991).

Theoretical studies of stirring and mixing2 with ap-
plication to the Gulf Stream have recently focused on
barotropic and equivalent-barotropic quasigeostrophic
(QG) jets with stable Rossby wave perturbations. These
studies have emphasized the role of critical levels and/

1 Critical level denotes the position, in the vertical, where down-
stream mean flow speed equals phase speed (u0 5 c). Critical line
denotes the horizontal position in a layered flow where u0 5 c. In
continuously stratified flows with variations in the horizontal, u0 5
c defines a two-dimensional critical (or steering) surface (Pratt et al.
1995).

2 Stirring refers to dispersion of parcels from each other (diver-
gence) and the deformation of material lines in an inviscid model.
Mixing implies changes in properties of parcels due to interaction
with surrounding fluid.
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or lines as primary locations for mixing. Using several
analytical techniques derived from the theory of dy-
namical systems, tracer mixing or stirring at these lo-
cations was quantified (Samelson 1992; del-Castillo-Ne-
grete and Morisson 1993; Rogerson et al. 1996, man-
uscript submitted to J. Phys. Oceanogr.) or qualitatively
assessed (Pratt et al. 1995; Lozier et al. 1997). These
treatments have taken advantage of the two-dimension-
ality of the QG barotropic flow (i.e., the flow can be
derived from a streamfunction) and that the wave am-
plitudes have no, or slow, evolution.

Gulf Stream observations associate growing meander
events with strong subsurface flows, indicating the pres-
ence of baroclinic instability (Watts et al. 1995). In ad-
dition, the Gulf Stream has a fairly high Rossby number
[U/ g9H and z/f ; 0.5 (Kim and Watts 1994), whereÏ
U is the speed of the stream, g9 its reduced gravity, H
the thermocline depth, z the relative vorticity, and f the
Coriolis parameter]. This suggests that the effects of
baroclinicity, transient waves and mean flows, and high
Rossby numbers should be investigated (Lozier and Ber-
covici 1992; Pratt et al. 1995).

Lozier and Bercovici (1992) investigated a baroclin-
ically unstable zonal jet in a continuously stratified QG
model. The basic-state jet varied only in the vertical.
Using small-amplitude analysis they found that maxi-
mum meridional particle excursion coincided with the
depth of maximum meridional two-particle dispersion
that occurs at the critical level. Here, we add to this
study by considering a basic state that also varies in the
horizontal and has a finite Rossby number. We further
investigate mean-flow evolution, both in the small am-
plitude quasi-linear limit and in the finite amplitude non-
linear regime. Several techniques are used to analyze
the flow: a small-amplitude theory for the zonal mean
characteristics of floats and tracers, a direct comparison
of the small amplitude results to a numerical model run,
and finally, the behavior of floats and tracers when the
baroclinically unstable waves grow to finite amplitude.
Comparison of stirring and mixing in our study high-
lights the usefulness and limitations of the small-am-
plitude theory.

The flow analyzed here consists of two layers of con-
stant density with a basic state that has a meridionally
confined jet in the upper layer and a quiescent lower
layer. This model shares several features observed in
the Gulf Stream such as a near-surface jet, a PV front,
and the presence of baroclinic instability. To analyze
the float and tracer behavior in this flow we apply the
formalism of generalized Lagrangian mean (GLM) the-
ory. This theory provides a framework to analyze and
quatify Lagrangian behavior. Using a small amplitude
expansion of the governing equations, the theory gives
predictions of zonal mean quantities such as the velocity
and displacement of the center of gravity of Lagrangian
floats. The theory connects these quantities to the un-
derlying wave field through the Stokes drift. The evo-
lution of the zonal-mean tracer distribution is analyzed

following the theoretical work of Rhines and coworkers
(Rhines 1977; Rhines and Holland 1979) and Andrews
and McIntyre [1978, see also McIntyre (1980) and a
review in Andrews et al. (1987), herein AHL]. The evo-
lution of zonal-mean or time-mean quantities is the fo-
cus of these approaches and has been used in analytical
studies (e.g., Rhines and Holland 1979; Uyru 1979; Mat-
suno 1980; Shepherd 1983), as well as in the analysis
of numerical model results of baroclinically unstable
flows (Dunkerton et al. 1981; Plumb and Malmann
1987).

The Gulf Stream exhibits neither periodic nor steady
spatially growing meanders, two simple cases where the
above wave–mean flow interaction theories are directly
applicable. However, much of our theoretical under-
standing of the Gulf Stream is based on such simplified
assumptions that capture many of its observed features
[e.g., meander growth and propagation speeds (Kill-
worth et al. 1984) and eddy forcing of the time mean
flow (Cronin 1996)].

In section 2, the model and the theoretical background
are introduced. We solve for Lagrangian and tracer di-
agnostics of unstable flows of varied Rossby number in
section 3 and discuss their relation to those of stable
waves. Numerical model results for a flow with inter-
mediate Rossby number and finite-amplitude meander
are presented and contrasted with the small-amplitude
theoretical results to evaluate their applicability. In sec-
tion 4, the large amplitude numerical model results are
presented. In section 5, the results are summarized and
their applicability to the Gulf Stream is discussed.

2. Model flow and theoretical background

a. Basic state

To evaluate how Lagrangian floats and tracers behave
in a baroclinically unstable jet, we use a simple model
whose Eulerian characteristics are known (Boss et al.
1996, herein BPT; Boss and Thompson 1999, herein
BT). There are two pools of constant PV in the upper
layer overlaying a quiescent lower layer (Fig. 1). The
fluid is assumed to be Boussinesq, hydrostatic, rigid-
lid, and on an f plane. We refer to this set of approx-
imations as the shallow water approximation (SW). The
zonal geostrophic basic-state (denoted by superscript
zero) depth and velocity structure in the upper layer are

 1/2H12H 2 1 exp(y/R ) 1 1 for y , 011 d,111 2 2[ ] H11
0 h 51 1/2H11H 2 1 exp(2y/R ) 1 1 for y . 0 12 d,211 2 2[ ]H12

(1)

and

g9 dh exp(y/R ) for y , 01 d,10u 5 2 5 U (2)1 05f dy exp(2y/R ) for y . 0,d,2
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FIG. 1. Schematic of the (a) depth and (b) velocity fields of an
upper-layer potential vorticity front. The upper-layer flow is geo-
strophic and has piecewise constant PV, 5 f/H1j, where j denotes0q1j

the side of the front (1 being south, y , 0), H1j denotes the depth of
the upper layer at y → 7`, respectively, and the lower layer is
quiescent. When H12 5 0, the interface between the layers intersects
the surface, resulting in an outcropping front.

where g9 and f are the reduced gravity and the Coriolis
parameter and

1/2 1/2 1/2U 5 (g9H ) 2 (g9H ) and R [ (g9H ) / f (3)0 11 12 d, j 1j

are the jet maximum speed and the (different) defor-
mation radii on each side of the front. The basic state’s
potential vorticity is given by [ f/H1j, where j de-0q1j

notes the side of the PV front (1 being south, y , 0)
and H1j the fluid depth at y → 7` (Fig. 1). The flow
is confined to within a deformation radius of the po-
tential vorticity front. The lower-layer depth is 5 HT

0h2

2 , where HT is the total fluid depth, and 5 0.0 0h u1 2

In order to study this flow as a function of Rossby
number, it is convenient to nondimensionalize the var-
iables by transforming

tRdt → , (x, y) → (x, y)R , (u, y) → (u, y)U ,d 0U0

1/2h → h H and c → p (g9H ) U ,i i 1 i i 1 0

where

H1 [ (H11 1 H12)/2, Rd [ (g9H1)1/2/ f (4)

in which H1 is the y-averaged upper-layer depth and Rd

the radius of deformation based on H1. The Rossby
number, e [ |U0|/ fRd, is a measure of the strength and
asymmetry of the initial geostrophic flow (BPT). The
flow depends on only the Rossby number e and the depth
ratio (r 5 HT/H1).

