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ABSTRACT

Solutions and energetics for nonlinear geostrophic adjustment with an initial height perturbation of the order
of the total fluid depth are computed and compared to solutions derived assuming linear dynamics. Both
axisymmetric and zonally uniform profiles in 114- and 2-layer shallow-water models are considered. Nonlinearities
are present due to the finite perturbation in the initial depth and the nonzero centripetal acceleration. The
comparison yields differences in both the magnitude and the partition of energy. In the adjusted state of a
zonally uniform step, the total energy of the linear solution is a very good approximation to, and is slightly less
than, the total energy of the nonlinear solution. Less resemblance is found for a horizontally bounded perturbation
where for a positive (negative) perturbation in initial depth, the nonlinear final state has more (less) energy
than the linear one. Addition of a second layer increases the contrast between the linear and nonlinear solutions,
especially when one of the layers is shallow. In all the adjustment problems considered, the ratio of the adjusted
state kinetic energy to the potential energy released during the adjustment is smaller than or equal to /3. A
simple model describing the adjustment of a convective chimney illustrates the dependence of its energetics on
initial radius and depth. The available potential energy of its adjusted state is important because it determines

1521

the growth rate of baroclinic instability.

1. Introduction

Since Rossby (1937) first studied the adjustment of
a rotating fluid under the influence of gravity, many
studies of geostrophic adjustment have been performed
(for a review see Blumen 1972 and Gill 1982). In recent
years, interest in the problem has concentrated on ad-
justment in fronts (Ou 1984; van Heijst 1985), pen-
etrative convection (Killworth 1992; Hermann and
Owens 1993), and eddies (McWilliams 1988; Dewar
and Killworth 1990). In these studies the final (ad-
justed) state of the fluid is computed using its initial
state and conservation principles such as potential vor-
ticity (PV) and mass.

Gill (1976, 1982) studied the evolution of a fluid
with an initial zonal step in the surface elevation. Lin-
earizing for small perturbations, he calculated both the
initial transient and the final steady solution. He
showed that the energy lost during the adjustment is
radiated away as inertia—-gravity waves. Hermann and
Owens (1993, hereafter HO) have analyzed a similar
problem with an axisymmetric initial height anomaly.
Middleton (1987) calculated the energetics of the ad-
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justment of a linear zonally uniform and an axisym-
metric initial height perturbation as a function of the
initial perturbation spectrum. He hypothesized that the
linear results obtained should pertain to the nonlinear
adjustment of multilayered fluids. Since superposition
is not applicable to nonlinear solutions, assessment of
Middleton’s hypothesis has to be done on a case by
case analysis. The first step to testing this hypothesis is
to look at the adjustments of finite height perturbations,
which we present here.

While the adjusted state of a linearized adjustment
problem depends solely on the initial PV distribution,
the final state of the nonlinear problem depends on
both initial mass and momentum distributions. That
is, the source of the anomaly in PV is important. In
order to compare our results with previous studies, we
concentrate on adjustments in which the initial height
field is piecewise constant and the fluid is initially at
rest. The adjusted state is computed assuming conser-
vation of mass and PV for a hydrostatic, inviscid, and
Boussinesq shallow-water fluid. We revisit both Gill’s
(1976) and HO’s adjustments, allowing for order-one
height perturbation and centripetal acceleration.

An oceanic example of this problem is the geo-
strophic adjustment of a convective chimney. The mass
field is set by convection and then relaxes under gravity
(for a review see Killworth 1979, HO; and references
therein). Killworth (1992) studied the collapse of a
cylinder imbedded in an infinite layer (i.e., a 11/>-layer
model) in connection with convective chimney col-
lapse. Dewar and Killworth (1990) analyzed the same
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problem in a 2-layer fluid. In both studies, the nonlinear
terms in the momentum and mass equations were re-
tained. HO used both an analytic 11/;-layer linear ad-
justment model and a three-dimensional continuously
stratified nonlinear numerical model to study the
spreading and collapse of chimneys.

