Plankton and Particle Size and Packaging: From Determining Optical Properties to Driving the Biological Pump

L. Stemmann and E. Boss

1Université Pierre et Marie Curie (UPMC), Paris 06, UMR 7093, Observatoire Océanographique (LOV), F-06234 Villefranche/Mer, France; email: stemmann@obs-vlfr.fr
2School of Marine Sciences, University of Maine, Orono, Maine 04469-5706

Keywords
marine particles, biological pumps, size distribution

Abstract
Understanding pelagic ecology and quantifying energy fluxes through the trophic web and from the surface to the deep ocean requires the ability to detect and identify all organisms and particles in situ and in a synoptic manner. An idealized sensor should observe both the very small living or dead particles such as picoplankton and detritus, respectively, and the large particles such as aggregates and meso- to macroplankton. Such an instrument would reveal an astonishing amount and diversity of living and nonliving particles present in a parcel of water. Unfortunately such sensors do not exist. However, complex interactions constrain the space, temporal, and size distributions of these objects in such ways that general rules can be inferred from the measurement of their optical properties. Recent technological developments allow for the in situ measurement of the optical properties and size distributions of particles and plankton in a way such that synoptic surveys are possible. This review deals with particle and plankton size distributions (PSDs) as well as how particles’ geometry and nature affect their optical properties. Finally, we propose the integration of the PSD into size-structured mathematical models of biogeochemical fluxes.
INTRODUCTION

A central goal of biological oceanography during the past two decades has been to understand the factors that control the fate of particulate organic matter produced in the ocean mainly to quantify the vertical flux of carbon to the deep sea. In the open ocean, the first building blocks of organic particles can be produced through different pathways among which primary production is the most important. Thereafter, zooplankton of increasing size consume these particles and produce other particles, leading to the production of larger detritus as waste products of the pelagic ecosystem functioning (fecal pellets, molts, dead bodies) (Alldredge & Silver 1988, Sheldon et al. 1972). A second pathway consists of the direct physical coagulation of phytoplankton cells and other particles into larger aggregates (Jackson 1990, McCave 1984). Transparent exopolymer particles are major agents in the aggregation of particles binding the different constituents into marine snow particles (Alldredge et al. 1993). Opposed to the aggregation processes, other processes such as bacterial solubilization and zooplankton activities or physical fragmentation tend to reduce particle size. Therefore, observed particle size distributions generally reflect the net result of aggregation and disaggregation processes.

Dominant processes that affect particle concentrations include production, coagulation, consumption/solubilization, and settling. Size is an important particle property affecting all these processes. Particle diameter can be a determinant of multiple physical properties such as settling speed or flux (Alldredge & Gotschalk 1988), coagulation rate (Jackson 1990, McCave 1984), biological properties such as the rate of colonization and use by microbes and zooplankton (Kiørboe 2000; Kiorboe et al. 2002, 2004), and biogeochemical activity such as aggregate remineralization by bacterial activity or zooplankton consumption (Kiørboe & Thygesen 2001, Ploug & Grossart 2000, Ploug et al. 2008a). In addition, many ecological traits (including population abundance; growth rate and productivity; as well as trophic, competitive, and facilitative relationships between species) as well as metabolic processes are correlated with body size (Brown et al. 2004; Gillooly 2000; Gillooly et al. 2001, 2002). Furthermore, because most marine organisms are highly opportunistic feeders and because prey size is limited by the allometric diameter of a predator’s mouth, predator-prey relationships can be, in many marine systems, determined by size (Hansen et al. 1997, Jennings & Warr 2003). In addition, a predator’s ability to visually detect prey is dependent on the available light (Aksnes et al. 2004, Sornes et al. 2008), which in turn is primarily dependent on light absorption by particles. Hence, because the size of organisms or particles captures so many aspects of ecosystem functioning, it can be used to synthesize a suite of covarying traits into a single dimension (Woodward et al. 2005).

Ocean carbon sources and sinks are controlled by both physical and biological processes that act at various temporal and spatial scales. Based on global biogeochemical modeling and on the use of paleoproxies from sedimentary archives, the surface production and downward settling of biogenic particulate matter from the euphotic zones of the ocean to the deep sea and ultimately to the sediment—a process termed the biological carbon pump (Volk & Hoffert 1985)—contribute significantly to climate variability (Sarmiento & Le Quere 1996). However, the uncertainties in our understanding of the biological pump’s functioning in today’s oceans remain important. Recent reviews about the export of biogenic particles to the deep ocean showed that there is no consensus regarding the mechanisms controlling its spatial and temporal variability (Boyd & Trull 2007). Observing particle and plankton size distributions (PSDs) in a synoptic manner could help to better understand the processes contributing to the biological pump. Novel sensors have provided in situ information that was not available beforehand to understand and quantify the functioning of the biological pump (Finlay et al. 2007; Gallienne & Robins 1998; Gallienne et al. 2001; Gorsky et al. 1992b; Herman et al. 2004;
Huntley et al. 1995; Stemmann et al. 2002, 2008b). Great improvement in our knowledge of pelagic ecosystems is, therefore, expected in the next decade because these instruments are miniaturized and could eventually be used on autonomous platforms (Johnson et al. 2009), increasing significantly the temporal and spatial coverage of such measurements.

The scope of this review is to provide insights into the impact of particle size on the light field in the sea and the dynamics of particles and plankton as revealed by the measurement of their size. This review deals with particle and plankton size distributions, the impact of particles’ packaging and composition on their optical properties, new or recent in situ instruments, and the need for global observation of PSD. Finally, we propose the integration of PSD into mathematical models of biogeochemical fluxes.