This simple flow exhibits a baroclinic zonal transport
and a most unstable wave growth rate that are similar
to those observed for the Gulf Stream (see BT for a
more detailed comparison). Special cases of this PV-
front model have been considered in the past and applied
to the Gulf Stream; when e 5 2 (H12 5 0) the modelÏ
reduces to the outcropping front studied by Killworth

et al. (1984) and Wood (1988). The QG case is recovered
in the limit e 5 0 (BPT). The above model in the limit
r → ` becomes the 1 -layer model studied for e 51

2

2 by Stommel (1965) and Paldor (1983), for variableÏ
e by Williams (1991), and for QG by Pratt and Stern
(1986) and Pratt et al. (1995). In BPT and Boss (1996),
we summarize the results found in those studies and
interpret them in terms of the linearized waves found
in the different models. In particular we find that the
PV-front model is baroclinically unstable for all values
of e and finite r. The vortical (Rossby like) waves taking
part in the instability are trapped to the PV gradient near
y 5 0 and are found for all e. They are well approxi-
mated by the QG solution. The Eulerian mean evolution
of the baroclinic instability is explored at small and large
meander amplitude and for various Rossby number
flows in BT. At all values of meander amplitude the
baroclinic evolution of the QG flow was found to ap-
proximate well that of the SW flows.

Here we analyze this model for its tracer and La-
grangian characteristics in both its QG limit (assuming
e 5 2/2) and a SW model with the same RossbyÏ
number for small amplitude meander. The depth ratio
(r 5 HT/H1) is taken from the Gulf Stream’s parameters
in the region east of Cape Hatteras, where the total depth
HT ; 4000 m and the mean thermocline depth H1 ;
500 m yielding r ; 8.

b. Quasi-linear formulation

To understand the first-order effect of unstable waves
on the transport of floats and tracers, we assume that
the deviations from the basic-state variables (the waves,
denoted by primes) are small relative to the amplitude
of the basic state (introduced above and denoted with
superscript zero) and have meridionally varying ampli-
tudes and normal mode structure, u 5 aRe{u9(y)ei(kx2vt)},
where u9 denotes any perturbation (wave) variable and
a denotes the amplitude of the perturbation. For unstable
flows, the frequency v is complex and its imaginary
part, vI, is the growth rate. The solution for u9(y) is
found by linearizing the momentum and continuity
equations about the basic zonal-mean flow and solving
for the normal modes [Phillips (1954) and, for our flow,
BPT].

The modification of zonal mean quantities from the
basic state due to the waves [denoted by tilde, ( )] is˜
then found by substituting these perturbation solutions
into zonally averaged equations [Phillips (1954) and for
our flow, BT] where the zonal mean is defined by ( )
[ l21 ( ) dx, l [ 2p/k. While the normal model∫0

perturbations, A(y)eif and B(y)eif , have no zonal mean
structure, their correlations can have a zonal mean struc-
ture since

1
if if 2Im{f}Re{A(y)e }Re{B(y)e } 5 Re{A(y)B(y)*}e ,

2

where the asterisk denotes the complex conjugate and



FEBRUARY 1999 291B O S S A N D T H O M P S O N

f 5 ik(x 2 vt). The modifications of mean quantities
are thus O(a2) and are proportional to . The am-2v tIe
plitude expansion of the zonal mean of a variable there-
fore is u 5 u0(y) 1 1 O(a3). Notice that2 2v tIa ũ(y)e
with this definition is O(1).ũ

Underlying this amplitude expansion is the require-
ment of small perturbation amplitude, K 1. Also,v tIae
it is assumed that only a single wave is present in each
layer, the one with the highest growth rate of linear
baroclinic instability. Using this decomposition, both
the first-order Lagrangian mean velocities and the evo-
lution of a passive tracer can be predicted.

c. The generalized Lagrangian mean

Complete Eulerian and Lagrangian descriptions of a
flow contain the same information. However, once av-
eraging is performed, some information is lost, and the
zonal-mean Eulerian and Lagrangian descriptions con-
tain different information. Here we describe the zonal
mean movement of Lagrangian particles using the gen-
eralized Lagrangian mean formalism (Andrews and
McIntyre 1978). The GLM theory gives a prediction for
the velocity of the center of mass of a line of particles
initially parallel to the basic-flow streamlines (which we
refer to as the ‘‘centroid’’). For small amplitude waves
this velocity is the sum of the Eulerian mean velocity
plus the Stokes drift.

Within a layer n (51, 2), the Lagrangian particle dis-
placement Xn is related to the velocity field un by the
kinematic relation d Xn/dt 5 un. For small amplitude
waves, Andrews and McIntyre (1978) defined a mean-
free Lagrangian parcel displacement, [ ( , , ),j9 j9 m9 h9n n n n

associated with a normal-mode wave (perturbation) ve-
locity , which to O(a) isu9n

0dunD j9 5 u9 , (5)n n n dy

D m9 5 y9, (6)n n n

0dh1D h9 5 2w9 2 y9 , (7)1 1 1 1 dy
0dh2D h9 5 w9 2 y9 , (8)2 2 2 1 dy

where Dn [ ik( 2 c) is the O(1) expansion of the0un

total derivative. Equations (7) and (8) are the evolution
equations for the interface thickness and could be
thought of as the kinematic boundary conditions at the
layer’s interface, where the vertical perturbation veloc-
ity3 is 5 6( 1 )/ from continuity and the0w9 iku9 y9 hn n ny n

3 Vertical velocities in this section are evaluated at the interface z
5 and are defined to be positive upward. They decay to zero at0h1

the top and bottom boundary, are equal at the interface, and are
included here for comparison with the results of both Shepherd (1983)
and continuously stratified models (AHL).

fact that in shallow water, the horizontal velocities are
uniform within layers. The displacement vector ( ) isj9n
nondivergent [= · 5 O(a)]. Notice that the displace-j9n
ments are nearly singular near critical lines where 20un

c approaches zero.
The GLM velocity for small-amplitude meandersLun

is (Andrews and McIntyre 1978)

2m9nL 0 0u 5 u 1 ũ 1 j9iku9 1 m9u9 1 u ,n n n n n n ny nyy2
Ly 5 ỹ 1 j9iky9 1 m9y9 ,n n n n n ny

h9w9n nLw 5 w̃ 1 j9ikw9 1 m9w9 1 . (9)n n n n n ny 0hn

Here, 1 ũn is the zonal (Eulerian) mean velocity to0un

O(a2), where is the basic-state flow. In addition, the0un

GLM velocity (minus the basic flow) is proportional to
; thus it grows in time for unstable waves and is2v tIe

constant for stable waves. For the normal-mode waves
studied here (which is proportional to eik(x2ct)), the av-
erage of the velocity of particles equally distributed over
a line spanning a wavelength (the GLM velocity) is
equal to the average of the velocity of a single particle
over the wave period (both are averages over the wave
phase). The latter is familiar from the theory of surface
gravity waves.