We extend the analytical models discussed above by

" allowing the cylinder to be connected to a deeper (fi-
nite) layer of fluid. This configuration is supported by
observations of convective chimneys (Anati and
Stommel 1970; Gascard 1978; Leaman and Schott
1991). We emphasize the energetics of the chimney’s
adjustment since its available potential energy (APE)
is the source of energy that could be converted, through
baroclinic instability, into smaller-scale geostrophic
motions. The growth rate of the instability is propor-
tional to the square root of the APE (HO and references
therein) and determines how soon the instability will
cause the break up of the chimney. This energy may
be reduced if a faster (than the instability ) geostrophic
adjustment takes place.

In section 2, we revisit Gill’s adjustment problem,
solving for the nonlinearly adjusted final state of an
initial step in both 114- and 2-layer shallow-water
models. In section 3, we study the adjustment of an
axisymmetric finite perturbation. Allowing for both
positive and negative height perturbations, we compare
our results to the results previously obtained for the
linear model (HO). In section 4, we introduce a simple
model of a convective chimney. This is a special case
of a more general model of a 2-layer axisymmetric ad-
justment derived in the appendix. In section 5, we
present the conclusions. .

2. Infinite step adjustment
a. The 11/-layer model

We first consider the adjustment of a step pertur-
bation in a 11/3-layer shallow-water model (Fig. 1 with
h; = ). The linear version is found in Gill (1982,
chapter 7.2). The lower layer is initially at rest, with
initial height ( H,) given by

{H219
Hz =
H223

y<0
>0 (1)
y s

with y positive to the north. After adjustment, PV con-
servation and geostrophy give

_f_ _ f—- Uy
Hy I (2)
Suy = —g'hzy, (3)

where k = 1, 2 with 1 denoting the south side of the PV
front, u the alongfont velocity, g’ the reduced gravity,
and f the Coriolis parameter. The subscript y denotes
differentiation (d-/dy). Combining these yields a sec-
ond-order ordinary differential equation (ODE) for u,:
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Fi1G. 1. Schematic for the adjustment of a zonally uniform 2-layer
step. The initial state (thin line) and the adjusted state (solid line).
The broken lines at y; and y, denote the locations of the PV fronts
after the adjustment (initially they are at 0), H denotes the arithmetic
mean of the lower-layer depth, 5 the deviation of the initial state
from the mean, Hy the initial depth of layer i at side k, A; the adjusted
depth of layer i, and H the total fluid depth. Notice that for both
layers the PV front moves towards the shallower water.

2

(4)

Uyyy — T U = 0.

Yy H2k gr
Denoting the position of the PV front as y,, and re-
quiring that the velocity be continuous there, the so-
lution of (4) is

AeDMa y oy VeHy
U =4 . with Ay = .
Ae~ Wi ys oy f
(5)
Using (2) and (5), the height profile is given by
1/2
H, — (flg_%l) Ae(y_n)/)‘z‘, Y <
hy = (6)

By continuity 4 = V?( VH,, — VH,,)is the maximum
velocity. Using mass conservation:

0 V2
f Hzldy= f hzdy (7)
the PV front position (),) is
Y2 = Aap — Az, (8)

the difference between the Rossby radii on either side
of the front. The shift in the position of the PV front
is in the direction of the smaller initial height and in-
creases with the perturbation. The shift of the PV front
and the resulting asymmetric height and velocity fields
is also seen in previous studies of nonlinear geostrophic
adjustments (Rossby 1937; Blumen 1967) in which an
initial momentum field was assumed.

To compare to results obtained for the linearized
adjustment we define the perturbation height n = ( Hy,
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— H»)/2, the mean height H = (H», + H»,)/2, and
the mean Rossby radius X = @/ f. The maximum
velocity of the linear jetis g'n/ f A, always smaller than
the nonlinear one. The kinetic energy (KE) of the ad-
justed state and the potential energy (PE) released dur-
ing the adjustment per unit length (APE) are

pg'\n?
2 y

KEsgf hu3dy = B

2(2X% + AiA)

where B =—= . s 9
32+ A2) ®)
_ _ _r8 [® 712
APE = PEinitial PEadjusted - 7 f {(HZ - H)
—(hz—ﬁ)z}dy=3KE. (10)

The energy of the linearized problem is recovered
in the limit of small height perturbation (5 — 0),
which gives B = 1. For any height perturbation, B is
always smaller than unity (2X = X\, + A3,); that is,
the KE of the nonlinear case is smaller than that of
the linear. This change is at most a few percent (B
is greater than 0.94 for the biggest perturbation, 7
= H), making the linearized KE a very good ap-
proximation to the nonlinear KE for all values of 7.
On the other hand, in the nonlinear case less energy
is released during the adjustment, so that the total
energy of the final state (TE) is bigger than that of
the linear case:

TEnonlinear - TE]inear = 2( I = B)KElinear = 0. ( 1 1)

This effect is once again not larger than a few percent.