CONCEPTUAL MODELS FOR PARTICLE AND ZOOPLANKTON SIZE DISTRIBUTION

From the sensor’s perspective, any detected object is a particle, living or not. Living particles can be heterotrophic bacteria, phytoplanktonic, protozoa, and larger zooplanktonic organisms. For clarity, throughout this review, the term PSD is used for nonliving and living particles unless otherwise specified; particle is used to indicate phytoplankton cells as well as individual nonliving particles and aggregates, excluding metazoan organisms. A convenient way to analyze the size properties of plankton and particles is to first sort them according to their size and then compute a size-distribution histogram. Size can be expressed in terms of many descriptors such as length, volume, mass, carbon content, etc. This section presents the conceptual and mathematical frameworks used to calculate the size spectra of zooplankton and particles, following numerous other works (Gaedke 1992, Huntley et al. 1995, Jackson et al. 1997, Jennings et al. 2007, Martin et al. 2006, McCave 1984, Milligan 1996, Sprules & Munawar 1986, Vidondo et al. 1997, Zhou & Huntley 1997). In the discussion below, the term size usually refers to diameter (d) as determined from images, and in most cases, this diameter is measured as the equivalent spherical diameter (ESD, the diameter of a sphere of equivalent volume).

Conceptual Model for Particle Size Distribution

Particles range from individual cells through chains to assemblages of highly degraded detritus forming aggregates; they can be formed directly by biological processes such as cell division and fecal pellet production or indirectly by coagulation of particles due to differential settling and turbulence. Marine aggregates are a key factor in the ocean’s carbon cycle at different scales. At the macroscale, marine aggregates are an important means of transferring carbon downward to depth by way of sinking (as they sink faster than their component particles). At the microscale, they provide dissolved and particulate food to micro- and macro-organisms living in the aphotic layer of the ocean (Allredge 2000, Lampitt 1992, Lampitt et al. 1993). Aggregates are an especially important nutritional source for benthic communities, which are the ultimate recipients of the flux (Smith et al. 2009).

Particles found in oceanic ecosystems range in diameter from 1 nm (almost-dissolved colloids) to a few millimeters (diatom chains) or centimeters (cyanobacterial filaments). Three size classes of organic aggregates have often been distinguished in the past: macroscopic aggregates (d > 500 μm) (typically, marine snow), microscopic aggregates (1 < d < 500 μm) (also known as microaggregates), and submicron particles (d < 1 μm) (Simon et al. 2002). Their sizes can depend on the trophic state of the planktonic system, on the season, and on the geographic region. Their composition is very complex and can vary from being individual algal cells to being
composed of multiple particles (such as zooplankton feces or molts or mineral material) embedded in a mucilaginous matrix (Alldredge & Gotschalk 1988). The large size range covered by these organic aggregates implies that many complex physical, chemical, biological, and specific microbial processes are involved in their formation and decomposition (Alldredge & Silver 1988). Most aggregates are fragile, making obtaining their size measurement difficult because either handling or the flow associated with instruments disrupts their structure (Gardner et al. 2003). Hence, the best instruments for measuring their size are those that make measurements in situ in undisturbed water.

PSD is usually estimated by counting the number of particles within a given particle length range and dividing that number by the length range and by the volume of water sampled. Because size can be measured with optical techniques, many marine particle studies measure particle distribution as a function of length such as, for example, the ESD based on optical cross-section or electrical resistivity (Jackson et al. 1995, Stemmann et al. 2008a). However, for aggregates, this relationship is not simple because of their inherent heterogeneity. First, aggregates have a significant water fraction, which increases with their size, and second, many aggregates are formed from different components, each with a different density. The measures of particle size depend on the measurement techniques, which measure different physical properties, making size comparisons very difficult. Accurate and homogeneous particle size measurements are nevertheless required to use PSDs as ecological indicators. Therefore, careful experiments and mathematical frameworks must be developed. For example, a Coulter counter measures the change in electrical resistance when a particle passes through an orifice. The resistance is approximately proportional to the solid particle volume (the conserved volume) and excludes any water between the solid parts of an aggregate. The diameter of a sphere with such a conserved volume is the conserved diameter, \(d_c \). The diameter of the overall object including any contained water is the fractal diameter, \(d_f \) (which is called the apparent diameter). The two values are related using fractal scaling (Jackson 1990). For a solid object, the two diameters are the same. If the particle is porous, as in a marine aggregate, they can be very different. Knowledge of this property is of the utmost importance to convert the size into volume and mass (Jackson et al. 1997, Stemmann et al. 2008a) and to predict settling rates. If the aggregates are opaque, some of their optical properties (e.g., near-forward angular scattering) are similar to those of dense particles and, hence, can be inverted to obtain the size of the aggregates (e.g., with Sequoia Scientific’s LISST). By contrast, other optical properties, such as the beam attenuation, are well correlated with dry mass in coastal or estuarine systems (Boss et al. 2009b; see also recent review in Hill et al. 2011). Hence, the ratio of beam attenuation to volume can be used to obtain a bulk packaging parameter, as has been demonstrated recently in controlled laboratory aggregation experiments and manipulation experiments of particles in coastal waters (Slade et al. 2011). Comparing PSDs from different instruments and across different types of marine systems is still in its infancy (e.g., Mikkelsen et al. 2006), and more experimental studies are needed.

Conceptual Model for Zooplankton Size Distribution

As for particles, there are many ways to characterize zooplankton size. Typically, zooplankton have been divided into size groups that are operationally determined on the basis of the mesh size of a net: Microzooplankton (20 \(< \) size \(< \) 200 \(\mu \)m) includes protozoa, larvae, and juveniles of metazoa; mesozooplankton (200 \(< \) size \(< \) 2,000 \(\mu \)m) is mostly metazoa with the dominant group of copepods; and macrozooplankton (size \(> \) 2,000 \(\mu \)m) is constituted mainly of metazoa with the dominant group of decapods and jelly plankton (tunicates, cnidarians). Most previous work using automated counting systems has used a single descriptor of size, such as the diameter, because
the shapes were not well resolved with these systems. However, most of these organisms are not spherical and have very diverse morphologies, making it meaningless to calculate length based on a single common measurement. Assuming a spherical shape tends to overestimate size because the ratio of volume to projected cross-sectional area is greater for spheres than for other shapes (Beaulieu et al. 1999, Sprules et al. 1998). By chance for the scientist, the most numerically abundant metazoan organisms in the plankton are copepods, an organism that may be represented using a spheroid (Herman 1992). To calculate the biovolume of a spheroid from a recorded shadow area, it is necessary to know the ratio of its major and minor axes and its orientation relative to the beam.