The difference between the GLM velocity and the
Eulerian mean velocity [ 2 2 ũn is the StokesSD L 0u u un n n

drift, that is, the difference between the average velocity
of a drifting particle relative to the velocity at the av-
erage position of that particle. It can arise both from
basic-state curvature and/or a spatially varying wave
displacement.

There are several differences between meridional Eu-
lerian mean and Lagrangian meridional velocities; the
Eulerian zonal-mean (EM) meridional velocity ( ) andỹ n

the meridional mass transport (y nhn) are O(e) because
there is no mean zonal pressure gradient (so there is no
mean geostrophic meridional flow) and because the ver-
tical displacements ( ) are O(e) compared to the hor-h9n
izontal displacements (BT). The meridional displace-
ment, however, is not constrained by geostrophy (Uyru
1979; McIntyre 1980) and therefore both the meridional
Stokes drift and meridional GLM velocity are O(1) in
Rossby number. The Stokes drift is nondivergent
(= · 5 0) for stable flows and often is divergent forSDun

unstable flows (McIntyre 1980). In contrast, the mean
meridional mass transport hny n is always nondivergent.

d. Zonal mean tracer evolution

The zonal mean evolution of a passive tracer is gov-
erned by the tracer conservation equation Dxn/Dt 5 0.
The zonal mean tracer concentration to second order in
amplitude is given by x n 5 (y) 1 , with0 2 2v tIx a x̃ (y)en n

the second term arising from the presence of an O(a)
tracer perturbation, Re{ (y)eik(x2vt)}. To O(a) the trac-ax9n
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er conservation equation (after division by ei(kx2vt)) is
given by

Dn 5 ik( 2 c) 1 5 0.0 0x9 u x9 y9xn n n n ny (10)

Together with (6) it can be rewritten as

Dn( 1 ) 5 0.0x9 m9xn n ny (11)

This implies that, if the perturbation of the tracer is
initially zero [i.e., the tracer is zonally uniform (Rhines
and Holland 1979)], then

5 2 ,0x9 m9xn n ny (12)

which links the tracer perturbation with the zonal-mean
tracer distribution.

The mean tracer modification arises from thex̃ (y)n

presence of waves and is found from the O(a2) expan-
sion of the zonally averaged tracer conservation equa-
tion:

2v t 0IDx /Dt 5 e (2v x̃ 1 ỹx 1 y9x9 1 u9ikx9) 5 0.n I n ny n ny n n

(13)

Substituting (12) in (13) and recasting (13) as an ad-
vection diffusion equation gives

1 5 ( )y [ ( )y,T 0 0 yy 0x̃ y x m9y9x k xnt n ny n n ny n ny (14)

where
Ty [ ỹ 1 w9m9 /h ,1 1 1 1 1

T yy 2y [ ỹ 2 w9m9 /h , and k [ m9y9 5 v m9 , (15)2 2 2 2 2 n n n I n

are the tracer transport velocities in each layer, and
is the Lagrangian diffusivity (Rhines and Hollandyykn

1979). Here is proportional to the cross-stream two-yykn

particle dispersion with the growth rate as the pro-2m9n
portionality constant (AHL). Both are nonzero only for
transient waves and are strictly positive for growing
unstable waves.

Similar to the EM meridional velocity, is O(e).Ty n

Here is O(1) and is spatially inhomogeneous in ayykn

divergent Stokes drift field [such as for an unstable flow,
Plumb and Mahlman (1987)]. Thus the dominant bal-
ance in (14) for small Rossby number flows is between
the time rate of change of the tracer perturbation and
the eddy diffusion term.

Another interesting result is derived by multiplying
(12) by and zonally averaging:y9n

5 2 .yy 0y9x9 k xn n n ny (16)

This implies that for a growing (unstable) wave the
meridional ‘‘eddy’’ flux of tracer (as well as PV) is down
the mean tracer gradient (Rhines and Holland 1979).
Substituting q for x, (16) shows a fundamental differ-
ence between stable and unstable waves. Unstable
waves flux PV across mean PV contours, whereas stable
waves do not (Rhines and Holland 1979; Lozier and
Bercovici 1992).

For the physical situation that we study below in the
small amplitude limit, the Lagrangian diffusivity (two-

particle dispersion) is indicative of stirring that occurs
only within a layer (along isopycnals) and is due to eddy
processes since the model is inviscid. In the numerical
model, small momentum and tracer diffusivities may
cause irreversible mixing, but once again only along
isopycnals. When the flow is linear, steady and adiabatic
(under nonacceleration conditions, AHL), the tracer
transport velocity is equal to the mass transport velocity
( / ). In general and in our model, both vanish for0hy h nn n

such stable (linear) waves, and no net meridional trans-
port occurs (this result is referred to as the nontransport
theorem, AHL).

Mixing requires both stretching and folding (e.g., Ot-
tino 1989). The Lagrangian diffusivity is indicative of
stretching but not of folding, which requires rotation.
As a measure of rotation (vorticity) we use another dif-
fusion-like term proportional to the cross-correlation of
the zonal and meridional displacement:

5 5 vI .xyk m9u9 m9j9n n n n n

While this term does not appear in the zonal-mean La-
grangian and tracer equations (due to zonal averaging,
although it does appear in the time mean equations), we
will demonstrate below that it is an important term to
use to infer mixing from stirring. In QG equals halfxykn

the angular momentum of the waves (Rhines and Hol-
land 1979). When time mean equations are derived,

appears in the off-diagonal terms of the diffusivityxykn

tensor (Rhines and Holland 1979).
Several connections can be made between the mean

tracer formulation and the GLM. First, the Lagrangian
velocity is the velocity of the center of mass of a patch
of tracer (Plumb and Mahlman 1987). In addition (e.g.,
AHL),

5 1 ,L T yyy y kn n ny (17)

which for a small Rossby number flow (17) implies that
; ; ; that is, the Lagrangian velocity is dom-L SD yyy y kn n ny

inated by the Stokes drift, which is approximated by the
gradient of the Lagrangian diffusivity.

e. Solution method

In this section we outline the procedure for computing
the Stokes drift, the Lagrangian and tracer velocities,
and the Lagrangian diffusivity. For the analytical quasi-
linear calculations we use the most unstable wave so-
lutions derived in BPT to compute the Stokes drift. Sum-
ming it with the Eulerian mean velocities (solved in BT)
provides the Lagrangian velocities (9). Similarly the
tracer velocity and diffusivity are computed using (15).