Even though the nonlinear maximum velocity is
greater than the linear (=g'y/ f)\), its average decay
scale [(Az; + A2;)/2] is smaller than the linear scale
(M) and so is its height at the jet maximum so that
both the KE and APE of the nonlinear solution are

H2| +A1€(y_'v2)/)",
H,, +A2e(y—}’2)/>\2 + Bze—(y-YZ)/)\z’

Hy + B3e-(y—n)/>\3’

h2=

while the lower-layer velocity is found using PV con-
servation in the lower layer.

Continuous velocities and layer depth and mass
conservation result in six nonlinear equations in the
unknowns (A, A,, B, Bs, y,, and y,). This set of
equations is solved using a standard root-finding al-
gorithm (all of the numerical analysis in this paper
were done using the algorithms in Press et al. 1992).
For the case of a surface intersecting front (H = H»,),
where the upper-layer depth vanishes, the boundary
conditions are that /; and u, both vanish at y;.
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smaller than the linear. Note that the differences in the
Rossby radii result in the average PV of the linear jet
being greater than the nonlinear jet.

In both linear and nonlinear adjustments, the ratio
of the KE of the adjusted state to the PE released during
the adjustment is constant and equals 1/3. This ratio
has been found in previous studies of step-function
adjustments (see Middleton 1987 and references
therein).

b. The 2-layer model

We next analyze the adjustment of a step function
in a fluid with two layers of finite depth (see Fig. 1 for
initial conditions). The linear adjustment solution is
the same as for the 11/-layer fluid (Gill 1982, p. 194)
with the following changes: (i) the velocity solution
[Gill’s (7.2.24)] is now the solution for the shear (u;
— 1) and (ii) the height scale (e.g., in the Rossby ra-
dius) is the internal height [H,H,/(H, + H,), where
H; is the mean depth of the ith layer]. The absolute
velocity in each layer is found by requiring that there
be no barotropic transport. The nonlinear solution is
found, as in the previous section, using PV conserva-
tion and geostrophy in each layer and assuming a rigid
lid, leading to a second-order ODE for the lower-layer

depth:
f 2
il

with k denoting the side of the PV front (1 is south)
and H the total depth. Solving (12), denoting the lo-
cations of the PV fronts in each layer by y; with the
boundary condition that A,(+c0) = H,, (we assume
without loss of generality that H,, > H,,) we find for
the lower-layer height:

f* H
mt+l 2o
2 " Hyx 0

Hoy + Hl,k)
g

(12
Hyy-Hy g )

h2yy -

y<wn N=VgH Hy/H/f
<y<y M=VgH,H, [(Hy,+ Hy)/f

\s=Vg'H,Hy,/H/f,

(13)
Y2 <y

The height and velocity profiles in each layer resem-
ble the one found for the 11/5-layer model above (with
opposite velocities in each layer, shifts of the PV fronts
and asymmetries ). Unlike the linear solution, the non-
linear solution has a zonally confined along front baro-
tropic transport associated with it.

The energies for the linear problem are given by

H H
KEjayert = ﬁ G, KEpyen = ﬁl G, APE = 3G,

(14)
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FIG. 2. Energy ratio (B == KEqoniincar/ KEiincar = APEnonincar/ APEjinesr) as
a function of the interface mean depth (H) and the perturbation-height
(), both scaled by the total fluid depth H. The broken line divides the
figure into H = 0.5 (lower left side) and H < 0.5 (upper right side). By
symmetry the energy ratio is the same for H and 1 — A.