A few imaging systems now provide reliable in situ estimates of the length (often called major) and width (often called minor). In the case of zooplankton, the most commonly used framework in analyzing zooplankton size distribution has been called the normalized biomass spectrum, which is the total biomass in a size interval normalized by the width of the size interval and the sampled volume (Platt & Denman 1978). As for the particle abundance spectrum, the biomass spectrum is well defined for a given size-structured plankton community and independent of the subjective-sorting size intervals. Significant efforts have been made to interpret the meaning of biomass spectrum slopes in terms of growth, mortality, respiration, and survival by both empirical and theoretical relationships (Platt & Denman 1978, Zhou 2006, Zhou & Huntley 1997).

Common Mathematical Model for Living and Dead Particles

Dealing with millions of size spectra requires using simple mathematical description as a start. The differential particle or plankton size distribution \(n \), particle number cm\(^{-3}\) cm\(^{-1}\), also called the particle size spectrum (Burd & Jackson 2009), is a useful description of the relationship between a given organism or particle abundance and size. This relationship is generally approximated by a two-parameter power-law function:

\[
n = b d^{-k},
\]

where \(b \) is a constant, \(k \) the slope (in log-log form), and \(d \) the particle or organism diameter. The differential particle abundance, \(n = dN/dd \), can be calculated from \(dN \), the total number of objects per unit volume in a diameter range between \(d \) and \(d + dd \), where \(dd \) is a small diameter increment.

The exponent \(k \) is also defined as the slope of the spectrum when Equation 1 is log transformed. This slope is commonly used as a descriptor of the shape of the aggregate size distribution (Brun-Cottan 1971, McCave 1983, McCave 1984, Sheldon et al. 1972, Stemmann et al. 2000, Stemmann et al. 2002). The information of this simple metric can be biased when the log-transformed spectrum is not linear. The importance of large aggregates in some systems can be missed if only the slope of a defined spectrum is used (e.g., Jackson et al. 1995).

Figure 1 presents the PSD \((3 < d < 100 \, \mu m)\) estimated using the HIAC/Royco particle counter (Pacific Scientific Instruments) after collection of large particles \((60 \, \mu m < d < 1 \, cm)\) measured in situ by the Underwater Vision Profiler (UVP) (Picheral et al. 2010) and of zooplankton collected by a WP2 net (Working Party net with a mesh size of 200 \(\mu m\) (Harris et al. 2000)) in the upper 200 \(m\) of the water column during the BIOSOPE cruise across the south tropical Pacific (Stemmann et al. 2008a). The HIAC/Royco and UVP count have been integrated in the same layer. To assess the contribution of living particles to the total PSD, zooplankton size distributions were calculated on images obtained from the ZooScan imaging system (Gorsky et al. 2010). Zooplankton organisms were separated from all particles collected in the net using automatic pattern recognition followed by validation as described in Gorsky et al. (2010). The number distributions follow roughly the same linear decrease on a log-log plot and with a slope close to \(-4\). Despite the relatively simple nature of the PSD and the fitting with a slope, the volume distribution is more variable with
Figure 1
(a) Average particle and zooplankton differential abundance and (b) differential volume distributions in the upper 200-m depth from the HIAC/Royco particle counter, the Underwater Vision Profiler (UVP), and the ZooScan system in the oligotrophic central South Pacific Gyre (GYR site). The volume distributions have been calculated as in Stemmann et al. (2008a). These distributions were calculated using the apparent particle diameters reported by the instruments and the converted apparent diameter from the conserved diameter given by the HIAC/Royco counter. The slope of the number distribution is approximately -4.

Abbreviation: ESD, equivalent spherical diameter.

two peaks because what are small deviations from the straight line in a log-log plot become large variations in the volume estimates. In addition, the volume estimates are very sensitive to crucial parameters such as the fractal dimension and the particular organic carbon (POC)/dry weight ratio (Stemmann et al. 2008a). Aggregates are several times more abundant than zooplankton and show more volume. The volume distribution shows a larger volume fraction of aggregates >1 mm. These aggregates could be observed on the video image and were probably living organisms (Stemmann et al. 2008a). They were not observed in the net, showing how variable the plankton census is when using different instruments. It is most probable that large differences in abundance between detritus and living organisms are common in the seas (see Differentiating Between Dead and Living Particles, below).

Because trophic currency is mass (e.g., carbon or nitrogen) rather than number, the size distribution expressed in terms of length can be converted to biomass based on the mass-length relationship. For particles, the conserved volume (V) is often calculated from d_c (conserved diameter, see above), assuming a sphere:

$$V = \frac{4}{3} \pi \left(\frac{d_c}{2}\right)^3.$$

(2)

For zooplankton and, specifically, copepods, the ellipsoid volume is often estimated using the following equation:

$$V = \frac{4}{3} \pi b^2 a,$$

(3)
where b is the minor and a is the major axis. The total mass M or dry weight can also be calculated knowing the density (ρ) of the matter in the volume:

$$M = \int_{0}^{\infty} n \rho V dv.$$ \hspace{1cm} (4)$$

The values of particle dry weight can be converted to POC assuming POC = 20% to 50% dry weight (Alldredge 1998) and compared with independent POC measurements. For zooplankton, numerous other algorithms exist (Harris et al. 2000).

MEASURING PARTICLE AND PLANKTON SIZE USING OPTICAL TECHNOLOGIES

Effects of Particle Size on Their Measured Optical Properties

Optical methods are currently the only in situ methods to measure the size of micron-sized particles. Light absorption depends on the properties of the particles (e.g., size, shape, pigment concentration) as well as the nature and quantity of the available subsurface light. Underwater visibility depends on the underwater light distribution, which is determined by the underwater optical properties (absorption, polarized scattering, and fluorescence), which are themselves determined by the concentration, size, shape, packaging, and composition of particulate and dissolved materials in the water. In addition, the “quality” of the light—e.g., its polarization properties—has been found to be important to many visual marine species, who are sensitive to polarization (Cronin et al. 2003).