For the numerical model (the appendix), we compute
the Lagrangian velocity from its definition, the ensemble
averaged velocity of particles initially equally spaced
and aligned parallel to the jet axis. The time rate of
change of the zonal-mean tracer distribution is calcu-
lated from its definition, x nt.

To facilitate comparison of numerical results and the-
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FIG. 2. The (a) upper and (b) lower 1 -layer models that are used to interpret the instabilities1
2

present in the two-layer model of Fig. 1. The jet structure of the upper-layer model is identical
to that of the two-layer model. Both 1 -layer models are stable to normal-mode perturbation,1

2

while the two-layer model is unstable.

FIG. 3. Particle trajectory relative to the basic-state flow (left side of each panel) and the displacement ellipses (right side of each panel) for
the first vortical modes of the upper and lower 1 -layer QG models (k 5 0.6). Particles were initially at x 5 0 and drifted for two periods. All1

2

displacements are normalized by (y 5 0). Broken lines denote the positions of critical lines of the upper 1 -layer model (where 5 c).1 0m9 u2n 1

ory, all quantities are normalized by the square pertur-
bation amplitude a2, where a 5 [ (y 5 0)]/l is the2m91
ratio of the maximum horizontal displacement of the
front [ (y 5 0)] to half the (dimensional) meanderm91
wavelength l. The horizontal displacement of the front
(dimensional) will be given by al/2 and since the most
unstable wave in our model has a typical length of
10.5Rd, (y 5 0) 5 a · 5.25Rd. We compute the quasi-m91
linear GLM and mean tracer variables for two different
flows: a QG flow with e 5 2/2 (with most unstableÏ
wavenumber k 5 0.58) and a SW flow with the same
e (k 5 0.6).

3. Small amplitude results

a. Application of the theory to the PV-front model

To develop some intuition about the Stokes drift and
GLM velocities in the unstable flow, we first analyze
the GLM velocities of stable waves (e.g., Matsuno
1980). In BPT we found that analyzing an instability as
a resonance between stable waves, one from each layer,
provides physical insight into the instability. Structure

and phase of the unstable wave were found to be very
similar to those of the resonating stable waves computed
in two models, each with one layer identical to the two-
layer model plus a second infinite layer (equivalent bar-
otropic or 1 -layer models, Fig. 2). Here, the same de-1

2

composition is used to understand the connection be-
tween wave displacements and the Stokes drift for the
frontally trapped waves.

The wave trajectories relative to the mean flow and
the displacement ellipses (Fig. 3) display clearly how a
Stokes drift comes about. As the particle moves merid-
ionally, the zonal wave displacement changes. Averaged
over the phase of the wave, the zonal drift is in the same
direction as the particle zonal velocity in the latitude
where the zonal displacement is largest. For example,
in the lower layer for y , 22, the ellipses are cyclonic
(clockwise) and the amplitude of the zonal displacement
increases with y resulting in a positive zonal drift. For
the upper-layer model there is also a drift due to the
mean flow curvature, (9) which is everywhere1 2 0m u2 1 1yy

positive for the model’s jet, yet about 20 times smaller
in magnitude than the wave–wave terms.
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FIG. 4. Stokes drifts of both stable (left panels) and unstable (center and right panels) flows. Results are shown for QG PV front and an
intermediate e PV front. Solid (dashed) lines represent upper (lower) layer variables and broken lines denote both the position of the critical
lines in the upper layer (where u 1 5 Re{c}) and the position of the outcropping front. The Stokes drifts are normalized by a2 where a [
[2max(mn(0))]/l for the stable waves (modes of Fig. 2). For the unstable waves (modes of Fig. 1), a [ [2max(m1(0))]/l.

The meridional structure of the zonal Stokes drift of
the unstable mode of the two-layer flow is similar in
structure and magnitude to that of the stable mode in
the two 1 -layer models (compare left and center panels1

2

of Fig. 4). Differences are found in the upper layer in
the vicinity of the critical lines, where the stable wave
Stokes drifts are singular [where Dn 5 ik( 2 c) 5 0].0u1

Also, while the amplitude of the Stokes drifts of stable
waves is constant in time, it grows like for unstable2v tIe
waves. The amplitude of the zonal Stokes drift is sub-
stantial; a perturbation with a [ 2 (0)/l ø 0.2 resultsm91
in a 20% difference between the Eulerian and Lagrang-
ian mean velocities.

No meridional Stokes drift is present for stable waves
with meridionally varying amplitudes ( 5 0; this isSDy ny

similar to the absence of vertical drift of surface gravity
waves). The pattern of meridional displacement result-
ing from stable waves, however, is indicative of the
direction of meridional Stokes drift of the unstable
waves. Since the maximum meridional displacement oc-
cur at the critical lines in the upper-layer model and near
y 5 0 in the lower layer (Fig. 3), where the perturbation
amplitude is maximum (Fig. 6 in BPT), we expect the
drift to the critical lines (Fig. 3). Indeed, the structure
of the meridional Stokes drift of unstable waves (Fig.
4) is consistent with the insight derived from the struc-
ture of the stable waves.

The QG solution for the Stokes drift is found to com-
pare well with the SW one except for a discontinuity
in the zonal Stokes drift at y 5 0 in the SW model
owing to the discontinuity of there. The loss of0u1yy

symmetry around y 5 0 in the SW model arises as a
result of the loss of symmetry of the basic-state flow as
the Rossby number is increased. In the lower layer the
agreement is better than in the upper layer, due to the
smaller relative layer depth change across the front.

The GLM meridional velocity ( 5 1 ) andL SDy ỹ yn n n

Lagrangian zonal acceleration4 are dominated by the
Stokes drift in most of the domain except close to the
upper-layer jet, where the EM and Stokes drift are of
similar magnitude (Fig. 5 and Fig. 3 in BT). The GLM
meridional velocity in the upper layer converges toward
the critical lines, being dominated by the Stokes drift.
Divergence of the GLM meridional velocity occurs near
the jet’s center in the upper layer. Although difficult to
see in Fig. 5, in the lower layer there is a convergence
below the jet whose center shifts south with e.

The zonal mean tracer velocity (15) is in the same
direction as the zonal mean meridional mass flux (Fig.
6: Fig. 3 in BT), in the direction that reduces the po-
tential energy of the mean flow. Unlike the mass flux,
it is divergent and is unequal and opposite in the layers.
The upper-layer Lagrangian diffusivity ( , Fig. 6) isyyk1

maximum near the critical lines in the upper layer, being
proportional to |u0 2 c|22 [(6), (15)]. A similar result
was found in a critical level by Lozier and Bercovici
(1992). In the lower layer the diffusivity is maximum
where the perturbation amplitude is maximum. The
maximum is under the jet axis in QG and migrates south
with increasing e.