where

p& A\n*
2

H; + Hp H\H,
- |Hy — Hx|
-

G= , Hj= 7

¥

BE

A , and

For a given initial perturbation height (7), the KE in
each layer increases as the layer depth decreases.
As in the 1l/3-layer solution, for both linear and
nonlinear solutions the ratio of total KE to APE is
" 1/3. Both the total KE and APE of nonlinear adjust-
ment are less than that for linear adjustment (Fig. 2),
with (11) still holding. Here B (=KE,oniinear/ KEiinear
= APE ontinear/ APEjincar) decreases more rapidly with
increasing perturbation height () when the mean
_depth of the interface (H, see Fig. 1) is close to the
upper or lower boundary. The nonlinear KE can be as
small as 40% of the linear value, a much larger differ-
ence than the mere few percent in the 11/>-layer model.
The linear solution is no longer a good approximation
when 7 becomes larger ( B less than 90% for n = 0.1)
and when the mean interface between the layers is close
to the top or the bottom of the fluid. The energy ratio
can be explained as the result of the different Rossby
radius of the linear and nonlinear jets near the fronts
as in section 2.

3. Adjustment of an axisymmetric “top hat”

We now turn our attention to an axisymmetric con-
figuration in which an additional nonlinearity is present
due to the flow curvature. The final state is in cyclo-
geostrophic rather than geostrophic balance. For the
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analysis we use a Lagrangian method first introduced
by Rossby (1937). We prefer this method over the Eu-
lerian approach used above because mass conservation
appears in the form of a differential rather than integral
equation. The approach used is similar to the one in
Killworth (1992). The 11/-layer (Fig. 3 with #; = o0)
shallow-water equations of motion in cylindrical co-
ordinates are

dv, v2 oh;

o 28 _ = —g—2 1

dt r Vo 8 or (13)
dv(, v,V
— + fv, =0, 16
a7 So (16)

where v, denotes the radial and v, the azimuthal ve-
locity. The Lagrangian mass conservation is given by
hzrdr= Hzri’zdri’z, (17)

with r; ; denoting the initial position of the fluid parcel
and H, its initial height. The angular momentum con-
servation equation is by (16) (dropping the subscript

2):
Jr
dt(rv(,-O- 2) 0.

We integrate ( 18) to obtain v, and together with dh/
dr(17), nondimensionalization of depth with the mean
depth H = (H,, + H»)/2, of the horizontal length
scale with A = VEI?/ £, and of time with f, (16) gives

(R
dar* rH|4|\r dr, dr
1 (dny, 1 d
r\ dr r dr’

The second term on the rhs drops out for our choice
of initial conditions (Fig. 3) and (19) is integrated on

(18)

(19)
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F1G. 3. Schematic for the adjustment of a two-layer axisymmetric
perturbation. The initial state (thin line) and the adjusted state (solid
line): r, and r, denote the new location of the PV front (broken line)
in the upper and lower layers (both were initially at ry). The domain
is divided into three region according to the PV distribution in both
layers. The mean depth is H;, and the initial perturbation height is
7. Notice that for both layers the PV front moves towa:ds the shallower
water.
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FIG. 4. Energetics of the linear axisymmetric 11/5-layer adjustment

model. The energies are scaled by the initial potential energy PE;
= wpg'n’r3/2 and are given as function of the initial perturbation radius

(ro) scaled by A = @/f-

both sides of the PV front. The boundary conditions
are r;(r = 0) = 0, r; is continuous everywhere, dr; /dr
has a jump given by (18) at 7y, and r; = r at infinity.
Notice that r(r,) is not known a priori and that, at the
origin, (19) is singular, and so we expanded the solution
there. Here r(rp) is found using a numerical integrator
combined with a root finder, similar to Killworth’s
(1992) approach.

The linear solution was found by HO. The normal-
ized (by the initial PE) potential and kinetic energies
as function of the initial perturbation radius (7y) are
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presented in Fig. 4 (see Middleton 1987 for a detailed
explanation of the linear energy profiles).