To first order, optical properties respond to particle concentration. For example, POC concentrations vary by approximately 3 orders of magnitude in the surface ocean [from 15 mg to 2,000 mg m$^{-3}$ (D. Stramski, personal communication)]; hence, optical properties span a similar range of magnitudes. Beyond concentration, the next most important determinants of optical properties are size and packaging (degree of aggregation, fluid fraction) and composition (index of refraction), though the latter is less important for particles significantly larger than the wavelength (see below). Shape also modulates optical properties, but within a range that is usually significantly smaller than the above properties, except perhaps for the backscattering coefficient (Clavano et al. 2007).

The size of matter that significantly affects optical properties varies by 12 orders of magnitude, from water molecules and dissolved salts to large aggregates (Figure 2). Size boundaries for optical regions are defined on the basis of theoretical consideration of light interactions with particles given the physical properties of the particle, the medium in which it is immersed, and the wavelength of light.

The interaction of light with particles is particularly sensitive to the ratio of size to wavelength, $x \equiv \pi d/\lambda$, where λ is the wavelength of the light in the medium in which the particle is immersed, e.g., water; x, termed the size parameter, is used to define different regions where the interaction of light with matter has particular and predictable characteristics (van de Hulst 1981). The two simplest regions are that of Rayleigh ($x \ll 1$), where the angular scattering is symmetric about 90°, scattering is strongly dependent on wavelength (proportional to λ^{-4}), and shape does not matter, and that of geometric optics ($x \gg 1$), where most of the light is scattered very close to near forward, attenuation does not depend on wavelength, and shape (particularly the average-cross-sectional area to volume ratio) matters. In between these two regimes, there is a transition zone where some analytical solutions exist (e.g., the anomalous diffraction approximation; van de Hulst 1981). Attenuation per mass in that region has a maxima for particle with a phase-shift parameter,
Figure 2

Representative sizes of different constituents in seawater (based on Clavano et al. 2007, Stramski et al. 2004). Different optical regions are denoted by different shading, as a function of size (d, lower x axis) and size parameter (x, upper x axis, assumes $\lambda = 400 \text{ nm}$). The boundaries between the regions are not exact and vary with the complex index of refraction for a given particle size.

Absorption per mass decreases with size as a result of the reduction in the interaction of light with absorbing matter within the particle compared with the interaction with absorbing material near the particle’s surface (referred to as the package effect) (Duysens 1956, Morel & Bricaud 1981). Note that in this review we use packaging as a descriptor of aggregation state (Figure 4). Rather than ρ, the parameter that dominates absorption is the product $x \cdot n'$, where n' is the imaginary part of the index of refraction. For dissolved material ($d \ll \lambda$), absorption is given by $a = 4\pi n' / \lambda$. Variation in the index of the real part of the index of refraction changes absorption by only $\pm 15\%$, and the package effect becomes important (reduction of 50% in absorption) at $x \cdot n' \sim 0.8$, that is, for $d \sim 0.25\lambda / n'$ (Figure 3).

Aggregate Particle Optics: Effects of Size and Packaging

The simplest analytical result for light interaction with a particle in the intermediate range where scattering per mass is maximal is that of the anomalous diffraction approximation (van de Hulst 1981), which provides a good prediction for soft particles (where $n \sim 1$, as for most aquatic particles). Because during aggregation the bulk index of refraction of aggregates decreases as their
Figure 3
Particulate-mass-normalized beam attenuation as a function of $\rho = 2x(n - 1)$ for different values of the real part of the index of refraction, n ($n' = 0.0001$). Density of materials is assumed to follow $1.024[1 + 2.22(n - 1)]$ kg m$^{-3}$, as suggested by Babin et al. (2003) for organic materials.

Water fraction increases, one would predict that the size of maximal scattering per mass will increase with increasing water content of the aggregates (as its bulk index of refraction decreases, becoming closer to that of water). Indeed, when using a model developed to explain aggregates scattering (Boss et al. 2009a, Latimer 1985), the position of the maxima is observed to shift to larger sizes. Using the Gladstone-Dale relationship, the effective index of refraction of the aggregate can be computed from that of the particles of which it is composed: $(n - 1)_{\text{aggregate}} = F(n - 1)_{\text{particle}}$.

Hence, the position of the maxima in the mass-normalized attenuation will be approximately at

Figure 4
Particulate absorption normalized by the dissolved absorption $(4\pi n'/\lambda)$ as a function of the product of the size parameter (x) and the imaginary part of the index of refraction ($n' = \text{Im}(m)$). The range of indices of refraction brackets the bulk of those of oceanic particles.
Particulate-mass-normalized beam attenuation as a function of $\rho = 2x(n - 1)_{\text{aggregate}}$ for particles differing in their index of refraction of their solid fraction ($m = 1.15 + 0.0001i$, solid; $m = 1.05 + 0.0001i$, dashed) and fluid fraction (color), using an optical model for aggregates based on work of Latimer (1985) and applied to marine aggregates by Boss et al. (2009a), with $\lambda_{\text{vac}} = 660$ nm. Density of inorganic (solid) and organic (dashed) materials are assumed to be 2,650 and 1,380 kg m$^{-3}$, respectively.

$x = \frac{3F}{2(n - 1)}$ (consistent with Figure 5); for example, the size of the maximum for an aggregate with $F = 0.99$ (that is, 99% of its volume is water, or 1% solid fraction) is approximately 100 times that of an aggregate with 1% water fraction. Similarly, absorption by aggregate is now driven by $n'_{\text{aggregate}} = Fn_{\text{particle}}$; thus, reduction to 50% of dissolved absorption occurs at $x \cdot n'_{\text{aggregate}} \sim 0.8$, e.g., for $d \sim 0.25\lambda/(Fn'_{\text{particle}})$ (consistent with results in Figure 6). It follows that the aggregation state of particles (e.g., their fluid fraction) and their size, in addition to the optical characteristics of the constituent particles, are the primary determinants of the optical properties of that aggregate.
Optical Methods to Obtain Information on Underlying Plankton and Particle Sizes: From Single Particle Properties to Bulk Optics to Imaging

There exist different approaches to measure size distribution of oceanic particles. Works summarizing existing methods include Syvitski (1991) and Xu (2000) as well as the recent reviews by Jonasz & Fournier (2007) and Benfield et al. (2007). Given that, we focus here on in situ optical techniques to obtain information regarding particulate size characteristics, limiting ourselves to commercial instruments and those to be commercialized shortly.