Unlike the meridional diffusivity ( ) that is of theyykn

same magnitude in both layers, is two orders ofxykn

magnitude larger in the upper layer (with largest value
near the critical lines) than in the lower layer. Since both
stretching ( ) and rotation ( ) are needed for mixingyy xyk kn n

4 We compute the zonal Lagrangian acceleration because it is pro-
portional to the wave induced O(a2) part of the Lagrangian velocity

5 2vI(ũn 1 ) and for comparison with floats trajectory dataL SDu unt n

from the numerical model. To recover the GLM zonal velocity, use
5 1 /(2vI).L 0 Lu u un n nt
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FIG. 5. The upper-layer (solid line) and lower-layer (dotted line) meridional GLM velocity
( , left panels) and zonal acceleration ( : right panels), for a QG PV front (with e 5 0.71) andL Ly un nt

SW PV front with the same e. Each was normalized as in Fig. 4. Broken lines denote the positions
of critical lines (where 5 Re{c}) and the position of the outcropping front.0u1

FIG. 6. The upper-layer (solid line) and lower-layer (dotted line) Eulerian mean meridional tracer velocity
( , left panels), eddy diffusivity ( , center panels), and horizontal displacement cross-correlation ( :T yy xyy k kn n n

left panel) for a QG PV front (with e 5 0.71) and SW PV front with the same e. All are normalized as
in Fig. 4. Broken lines denote the positions of critical lines (where 5 Re{c}) and the position of the0u1

outcropping front.

to take place, mixing is predicted to be significantly
stronger in the upper layer, as will be seen with the
numerical model in the next section. For cyclonic (an-
ticyclonic) rotation, is negative (positive) and is ofxykn

different sign at the two critical lines (Fig. 6). Stirring
(as indicated by the amplitude of both and ) isxy yyk k1 1

significantly more intense in the northern critical line
in the SW model. This is an ageostrophic effect asso-
ciated with an increase in the horizontal displacements
amplitude on the northern (shallow) side of the front.
By continuity, for a given perturbation in layer depth,
the associated horizontal response will be larger on the
shallower side.

b. Numerical model result with a small-amplitude
meander

In this section we compare the inviscid quasi-linear
results against results from a viscous numerical model
with small (but finite) meander amplitude. We use a free
surface isopycnal model developed by Hallberg (1995),

which we initialize with the basic flow corresponding
to e 5 2/2. Details on the numerical procedures areÏ
found in the appendix.

The GLM meridional velocities computed from the
model floats agree quantitatively well with the theoret-
ical prediction (Fig. 7). The largest difference is due to
the difference in location of the critical lines in the
numerical model due to the inevitable (yet small) dif-
ferences in mean flow between a free surface and a rigid-
lid model. The numerical grid is such that the maximum
jet velocity in the model occurs half a grid point relative
to the jet center (0.12R d), and thus the biggest differ-
ences in u occur for the float released there. In addition,
the presence of diffusion (numerical and explicit) affects
both the mean flow and the instability growth rate, and
thus the position of the critical lines. Agreement be-
tween the theoretical prediction with the modeled GLM
zonal acceleration is not as good as for the meridional
velocities, especially close to the critical lines in the
upper layer, which at finite amplitudes develop into a
recirculation region with finite meridional extent (see
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FIG. 7. Meridional GLM velocity and zonal acceleration in the
upper and lower layers in theory (thin lines) and in the numerical
model (thick lines), both with intermediate e 5 0.71. All are nor-
malized with a2 where a 5 0.15 6 0.02 in the model. Dashed lines
denote the position of the theoretical critical lines in layer 1.

FIG. 8. Time rate of change of zonal mean tracer concentration divided by the zonal mean
gradient as predicted by theory (thin line) and as calculated from the numerical model results
(thick line) in both layers. All are normalized by a2, where a 5 [2 max(m1(0))]/l; a 5 0.05 6
0.01 for the model run with k 5 0.

below). Changing our interpolation scheme (from bilin-
ear to nonlinear) and increasing the number of grid
points (from 1282 to 2002) did not change the results
significantly. Lack of quantitative agreement in the up-
per-layer zonal GLM accelerations is due to existence
of a strong O(1) sheared zonal mean flow there. Viscous

processes (neither included in our theoretical analysis
nor in the way we compute the Lagrangian acceleration
with the model results) are acting on the zonal mean jet
and are affecting the O(a2) zonal acceleration because

has a discontinuity at the front in the initial con-0u1yy

dition. The smaller value of the acceleration in both
layers is caused by both reduction in the growth rate
due to viscosity and nonlinearities as the perturbation
grows (Pedlosky 1987) and the smearing of the signal
when averaged over a meandering jet. The presence of
an Eulerian barotropic mean flow in the model was dis-
cussed in BT. Here it causes the zonal GLM velocity to
be nonzero at large y. Because there is no O(1) zonal-
mean meridional velocity and because it is small close
to the jet center where the meander amplitude is greatest,
such a contamination of the O(a2) by the O(1) dynamics
is not observed in the meridional-mean Lagrangian ve-
locities (Fig. 7).

A basic-state tracer field with a linear gradient was
chosen to minimize numerical diffusion, and is given by

x (t 5 0) 5 x(t 5 0) 5 x (y 5 0) 1 yx . (18)n n n ny

With x n(y 5 0) 5 0.5 and x ny 5 (21)n0.032, the con-
centration varies from 0 to 1 over the model domain
and is in opposite directions in each layer. The numerical
results of x nt/x ny are in good quantitative agreement
with the quasi-linear calculations of / (Fig. 8).0x̃ xnt ny

Differences between model and theory are biggest near
the southern critical line.

For our choice of mean tracer field , ø0 yy 0x k xn ny ny

(17) is the forcing on the rhs of (14), whichSD 0y xn ny

explains the similarity between in Fig. 7 and x nt/x ny
Ly n

5 2 in Fig. 8. Results of a run with an explicityy Tk yny n

tracer diffusivity k 5 10 m2 s21 were quantitatively
similar.

4. Large-amplitude numerical model results

While the small-amplitude theory is useful where it
is applicable, for meander amplitudes on the order of a
wavelength no similar theory is available. Here we in-
vestigate the finite amplitude Lagrangian and tracer evo-
lution and inquire, in particular, whether the features
which have their seeds in the small-amplitude theory
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FIG. 9. Mean Lagrangian meridional position of the center of grav-
ity of 21 lines of floats, initially spaced evenly around y 5 0 (upper
two panels). In the initial stage of the instability, notice the conver-
gence toward critical lines in the upper layer and toward the center
in the lower layer. The evolution of total energy (solid), zonal mean
energy (dashed), perturbation energy (dotted), and zonal mean kinetic
energy (dot-dashed) as a function of time is shown in the lowest
panel. The solid line, parallel to the perturbation energy curve, rep-
resents the theoretical growth rate of the instability, exp(2vIt).

appear when the meanders reach finite amplitude. The
energetics evolution as a function of time (bottom of
Fig. 9) is used to trace the instability evolution from its
linear phase where the perturbation energy grows ex-
ponentially to the equilibration phase over which the
long-term energetic growth is algebraic.