The ratio of nonlinear to linear energies is shown in
Fig. 5. This ratio is different for the PE and KE. As
with the geostrophic adjustment, for the cyclogeo-
strophic adjustment positive (negative) initial pertur-
bations are associated with anticyclonic (cyclonic) ad-
justed circulation. The KE ratio exceeds unity for wide
and positive (r, > 2, n > 0) or narrow and negative
initial perturbations (r, < 1.5, n < 0). It is less than
unity for all other cases. The PE ratio is less than one
for positive n and larger than one for negative n. The
total energy ratio has a similar distribution to the PE
ratio for 7y > 0.4 and is therefore not shown.

Two effects determine the observed ratios: the PV
front shift of the nonlinear solution and the depth used
in the KE calculation. The shift is outward (inward)
for positive (negative ) initial anomaly, increasing with
the anomaly’s radius (Fig. 5¢). Thus, in the nonlinear
solution the height anomaly will spread further out
(in) than the linear solution for a positive ( negative)
anomaly, which results in a smaller (larger) than unity
PE ratio. Due to the shift, the linear solution will have
larger (smaller) angular velocities for positive (nega-
tive) height anomalies thus resulting (since by mass
conservation the average height is the same in both
solutions) in a smaller (larger) than unity KE ratio.
However, as r, becomes large compared to the Rossby
radius, the height and velocity fields of nonlinear
and linear adjustment become similar. Since, in the
nonlinear case the total height is used when com-
puting the KE (KEontinear oc [ Av?rdr) while, in the
linear case, the average height (H = H,,) is used
(KEjinear cc H [ v2rdr), the KE ratio will change as
h/H, being smaller (larger) than unity for negative
(positive) perturbations. When the same analysis was

a) Kinetic energy ratio b) Potential energy ratio c) PV front shift
f ' 4 4 ~—7z_]
~ ~ 3 s 3
£ £ £
= - =]
) B, 52
2 & .g
g g 8
2 B=1 0.8 s
2 £ -g 1 0.3 1
E = g
(=1
& 0 & ob—+1 0 ]
\‘%.1 0. 12 03
M 4 /——#-f )
-09 —— - - 09
09 2 3 4 5 095 2 . 3. 4 T 2 3 4 5
perturbation radius (r,) perturbation radius (r,) perturbation radius (r,)

FIG. 5. Energy ratio between the nonlinear and linear solutions and the potential vorticity front shift for the nonlinear solution: (a)
contours of KE ratio, (b) PE ratio, and (c) PV front shift (scaled by A = V¢H/f'). All are contoured as a function of the perturbation height

7 (scaled by H), and the initial perturbation radius r, (scaled by \).
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performed for a finite, zonally uniform perturbation,
adjusting geostrophically (rather than cyclogeostroph-
ically) a similar energy ratio was found, indicating that
one does not need to invoke cyclogeostrophy to explain
the energetics. Killworth’s (1992) model is a special
case of the above model and can be recovered in the
limit of > 1.

Notice that in the linear adjustment, since PV is
conserved locally while mass globally, fluid from the
deep side (with low PV) is transfered to the shallow
side (with high PV) increasing the amount of fluid
with high PV.

4. The intersecting front solution, a model of a
convective chimney

Observations of penetrative convection ( Anati and
Stommel 1970; Gascard 1978; Leaman and Schott
1991) indicate that the bottom layer (or a deep inter-
mediate layer) reaches all the way to the surface during
the mixing phase. A geostrophically adjusted solution
(Fig. 6) is the simplest representation of the initial col-
lapse of a convective chimney that retains essential
features of the dynamics. The solution also supplies
an estimate- for the amount of energy that radiates
away during the initial geostrophic adjustment (even-
tually the chimney may break up due to baroclinic
instability ). v

A general equation for 2-layer axisymmetric adjust-
ment model is derived in the appendix. The chimney
model is a special case of this model and therefore will
not be derived here. It consists of (A3) and (A4) with
H,, = H and the additional boundary conditions that
ro=roand dry/dr =0 atr = r,(solving for r = r,). As
expected and observed (Leaman and Schott 1991), the
upper layer has a cyclonic circulation, while the lower
an anticyclonic circulation. The energetics of the ad-
justed state (normalized by the initial PE) and the
frontal shift are presented in Fig. 7. The normalized
KE and PE depend mainly on the normalized initial
chimney size and are weak functions of the upper-layer
depth, particularly for small perturbations (their ab-
solute value does depend on the upper-layer depth since
the initial potential energy is PE; = wpg'n*r3/2). The
normalized upper-layer PV front position (Fig. 7¢) de-
pends on the perturbation radii while the lower-layer
PV front position (Fig. 7d) depends mainly on the
depth of the upper layer. This is due to mass conser-
vation of fluid with the chimney’s initial PV. The up-
per-layer fluid extends horizontally to infinity, and thus
its normalized shift (by the upper-layer Rossby radius)
can be expected to be of order one.