Size distribution characteristics inverted from bulk optical properties. There exist a variety of techniques to obtain information regarding the size distribution of a suspension of particles in a fluid, which have been applied to oceanographic measurements. As with all inverse methods, the inversion problem may be non-unique or very sensitive to noise; thus, assumptions regarding acceptable solutions as well as data regularization and conditioning are often applied (see ch. 6. in Shifrin 1988). Inversion of near-forward scattering has been used to create PSD for both in situ and laboratory suspension of particles from approximately 2 μm to 1 mm using such instruments as the in situ and laboratory LISST (e.g., Sequoia Scientific) (Agrawal & Pottsmith 2000). Smaller-sized particles can also be measured using larger angle dimensions in the volume-scattering function as measured with the laboratory instrument Heles II (Wyatt & Jackson 1989) or using in situ data (Shifrin 1988, Zhang et al. 2011). Spectral beam attenuation of particles has been measured with commercial transmissometers, AC meters (WETLABS). The spectral characteristic has also been related to the size distribution [through inversions as in Volz (1954) and Van de Hulst (1981)] and found to agree with measurements based on the Coulter counter on a vessel or LISST in situ (Boss et al. 2001). Finally, the spectrum of backscattering inferred from remotely sensed ocean color has been linked to tendencies of the particulate size distribution in the ocean (Kostadinov et al. 2009, Loisel et al. 2006) as well as distributions of phytoplankton functional types (Alvain et al. 2008, Kostadinov et al. 2010) and inverted absorption spectra (Ciotti & Bricaud 2006).

Size distribution characteristics inverted from single particle optical properties. Flow cytometers perform automated enumeration of micron-sized particles (e.g., pico-phytoplankton) and estimation of their individual size based on side scattering, forward scattering, and the fluorescence characteristics of individual particles flowing through a laser beam (see the recent review by Yentsch & Yentsch 2008). This method has been used routinely in labs since the 1980s, and commercial instruments for in situ analysis exist [e.g., CytoBuoy (Dubelaar & Gerritzen 2000)]. Size range for these measurements is 0.5 < d < 10 μm.

Size distribution characteristics obtained from optical imaging of particles. Imaging cytometers are instruments triggered by optical properties and take microscopic pictures of particles directed at a camera’s focal plane (Olson & Sosik 2007, Sieracki et al. 1998). The size range for these measurements is 10 < d < 200 μm. Silhouette cameras measuring light absorbance in different beams, such as the Laser Optical Particle Counter (LOPC, Brooke Ocean), are deployed on a variety of platforms to study zooplankton and particles, having 100 μm < d < 1.5 mm (Checkley et al. 2008, Finlay et al. 2007, Herman & Harvey 2006, Herman et al. 2004, Vanderploeg & Roman 2006). Photographic and more recently CCD (charge-coupled device) cameras have been used to study aggregates and plankton, with sizes ranging from a few tens of micrometers < d < to a few millimeters (Benfield et al. 2007, Davis et al. 1992, Davis et al. 2005, Gorsky et al. 1992a, Picheral et al. 2010, Ratmeyer & Wefer 1996). Several of these cameras are commercially available.
available [LOPC, UVP, Video Plankton Recorder (VPR)], most recently the holographic cameras detecting the volumetric abundance of particles (Graham & Smith 2010) spanning $20 \mu m < d < 7 \text{ mm}$ (LISST-HOLO, Sequoia Scientific).

Differentiating Between Dead and Living Particles

Bulk optical measurements need to distinguish between plankton and other particles in the water column and get the composition of aggregates (mineral versus organic matter) or basic information on plankton taxa. For a pool of small particles ($<100 \mu m$), phytoplankton and detritus can be sorted by comparing bulk measurements at different wavelengths (Bricaud & Stramski 1990), whereas the ratio of backscattered to total scattered light provides a means for distinguishing the relative contributions of inorganic and organic particles (Twardowski et al. 2001).

For larger objects, imaging systems provide information on individual objects, which can be sorted for living plankton (Benfield et al. 2007). For example, plankton $>500 \mu m$ such as crustacean (e.g., copepods and euphausiids) and gelatinous taxa or stages (e.g., medusae and tunicates or eggs and larvae) can be separated from particles of the same size range, which include aggregates, abandoned houses of larvaceans, mucous webs of pteropods, and associated material. Many of these other particles are fragile and are not retained and/or preserved by meshes of filters or nets (Gonzalez-Quiros & Checkley 2006). Therefore, the number and biomass contributions of the organisms versus the particles are not well known. Obtaining both size distributions and qualitative information in situ is still challenging, but progress has been made recently using various optical and imaging instruments. For example, during the BOUM cruise in the Mediterranean Sea (July 2008), the UVP was deployed on a longitudinal transect from the east to west basin during short-term stations and three sites were selected for their oligotrophic characteristics in the eastern (site C), central (site B), and western (site A) Mediterranean Sea (Moutin et al. 2011). Experts then performed manual image analysis and visual verification of the plankton ($>500 \mu m$) on the images as described by Stemmann et al. (2008b). Compared with nonliving particles, zooplankton organisms were rare at all sites. **Figure 7** shows the size spectra of radiolarians, crustaceans (mostly copepods), all other taxa pooled in one group, and all living organisms. The comparison between particles and zooplankton size spectra for the same size range (500 μm to a few millimeters) shows that the dominant zooplankton in abundance were radiolaria and, most striking, that living organisms were 1%–15% of the total particles detected by the UVP in the $>500-\mu m$ size range. These ratios are slightly lower than those reported earlier for the OPC (25%) and LOPC (20% \pm 14%) in the California Current system (Gonzalez-Quiros & Checkley 2006, Jackson & Checkley 2011). The differences in the reported proportions may be due to the trophic status of the ecosystems and the lower efficacy of the trophic change from small to large organisms in the oligotrophic Mediterranean systems. Future instruments should be able to better distinguish between plankton and aggregates.