As predicted from the small-amplitude theory, the
float centroids initially converge toward the critical lines
in the upper layer and slightly south of y 5 0 in the
lower layer due to migration of the maximum in per-
turbation amplitude southward (BPT, BT). In the upper
layer, with time, the float centroids continue to drift past
the positions where critical lines were initially found
(Fig. 9). This does not indicate a change in the float
response to mean-flow characteristics, but rather is due

to the migration of the critical lines toward y 5 0 as
the mean flow weakens (the phase speed also weakens
but, apparently, slower). Also, for finite amplitude
waves, critical lines bifurcate, creating recirculation re-
gions. For stable waves the meridional extent of the
recirculation regions was found to be proportional to
the square root of the amplitude and inversely propor-
tional to the mean flow shear (Pratt et al. 1995). Zonal
averaging over these evolving regions is also respon-
sible for the observed migration. Beyond equilibration
(at about t ; 200) the convergence pattern is more
erratic, especially on the northern side, and multiple
zonal jets are present (BT). In the lower layer, conver-
gence toward the front continues beyond t ø 200. As
the lower layer jet is accelerated, the centroids spread
into two main convergence zones (t ; 250).

Centroids intersect prior to the instability equilibra-
tion (Fig. 9), at which time the functional mapping from
the initial position of the centroid to its final position
is nonunique. Since Lagrangian means are meaningful
only relative to the parcel initialization, a reinitialization
procedure may be warranted at such a time (McIntyre
1980; Dunkerton et al. 1981). However, it is interesting
that even long after the centroid positions cross, the
meridional Lagrangian velocity is in the same direction
as predicted by the small-amplitude theory.

By the end of the simulation (t ; 375), the spread
of the centroids is approximately equal in both layers
with slightly more centroids north of y 5 0 than south
in both layers. In the upper layer this pattern is consis-
tent with the increase in Lagrangian diffusivity to the
north (Fig. 6). In the lower layer a similar pattern of
Lagrangian diffusivity is expected once a substantial
mean jet has accelerated there (BT).

We emphasize that individual floats in the upper layer
do not cross the local position of the PV front prior to
eddy detachment at t ; 290. Individual floats and cen-
troids of lines of floats cross the mean position of the
front and jet (Fig. 9). Individual lower-layer floats do
cross below the local position of the upper-layer PV
front since the lower-layer perturbation is phase lagged
relative to the upper layer’s meander. This phase lag is
characteristic of baroclinic instability.

Coincident with the float centroid convergence to the
critical lines with increased meander amplitudes is the
formation of recirculation regions around the location
of the critical lines. The recirculation regions are clearly
seen in the tracer distribution field (Fig. 10). Two phe-
nomena, pooling and recirculation, govern the tracer
distribution. Pooling refers to the process of conver-
gence/divergence of fluid due to differential advection,
and recirculation refers to the process whereby fluid
parcels are folded against each other and requires the
presence of vorticity. Since the perturbation amplitude
decays meridionally away from the jet core, fluid is
pooled between successive troughs and crests of the
meander near the front, with increases of tracer gradients
away from the front in both layers (Fig. 10). Recircu-
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FIG. 10. Tracer field (left panels, with 10 contours of values equally spaced between 0 and 1), zonal mean
meridional tracer gradients (center panels), and position of Lagrangian floats (right panels). Floats were initially
aligned parallel to the PV front at a distance of 1.2 (V), 2.4 (3), and 3.9 (1) deformation radii on both the
north and south sides of the front. Solid line denotes the position of the PV front. The tracer fields were calculated
at t 5 188 with tracer diffusivity k 5 10 m2 s21 in the upper (upper panels) and lower (lower panels) layers.
Notice the fluid convergence pattern in the lower layer (lower left and right panels) and both pooling and
recirculation in the upper layer (upper left and right panels) in both tracer field and Lagrangian particles’ position.

lation in the pools in the upper layer causes mixing
through shear dispersion, with increased gradients on
the edges of the recirculation regions, especially on the
side facing the jet core. Pooling with no recirculation
occurs in the lower layer, resulting in a very different
tracer field evolution. Pooling occurs where the eddy
diffusivity of the quasi-linear theory is maximum (Fig.
6), while recirculation occurs where the displacement
cross-correlation is maximum. Note that the recircula-
tion direction is the same as predicted by the sign of

and that it is intensified on the northern side, asxykn

predicted by the previous section’s results.
The structure of the zonal-mean meridional tracer gra-

dients x y is similar in both layers, yet it is an order of
magnitude stronger in the upper layer at t ; 188 (Fig.
10); the gradient is weak near the mean front position
and strong on the edges of the meander, particularly on
the northern side. This pattern is consistent with the
Lagrangian diffusivity structure in the lower layer (Fig.
6). In the upper layer one may expect a gradient max-
imum at the front (there exists a minimum in eddy dif-
fusion there, Fig. 6). Indeed, for small amplitude (not
shown) the upper-layer mean tracer gradient matches
that predicted from Fig. 6, with two regions of minimum
gradients on either side of the front. However, as the

amplitude of the meander increases, the recirculation
regions overlap in their meridional position (although
at different zonal locations), resulting in t ; 188 in the
observed zonal mean tracer gradient. In the upper layer,
the tracer is entrained into the growing recirculation
regions where enhanced mixing takes place. As the
growth of the recirculation regions slows and during
eddy detachment, mixing within the recirculation re-
gions resembles mixing within closed streamlines; the
tracer homogenizes within recirculation regions and re-
sults in the migration of the tracer gradient toward the
edges of these regions, the jet axis on one side and the
far field on the other side.

In order to quantify tracer mixing, as opposed to stir-
ring, we conducted experiments with varying explicit
tracer diffusivities: k 5 0, 10, 100, and 1000 m2 s21

and respective Peclet numbers Pe 5 U0 R d/k 5 `, 6000,
600, and 60. The momentum field and initial basic tracer
field were the same for all the runs. We quantified the
mixing by binning both the PV and tracer concentrations
at each model grid point into six different bins. Assum-
ing u is either tracer concentration or PV, the bin bound-
aries are min(u) 1 (0, 0.1, 0.3, 0.5, 0.7, 0.9,
1.0) · [max(u) 2 min(u)]. At each time step we compute
the fluid mass within each bin (i.e., tracer mass). The
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FIG. 11. Time evolution of the volume of PV and tracer bins. The volume in each bin is represented by
the distance between two consecutive lines, from lower values up, with the bold line denoting the total
cumulative volume in all the bins, which is constant. For example, the volume in the fourth bin (0.5 , u
, 0.7) is given by the distance between the fourth and third lines from the bottom. Change in the distance
between two lines denotes conversion of water and hence net mixing. Tracer volumes are given for Pe 5
60 and 6000.

conversion of fluid from one bin to another can only
occur if mixing is present and represents the net amount
of fluid converted and is a lower bound to the actual
volume of water changing its tracer value. This analysis
is similar to Nakamura’s (1996) formulation of tracer
mixing in area coordinates.