The ratio of KE to PE released asymptotes to 1/3 as
the initial radius grows. (It is above 0.3 for 7o = 2.1.)
For a chimney of normalized (as above, by A, ) initial
radius of 1, about 50% of the initial energy is lost, while
for a chimney twice that size, less than 30% is lost (Fig.
7). Typical chimneys have radii on the order of 1-16
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FIG. 6. (a) Schematic for the adjustment of a convective chimney:
the initial state (thin line) and the adjusted state (solid line). (b) A
representative velocity profile in each layer (in arbitrary units): r, and
r, denote the new location of the PV front (broken line) in the upper
and lower layers (both were initially at r,). Notice that the circulation
is reversed between the layers. :
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Rossby radii, the smallest observed in the Weddell Sea
and the largest in the northwestern Mediterranean
(Killworth 1979). Figure 7 also reveals that, the broader
the initial perturbation is, the less of its normalized
initial PE is lost.

5. Summary and discussion

We have examined solutions for the fully nonlinear,
finite Rossby number geostrophic-adjustment problem,
in both two-dimensional and axisymmetric geometries.
For the 11/>-layer zonally uniform step adjustment, the
linear solution is an adequate predictor for all values
of the initial height jump, but this is not true for the
2-layer step adjustment and for adjustments of pertur-
bations having finite horizontal extent. The agreement
found for the step 11/>-layer solutions results because
the linear and nonlinear models have the same initial
height scales with only slightly different Rossby radii.

Introduction of a second active layer and/or finite

width introduces different Rossby radii for the linear
and the nonlinear models. Thus, Middleton’s (1987)
hypothesis that the linear results will pertain to the
nonlinear problems holds only for small initial height
perturbations and the 11/>-layer zonally uniform step
adjustment. However, the ratio of final KE to the PE
released during the adjustment is 1/3 for all broad dis-
turbances in both the linear and nonlinear adjustments.
In linear adjustments some of the fluid converts from
low to high PV, increasing the volume of fluid with
high PV. This feature should apply to linear adjust-
ments of mass in a continuously stratified fluid.
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FIG. 7. Energetics and frontal shift for the axisymmetric intersecting front adjustment. The
energies are scaled by the initial potential energy PE; = mpg'n*r3/2: (a) KE, (b) PE, (c) upper-layer
PV front shift, and (d) lower-layer PV front shift. The shifts are scaled by A; = Vng/f All are
contoured as a function of the perturbation height 5 (scaled by H) and the initial perturbation

radius ry (scaled by A;).

A simple 2-layer model was derived to estimate the
energy lost during the adjustment of a convective
chimney. The energetics (normalized ) do not depend
strongly on the vertical extent of the upper layer. The
dependence on initial radius is very strong for narrow
chimneys [ found also by McWilliams (1987) for in-
ternal eddies].

To determine if it is possible to reach the steady-
state solutions described above, it would be necessary
to study the transient development of the system. We
know that the nonrotating nonlinear infinite-step
problem contains a hydraulic jump (Kevorkian 1989,
p. 421). If one exists in the rotating solution, it will
alter our assumptions about conservation of angular
momentum and potential vorticity, thus affecting the
energetics. However, the transient linear solution (Gill
1982; HO) does not have a hydraulic jump. Houghton
(1969) found that formation of hydraulic jumps is de-
layed in rotating fluids. If this is the case, then diabatic

effects will occur away from the potential vorticity front
(since the wave front will have enough time to disperse)
and will dissipate energy without affecting the finite
region of PV anomaly. Killworth’s (1992) investigation
of the time-dependent cylinder collapse supports the
assumption that the final state is well approximated by
the method used in this paper. Another caveat may be
that some of the released waves stay trapped inside the
adjusting region (due to the velocity shear, Kunze
1985), preventing the steady-state formation. The
available linear (Gill 1982; HO) and nonlinear (Kill-
worth 1992) time-dependent solutions do not support
this scenario.