Imaging techniques not only allow macrozooplankton to be identified, but also can reveal information on the nature and content of large particles. **Figure 8** shows several examples of different types of aggregates commonly found in the upper 200-m depth of Monterey Bay during July 2010 (GateKeeper cruise). Opaque cylindrical particles throughout the water column, long fibers in the upper 100-m depth, and aggregates most probably consisted of euphausiids fecal pellets (which were abundant in the nets; D.M. Checkley, personal communication), diatom chains, and aggregates constituted by different elements (including a sticky radiolarian). In the future, multispectral imaging and higher-definition images will allow for better identification of the organic and mineral constituents of aggregates.
Figure 7
Particles and zooplankton differential abundances obtained by the Underwater Vision Profiler (Picheral et al. 2010) at three sites in the (a) eastern (site C), (b) central (site B), and (c) western (site A) Mediterranean Sea during the BOUM (Biogeochemistry from the Oligotrophic to the Ultra-Oligotrophic Mediterranean) cruise in July 2008. Particles were counted automatically from 60 μm in equivalent spherical diameter (ESD) and thus include nonliving particles and plankton organisms. The different taxa were counted manually on the images only for sizes >500 μm; at smaller sizes, taxa could not be identified.

SIZE EFFECTS ON THE FOOD WEB AND VERTICAL FLUXES

The size effect on light attenuation is secondary to concentration, but size is important in determining the flux of nutrient and light into phytoplankton cells and, hence, provides a physical constraint on their growth rate (Finkel & Irwin 2000, Karp-Boss et al. 1996). Available light for visual predators may affect trophic interactions in the sea, as it has been proposed as an explanation for the shift between zooplanktivorous fishes and jellyfish in the northern European seas (Aksnes et al. 2004, Sornes & Aksnes 2004, Sornes & Aksnes 2006, Sornes et al. 2008). Therefore, measuring PSD and knowing the particle properties (see Figure 5) to infer light attenuation in the water column of different particle size classes may be helpful in understanding changes in the pelagic ecosystem. In addition, as size of the primary producers increases, the size of secondary producers and detritus increases, yielding a situation where vertical export becomes important (Boyd & Newton 1999, Guidi et al. 2008, Guidi et al. 2009). This aspect is developed in the following sections.

Global models have predicted that the strength of oceanic CO₂ sinks may already be decreasing, leading to a positive feedback on atmospheric CO₂ concentrations (Canadell et al. 2007). Unfortunately, it is clearly recognized in the oceanographic community that global models do not adequately represent observed biogenic particle fluxes to the deep ocean (Gehlen et al. 2006). As noted in the most recent review of the processes controlling the oceanic biological pump (Boyd & Trull 2007), “no models have yet incorporated sufficient complexity to capture the
observed variability of export fluxes.” The reason is that we have not yet quantified the processes producing or transforming the particle vertical flux in the water column and the carbon budget is unbalanced (Burd et al. 2010). The most critical parameter for particle flux is the particle settling speed (Fasham et al. 1990). Particle size, packaging, and ballast are the key factors determining settling speed (McDonnell & Buesseler 2010, Stemmann et al. 2004b), but currently, only particle settling speed as a function of size can be almost routinely measured or assessed in the laboratory (Hansen et al. 1996, Iversen & Ploug 2010, Trent et al. 1978) or in situ by direct measurements (Alldredge & Gotschalk 1988) or using sediment traps (Guidi et al. 2008, McDonnell & Buesseler 2010). Various relationships have been found probably as a consequence not only of the various shapes for same-sized aggregates (Figure 9a), but also of not taking into account the ballast effect of particles that have different mineral constituents.

Size can be used as a scaling factor and aggregation criterion to produce a macroscopic description of the pelagic ecosystems with the aim of improving the predictive capacity of global models in anticipation of future responses of oceanic ecosystems to climate change. Advances in optical sensors and imaging analysis tools have significantly increased our ability to measure sizes and abundances of organisms and particles in aquatic ecosystems. For example, size can also be used to obtain the specific growth rate of phytoplankton by analyzing time series of single cell size properties obtained with in situ flow cytometers (Sosik et al. 2003). Size-based mathematical models have also been developed for individual physiological and population change rates and for biomass flow between trophic levels. Broader spatial and longer temporal coverage of size spectra are expected in the coming decade, notably, those using autonomous drifters (Johnson et al. 2009) equipped with size-capturing sensors as has been successfully shown recently (Checkley et al. 2008).

Therefore, there is an urgent need for integrating field surveys, laboratory experiments, and models, in addition to developing methods for analyzing distributions and process rates of aquatic
organisms. More realistic models adding particle size spectra could be an alternative to the current biogeochemical models used to forecast global climate change. The following sections discuss the importance of size for aggregate remineralization by bacteria, zooplankton impact on the settling of aggregates, zooplankton ecophysiology scaling with size, and an integrating modeling framework.

Marine Particles Are Islands of Plenty for Microbes

Aggregates are sites of enhanced biological activity. Several studies have found that bacterial concentrations in aggregates are greater by a factor of up to 10^3 relative to the surrounding waters (Alldredge & Silver 1988, Davoll & Silver 1986, Grossart et al. 2003, Silver et al. 1998, Silver et al. 1978, Turley & Mackie 1994). Their abundance and their activity increase with aggregate size (Ploug & Grossart 2000, Ploug et al. 2008b). Protozoa are also important members of detrital communities, and they may feed on the bacteria (Caron et al. 1982, Kiørboe 2003, Silver & Gowing 1991, Silver et al. 1984). Attached bacteria metabolize and solubilize the particulate organic matter decomposing aggregates (Grossart & Simon 1998, Smith et al. 1992). Ploug (2001) has shown that respiration rate by bacteria on aggregates scales with their size (Figure 9b). Direct metabolism and solubilization both represent losses to particle mass, but solubilization provides food for the free living bacteria and creates a chemical plume that fuels free bacteria with fresh dissolved organic matter and allows a particle to be detected by zooplankton (Kiørboe & Jackson 2001, Kiørboe et al. 2001).