Tracer mass conversion intensifies at t 5 200, about
when the primary instability equilibrates, and continues
at a rapid rate (almost exponentially) until t 5 290 when
eddy detachment occurs (Fig. 11). The tracer is observed
to mix sooner in the upper layer due to the presence of
the recirculation regions. For PV, less mixing occurs
initially in the upper layer than in the lower layer since
initially there is no PV gradient in the vicinity of the
critical lines in the upper layer (the only PV gradient
is at the front). Until t ; 290 mixing is weakly depen-
dent on Pe, except for the bins of concentration adjacent
to the wall (where a no flux condition is applied, forcing
the tracer values to change). After t . 290 mixing is
Pe dependent.

5. Discussion and conclusions

We conducted a quantitative comparison of the La-
grangian mean and zonal-mean tracer-related quantities
derived from theory of inviscid flows with results from
a numerical model. For small-amplitude meanders we
find good quantitative agreement between theory and

numerical model results. The Lagrangian zonal accel-
eration did not compare as well near the jet center. We
believe this is due to contamination of the mean by
modification owing to viscous effects on the jet, which
are not included in the theory.

Comparison of QG and SW reveals that the QG model
does well in predicting the magnitude and direction of
Lagrangian and tracer quantities. Differences in the re-
sults arise from the differences in the basic state between
the two cases. This result is consistent with BT’s result
that the baroclinic evolution of the front is weakly de-
pendent on the Rossby number.

Both the tracer and Lagrangian analysis support the
following mixing scenario for a baroclinically unstable
jet: in the initial phase of the instability, recirculation
regions located at the critical lines in the upper layer,
grow exponentially, and entrain new fluid. At this stage,
in the upper layer, there is little dependence of mixing
on Peclet number (Fig. 11). As the baroclinic instability
equilibrates, fluid is found to mix vigorously within the
recirculation regions with continuous (yet slower) en-
trainment of new fluid into these regions. Mixing causes
tracer gradients to migrate toward the edge of the re-
circulation regions and a strong property gradient is
maintained at the meandering jet and at the outer edge
of the recirculation regions. The zonal mean gradients,
however, are reduced when the recirculation regions
from both sides of the jet meridionally overlap (and yet
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they continue to be zonally separated, Fig. 10). The
recirculation regions continue to grow algebraically un-
til barotropic shear destroys the coherent flow; eddies
detach, and a cascade of secondary instabilities ensues
(BT). After eddy detachment occurs, mixing is found
to depend more strongly on the value of the Peclet num-
ber (Fig. 11).

In the lower layer there are initially no recirculation
regions and consequently very little mixing occurs. In-
tense lower-layer mixing does not take place until after
the lower-layer jet accelerates.

Until eddy detachment, the mixing pattern is consis-
tent with that predicted from two eddy diffusivity terms.
At the critical lines, where and are present, thereyy xyk kn n

is stretching and folding causing enhanced mixing,
which is weakly dependent on the value of the tracer
diffusivity. Where only stretching is present, as in the
lower layer, mixing is significantly smaller.

Shepherd (1983) found that QG models with different
basic states were similar in their Eulerian structure, yet
quite different (in direction and magnitude) in their
GLM velocity and attributed the difference to the chang-
es in the structure of the basic-state shear. Similarly we
find that changes in the shear between the basic states
of QG and SW result in a bigger difference between
the mean Lagrangian velocities of the two models than
between the Eulerian mean velocities (compare Fig. 4
here with Fig. 2 in BT).

As the instability equilibrates and growth becomes
algebraic, the fluid within the recirculation regions mix-
es in a process similar to, but faster than, tracer ho-
mogenization within closed streamlines, which was
found to be initially proportional to Pe2/3 (Rhines and
Young 1983). When the recirculation regions detach to
form eddies, the theory of tracer homogenization within
closed streamlines should apply within them, and in-
deed, we notice a dependence of the mixing rate on the
Peclet number (Fig. 11).

Plumb and Mahlman (1987) found the zonally av-
eraged eddy diffusivity tensor to be a good predictor
for the rate of mixing observed in most regions of a
three-dimensional atmospheric GCM. As in our case,
their diffusivity tensor does not include the term kxy.
The disagreement, we believe, stems from the flows
under study. While we analyze the tracer evolution in
a free, localized unstable flow, Plumb and Mahlman
(1987) analyzed tracer evolution in an equilibrated,
forced dissipative system.

The PV structure of our model is such that there are
no dynamical critical lines. The PV equation is regular
at the upper layer’s critical lines because the PV there
has no gradient. Inclusion of such a gradient may affect
the results since additional unstable modes may be pres-
ent. However, studies of similar baroclinic jets on a b
plane suggest that the dynamics are similar (Ikeda 1981;
Wood 1988). Also, if a gradient in PV occurred there,
one would expect it to be reduced by the same processes
that cause the tracer to mix due, possibly, to breaking

of modes associated with critical lines. The kinematics
of tracers and Lagrangian particles are therefore not
expected to change qualitatively but possibly quanti-
tatively. While it has been shown that, for a neutral wave
to exist, a critical line must coincide with a region of
constant PV, unstable waves can have critical lines in
regions of PV gradient (Lozier and Bercovici 1992; Pratt
et al. 1995).

Despite differences in their dynamics, we find simi-
larities between a snapshot of tracer distribution prior
to eddy detachment in our model (Fig. 10) and tracer
distributions in barotropic and equivalent barotropic jet
models that are either stable or equilibrated (e.g., Ro-
gerson et al. 1996, manuscript submitted to J. Phys.
Oceanogr.). In all cases finite-amplitude waves create
recirculation regions around which the critical lines lie
and within which the tracer recirculates. In order for
mixing to occur within stable barotropic and equivalent
barotropic jets, a second wave is needed that causes a
recirculation region to exchange fluid with its surround-
ings. In our case, temporal growth of the unstable mode
supplies the recirculation regions with new fluid. Mixing
within the recirculation regions in all models will de-
pend, among other factors, on the tracer diffusivity and
on the rate of supply of new fluid into the recirculation
regions.

For a single stable wave the meridional Stokes drift
vanishes. As one reviewer remarked, when more than
one wave is present, correlations between the waves
may result in a Stokes drift. However, since the waves
have different phase speed, two critical lines will exist,
changing the geometry of the problem. Still, it is con-
ceivable that GLM theory may be generalized to cases
where stirring occurs when more than one stable wave
is present. It would be interesting to see how predictions
of such a calculation compare with those derived from
the theory of dynamical systems.