Both models and observations suggest that the final
breakup of a chimney is due to baroclinic instability
(Killworth 1979, Gascard 1978, and HO, to name a
few). The timescale of such an instability in the ocean
is on the order of 5-10 days. For a 2-layer system un-
dergoing geostrophic adjustment the maximum growth
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rate is fn/H (i.e., a timescale of H/fy, HO), with g
being the initial perturbation height and H the average
layer depth. The geostrophic adjustment timescale for
a chimney of horizontal extent L and internal depth
His 7, = L*f/xg'H (HO; Middleton 1987). For a
chimney of horizontal extent L = «+ X (A, the internal
Rossby radius), the timescale reduces to 7, = o2/ xf.
The ratio between the geostrophic adjustment to the
instability timescale is therefore a?y/wH. Narrow
chimneys with small vertical extent can therefore adjust
before instability develops, and since they radiate en-
ergy, the instability’s growth can be considerably
slowed. Broader and taller chimneys will take longer
to adjust, having large-amplitude internal waves that
propagate slowly (HO; Saint-Gully 1972). These
chimneys will become baroclinically unstable long be-
fore they adjust geostrophically. Barotropic shear in-
stability may be expected for chimneys that are narrow
and tall due to their adjusted high velocity shear (which
. can be inferred here from their high KE). The growth
rate of barotropic instability is proportional to the shear
(Gill 1982).

Baroclinic instability is expected in all the two-di-
mensional configurations presented here, since all have
a reversal of PV gradient between the top and bottom
layers. The intersecting front is a special case of the 2-
layer configuration and is thus expected to become un-
stable too.
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APPENDIX
Two-Layer Axisymmetric Model

For a 2-layer axisymmetric disturbance (Fig. 3), the
derivation is similar to that of Dewar and Killworth
(1990). However, where they find a linear ODE, we
get a nonlinear one. Dewar and Killworth’s (1990)
configuration is a special case of the one presented here.
Combining the 2-layer azimuthal momentum equa-
tions 1n steady state gives

vi— 03

dny

dr’

where subscripts denote layer (1 being top) and v is
the azimuthal velocity. Angular momentum conser-
vation implies

+f (v —v)=g (A1)

ro, 4 2 S

J 2 25 j=1,2,

(A2)
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where r; is the initial position of the particle (column
of fluid) and j is the layer in which it resides. We use
the following notation, after Dewar and Killworth
(1990):

2 2 2
Ti Yia To
PE—’, PE—’, PE—,
) ) 72
oo
q_2a qt'—za dp 2‘

Using these relations with (A1), (A2) and mass con-
servation (17) in the upper layer,

'Hy d’Py _ 1
bl (R CEl

1
+ 2_q (P, — P). (A3)

The domain is divided into three distinct regions
(Fig. 3). The extent of region II will be determined by
whether the anomaly is positive (g, < g,) or negative
(g, > g»). We will assume a positive anomaly (H;,
> H»); the derivation is similar for a negative one.
We solve for P, in each of the three regions by inte-
grating the corresponding Lagrangian mass equation
(HydP;/dq = h;), adding them and matching at the
PV boundary,

q<4q. H> P, =Hq— H, P
G <qg<gp: HyP,=Hq— H; P, +(H;;— H,)P,
a<q: Hy»P, = Hqg— Hix Py

(A4)

where H is the total depth. Substituting (A4) into (A3)
gives a second-order ODE for P, in each region. A
priori ¢, and g, are not known but can be found nu-
merically using the following boundary conditions:

at ¢g=0, P =0
at g=q, Pi(q7)=Pi(q/) and %z%%
at ¢ = g5, Pi(q3) = Pi(g}) and ;Z:; B j_;:li
at g — oo, “%-» I
(AS5)

Since we solve a second-order ODE, we need only one
boundary condition at each end. The two additional
boundary conditions are used to determine the position
of g, and g,. Dewar and Killworth’s (1990) case is re-
covered taking H,, = H; = H.
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