Microbial consumption of particle mass can also affect particle geometry by hollowing out the particle or by shrinking it. In either case, it can change the mass-length relationship and, hence, the settling speeds. Bildenda & Pomeroy (1988) described a characteristic pattern of decomposition: growth of attached bacteria, aggregation of detritus, growth of protozoa feeding on bacteria, and

Figure 9

Allometric relationships between the size of aggregates and (a) aggregate settling speed (Stemmann et al. 2004b) and (b) measured respiration rates by colonial microbes in aggregates of different sources as a function of aggregate size (symbols) (modified from Ploug 2001). In panel a, different data points and regressions are used (for a full explanation, see Stemmann et al. 2004b).
subsequent disaggregation. A similar pattern of microbial succession and particle alteration has been described for discarded larvacean houses (Davoll & Silver 1986) and tunicate feces (Pomeroy & Deibel 1980).

Size Is an Important Property for Interorganism and Particle-Organism Interactions

Size is also of great importance in terms of the manner in which organisms obtain contact for processes such as predation, grazing, mating, swarming, or aggregation (Jackson 1990, Jackson & Burd 1998, Jackson & Kiorboe 2004, Kiorboe 2001, Kriest & Evans 2000, Stemmann et al. 2004a). Encounter rates for inert particles in marine environments were first studied for inert particles by McCave (1983), who proposed a model to calculate the probability of an encounter between two particles as a function of their size and different processes occurring in the nepheloid layers: Brownian diffusion (negligible for \(d > 1 \text{ \mu m} \)), differential sedimentation, and shear or turbulence. Later, Jackson (1990) used a model of the physical coagulation of growing a phytoplankton population to explain the end of the phytoplankton bloom by aggregation and subsequent settling out of the mixed layer.

From the perspective of global biogeochemical modeling, size is an attractive alternative, as the kernels for encounter rate (processes by which encounters occur) are all related to the size of particles (living or not). Yet, for zooplankton, the behavior is far more complex than a Brownian motion and is affected by many external factors (Schmitt & Seuront 2001, Schmitt et al. 2006). Several studies have started to study specific behavior: Jackson & Kiorboe (2004) provide a kernel formulation for the finding of particles in zooplankton, using a chemodetection of the chemical plume following particles in the marine environment. Such formulation is also related to the size of both zooplankton and particles. These mechanisms can be added to other grazing behaviors defined by Visser et al. (2001), e.g., ambush, cruising, or flux feeding (also related to size). The variety of swimming behaviors in zooplankton seems to be very large (Visser & Kiorboe 2006), but some simplifications can be used: For example, Baird & Suthers (2007) used the simple curvilinear model of Jackson (1995) to represent all the interactions between particles in a pelagic ecosystem. Currently, modeling studies are still scarce, and they have not been constrained with plankton or particle size spectra. Future instruments combining different sensors will provide more quantitative and qualitative data of the different players in the pelagic ecosystem (Figure 10) that will allow researchers to better constrain the diversity of mechanistical models for particle dynamics.

From Particle and Plankton Measures of Size to Conceptual and Mathematical Schemes of the Pelagic Ecosystem Role in the Biological Pump

The following section discusses the possible integration of PSD in biogeochemical models. In the past two decades, global ecosystem models used to quantify the strength of the biological pump have focused on creating a functional representation of mostly phytoplankton in the surface ocean (Figure 11). These box models divided the marine ecosystem into several dynamic compartments. The first models of marine ecosystems dynamics contained only one variable, the phytoplankton (Fleming 1939, Riley & Bumpus 1946). Soon after, models contained three variables, i.e., nutrient, phytoplankton, and zooplankton (Riley et al. 1949). The development of computers has allowed the number of variables to increase to seven (Fasham et al. 1990). The box models became a standard for the subsequent development of biogeochemical models. Current biogeochemical models have more than 11 compartments (Aumont et al. 2003, Le Quere et al. 2005), and recent modeling frameworks simulate a great number of phytoplankton types from which emerging communities can be simulated (Follows et al. 2007).
Figure 10
A view of a settling aggregate in the ocean based on an idealized multisensor instrument. Such an instrument should sense the aggregate’s effects on its environment, such as chemical plumes left behind the settling aggregate; identify particle shapes; and differentiate constituents [e.g., organic (fecal pellet) and mineral (pteropod shell) embedded in the aggregate]. The same instrument should detect basic components of the microbial community (free and attached bacteria, larger protozoa) and the metazoa feeding and transforming the settling aggregate. Cruising copepod 1 is attracted by the dissolved organic plume, whereas cruising copepod 2 is attracted by hydromechanical disturbance in front of the aggregate. Filaments may be phytoplankton chains. Note that all objects have been redrawn from original images generated by the Underwater Vision Profiler in Monterey Bay, California. The large aggregate is also shown in Figure 8.

Previous biogeochemical models lacked the description of processes carried out by zooplankton organisms because of the complexity of this group and the small and diverse number of data sets (Buitenhuis et al. 2006). Zooplankton have often been represented as a closure variable with fixed rates in compartment models, although their interactions with phytoplankton may be important to understand the ecosystem dynamics. However, more structured models differentiating between sizes, ages, and/or stages have been developed to describe zooplankton population demographics (Carlotti & Sciandra 1989, Carlotti & Wolf 1998, Hofmann & Ambler 1988). However, population dynamics models may often be too complicated for global scales because the population dynamic has to be known in detail and modeling population dynamics of numerous species is challenging. Hence, most models of marine ecosystems rely on functional group partitioning and use fixed predation rates between few zooplankton groups.
Very recently, several models have included size-based physical and biological interactions, even in the mesopelagic zone. Those models are based on a fundamental assumption that size is a structuring dimension of ecological systems along which dynamics can be projected. Taking such an approach has been recently proposed, but the models to date have not been tested with data (Baird et al. 2004, Maury et al. 2007). The reason for using scaling with size for physiological rates is that the rates scale more with size than with taxonomy (Fenchel 1974, Glazier 2005, Legendre & Michaud 1998, Von Bertalanffy 1957, West et al. 2003). Scaling with size is used for encounter rates between zooplankton organisms and detritus because predator-prey interactions and particle-particle encounter rates are believed to scale with size (Hansen et al. 1997; Jackson 1993, 2005; Jackson & Burd 1998; Jackson & Kiorboe 2004; Kiorboe 2000, 2001, 2008; Kiorboe & MacKenzie 1995; Kiorboe & Thygesen 2001; Kiørboe & Titelman 1998; Kiørboe & Visser 1999). Finally, for particle-particle interactions, numerous size-based models have been proposed with different levels of complexity (Jackson 1990, Krist & Evans 1999, Riebessel & Wolf-Gladrow 1992). Recent models include explicit formulations of particle size and mass with 2D size spectra (Jackson 2001) or with simpler representation in global models (Gehlen et al. 2006). Therefore, these mechanistic models for interactions within the biological groups could be used for relevant compartments in the upper layer of future ecosystem models (Figure 11).
For more than two decades, research in oceanography has focused on the role and functioning of the upper 200-m layers of the ocean. The deeper ocean was regarded as a black box because of the lack of data. Despite recent advances in modeling of surface ocean ecosystem processes at the global scale (Aumont & Bopp 2006, Le Quere et al. 2005, Moore et al. 2004), the description of particle fluxes in global ocean biogeochemical models still mostly relies on exponential or power-law functions (Armstrong et al. 2002, Betzer et al. 1984, Martin et al. 1987, Suess 1980). Yet, marine particle fluxes and their attenuation with depth display strong regional and temporal variability in response to production regimes and their seasonality (Berelson 2001, Boyd & Trull 2007, Lutz et al. 2002). The relationship between surface ocean ecosystem structure and variability is not captured by these simplified approaches.