The theory and the model both point at the different
structure of the Lagrangian mean and Eulerian mean jet.
We find the GLM zonal velocity to be faster than the
Eulerian mean zonal velocity on the north side of the
front and slower on the south side (Fig. 5, } 2L Lu unt n

) for an intermediate O(1) Rossby number jet. While0un

such an analysis has not been attempted with Gulf
Stream floats, there is an indication that downstream
velocity averaged over floats differs from Eulerian mea-
surements, even though the overall structure of the jet
in streamline coordinates changes slowly downstream
of Cape Hatteras. For instance, a suggestion of the dif-
ference between Eulerian and Lagrangian structure of
the stream may be found in the analysis by Song et al.
(1995), who calculated the downstream float velocities
of 64 RAFOS floats adjacent to the 14.58 isotherm.
Downstream velocity maps averaged over floats present
in either meander crests or troughs (their Fig. 10) show
an inflection point in the downstream on the anticyclonic
shear side of the jet (north), which was more pronounced
for floats at crests. Although this average over floats is



FEBRUARY 1999 301B O S S A N D T H O M P S O N

not the same as the averaging used in GLM, it is based
on float velocities, as opposed to Eulerian measure-
ments. Eulerian velocity measurements of the down-
stream velocity above the 128C isotherm in the Gulf
Stream [e.g., Fig. 9 of Johns et al. (1995)] suggest that
the shear of the downstream current on either side of
the jet maximum is single signed along both isotherms
and isobars. Here we suggest that the difference between
the mean Lagrangian and Eulerian observations of the
Gulf Stream is due to the inherent differences between
them, as formulated by the Stokes drift in the small-
amplitude theory.

We find convergence of the centers of gravity of floats
to the critical lines (where the displacement are maxi-
mum) in the upper layer and to the location of the max-
imum in displacement in the lower layer. Freeland et al.
(1975) observed a migration of the centers of gravity
of floats toward areas of higher displacement (as quan-
tified by increased eddy kinetic energy) in the MODE
region.

Analysis of float trajectories, released within the Gulf
Stream, inferred that the PV front (Bower and Lozier
1994) or the jet axis (Song et al. 1995) provided a barrier
to float crossing. The two sites cannot be distinguished
with the available data (A. S. Bower 1997, personal
communication). While in our model no individual La-
grangian parcels crossed the PV front prior to eddy de-
tachment, we find that, averaged over lines of floats, it
is the location of the minimum in eddy diffusivity
(slightly south of the PV front in our SW model’s upper
layer) that separates centroids migrating north and south
to the maxima in diffusivity at the critical lines. The
role of the critical lines as the location where enhanced
stirring takes place and where fluid and Lagrangian par-
ticles are entrained seems robust in observations (Lozier
et al. 1997) as well as in previous theoretical work.
Besides being sites of enhanced two-particle dispersion
these regions exhibit vorticity, necessary for mixing.

The role of the critical surface in the distribution of
tracers in the vicinity of the Gulf Stream is suggested
by the distribution of O2; strong gradients are observed
at the surface close to the PV front while weaker gra-
dients are found on both sides of the stream. At depth
(27.8 . su . 27.0), both the PV and O2 fronts are
weaker (Bower et al. 1985). This distribution is con-
sistent with the presence of a critical (or steering) sur-
face within the jet where one would expect enhanced
stirring (Bower 1991; Pratt et al. 1995). On the north
side of the stream the location of such a surface may
be nearly parallel to isopycnals; on the south side this
surface is expected to be close to being normal to the
isopycnals, potentially contributing to enhanced dia-
pycnal mixing. The oxygen and PV sections of Bower
et al. (1985) indeed display a more homogeneous dis-
tribution on the southern side. However, surface effects,
such as deep winter mixing on the south side of the
stream, may confound this hypothesis. The strong prop-
erty front within the stream is consistent with mixing

occurring at the critical lines on both sides, ‘‘expelling’’
the tracer gradient to the vicinity of the jet’s axis.

There are several ways in which the dynamical frame-
work used here could be applied to analyze float data
in the vicinity of jets. First, all the components of the
diffusivity tensor could be computed in the framework
of a jet to establish the stirring geometry [Freeland et
al. (1975) computed the diagonal terms of the diffusivity
tensor from float data collected in the mode region].
Extending the analysis to spatially growing waves, using
temporal rather than spatial averaging [e.g., Cronin
(1996) for the Eulerian mean], may be of more appli-
cability to the Gulf Stream. For instance, analysis of
floats released at a single location relative to the stream,
but on different phases of the meander, may be used to
compute the Stokes drift.

The simple model introduced here lacks topography,
the b effect, continuous stratification, wind conver-
gence, and spatially growing dynamics (as opposed to
a reentrant channel), all of which may modify our results
with regard to a specific application such as the Gulf
Stream. However, the model’s simplicity provides in-
creased dynamical insight into the processes that affect
geophysical flows and floats and tracers within them.
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APPENDIX

Numerical Model Parameters

The numerical model used here was developed by
Hallberg (1995) and initialized with the basic state of

. The model grid (128 by 128 grid points)e 5 2/2Ï
contains three wavelengths of the most (linearly) un-
stable wave. We use a grid with Dx 5 Dy 5 0.247R d,
a time step, Dt 5 0.015Rd/U0, and R 5 U0 /n 5 5800,3R d

where n is the biharmonic momentum diffusion coef-
ficient.

Lagrangian floats within the model are advected ac-
cording to

d(x, y)
5 (u, y), (A1)

dt

solved using a fourth-order Runga–Kutta scheme. The
velocities were estimated within a grid box using a four-
point bilinear interpolation from the box’s corners. We
also used a nine-point nonlinear interpolation for com-
parison and found very little difference. We initialized
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the model with 21 zonal lines of floats symmetrically
distributed about y 5 0, and separated by 0.3R d from
each other. Each line of floats contained forty equally
spaced floats.

To compute the mean tracer evolution we added to
Hallberg’s (1995) model a tracer (x) advection–diffu-
sion equation solver for Dx/Dt 5 k¹2x, with a constant
diffusivity k, using an operator splitting method (Press
et al. 1992). Advection is performed using a positive
definite tracer advection scheme (Easter 1993) and dif-
fusion by a finite difference explicit scheme. No-flux
boundary conditions were applied at the channel’s walls.
The explicit tracer diffusivity k was varied from 0 to
1000 m2 s21 to assess its effect on mixing.

In addition to the explicit tracer diffusivity (k), there
is an implicit numerical diffusion in the numerical mod-
el (knum). This diffusion can be either positive or neg-
ative, varies with both time and space, and is strongest
where the advective velocity is perpendicular to the trac-
er gradient. Dimensional and numerical analysis suggest
that

2|u · =x |(Dx)
k } , (A2)num xo

where xo is a representative tracer concentration. The
theoretical maximum of the numerical diffusivity
max(u) · Dx occurs if a strong O(xo) discontinuity in
tracer concentration exists over a grid point perpendic-
ular to the maximum in jet velocity (the gradient is
parallel to the flow). Here, we initialize the model with
a concentration gradient perpendicular to the advection
velocity, with a gradient less than 0.01 tracer units per
grid point. The tracer is advected by the modeled flow
velocities, and its gradient is expected to stay largely
perpendicular to the direction of the flow. We therefore
expect that knum K 10 m2 s21 (e.g., Fig. 10). The small
sensitivity of the tracer fields to variation in Dx (not
shown) affirmed this point.
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