The model by Kriest & Evans (2000) provides an interesting alternative suitable for global-scale applications. It relies on the explicit parameterization of particle interactions (aggregation/disaggregation). Particle number and size are the stated variables. The particle sinking speed is computed as a function of PSD. This model was implemented in the French biogeochemical model PISCES and compared with other particle flux parameterizations of varying complexity (Gehlen et al. 2006). However, the approach by Kriest & Evans (2000) still relies on simplifying assumptions that were not tested within the framework of PISCES in terms of their consequences for the prediction of particle dynamics (mass flux, sinking speed, temporal and spatial variability). For instance, the description of the particle size spectrum by a constant exponent contradicts observations reporting variability with depth of the latter (Guidi et al. 2009, Iversen et al. 2010). This variability most likely reflects the impact of zooplankton feeding and microbial degradation on particle size spectra. Different mesopelagic communities are expected to differentially alter particle fluxes in terms of mass and size distribution as was suggested by the model of Stemmann et al. (2004b). Here also, measuring PSD would lead to general improvements in the description and dynamics of zooplankton and dead particle models in the mesopelagic layers (Figure 11).

A VISION FOR THE FUTURE

Appropriate temporal and spatial scales of marine production can be studied using satellite data for the surface of the ocean, and now, underwater autonomous profiling floats and gliders have been developed to study deeper layers. The international ARGO project, which currently has an array of approximately 3,000 profiling floats deployed in the world’s oceans, has proven to be an invaluable tool in modern physical oceanography. It provides, on a routine basis and with great detail, the heat and salt content of the upper ocean and is used to constrain circulation models. As price is reduced and the variety of instrumentation measuring ecological parameters is increased, there is hope of using a similar observational system to constrain biogeochemical models (Claustre et al. 2010, Johnson et al. 2009). Incorporation of instrumentation capable of differentiating individual size, functional groups, as well as species could provide data to map more complex ecosystems. Such an array of profiling floats will revolutionize our ability to understand the fate and distribution of organic matter in the oceans.

SUMMARY POINTS

1. In the open ocean, the first building blocks of organic particles are produced through different pathways among which primary production in the euphotic zone is the most important. Sedimentation of these particles in the deep ocean constitutes one aspect of the biological pump whose strength can affect global climate.
2. PSDs are indicators of pelagic ecosystem trophic states and functioning. Their shapes can indicate the importance of biological and physical processes (trophic flows, aggregation, disaggregation) that transform the organic matter produced at the surface. Assuming that particle settling speed is mainly related to size, they can be used to calculate vertical flux of elements to the deep sea. This assumption is a first-order simplification because particle composition is also critical to assess the settling speed.

3. PSDs can be calculated in their full size range (a few micrometers to centimeters) using optical properties measured by different instruments. These instruments can measure individual and bulk properties such as size, nature (living or dead), and basic information on constituting elements (for example, calcite). Future technological developments should point toward better measurement of mineral versus organic content of particles and the fluid fraction of aggregates. This knowledge and the development of mathematical frameworks are critical to correctly estimate particle settling speed and element vertical fluxes.

4. Within the next 10 years, these instruments will be tested on Lagrangian autonomous vehicles to gather plankton and particle size spectra remotely and deep in the ocean. Successful deployment of these instruments and the delivery of large amounts of data could lead to a revolution in biogeochemical oceanography.

5. Such data on PSD and particle composition can be used to constrain biogeochemical models to better understand biological pump processes and quantify their strength synoptically.

DISCLOSURE STATEMENT
The UVP and ZooScan instruments were originally developed in L.S.’s lab, although he has had no subsequent financial or commercial relationships with them.

ACKNOWLEDGMENTS
The authors thank the many colleagues who through discussions and collaborations have helped us to develop our knowledge on plankton and particle dynamics as detected using their optical properties. It was also substantially improved based on the critical comments provided by Louis Legendre and George Jackson. UVP data were obtained during the BIOSOPE and BOUM cruises with support from the French national LEFE-CYBER program and during the U.S. NSF-supported Gatekeeper program (OCE-0928425). L.S. was supported by funding from the seventh European Framework Program (JERICO). Support to E.B. was provided by NASA’s Ocean Biology and Biogeochemistry program.

LITERATURE CITED
Aas E. 1996. Refractive index of phytoplankton derived from its metabolite composition. J. Plankton Res. 18:2223–49

Duysens LNM. 1956. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta 19:1–12
Gallienne CP, Robins DB. 1998. Trans-oceanic characterization of zooplankton community size structure using an optical plankton counter. Fish. Oceanogr. 7:147–58

Gonzalez-Quiros R, Checkley DM. 2006. Occurrence of fragile particles inferred from optical plankton counters used in situ and to analyze net samples collected simultaneously. *J. Geophys. Res.* 111:C05206

Vanderplouw HA, Roman MR. 2006. Introduction to special section on analysis of zooplankton distributions using the Optical Plankton Counter. *J. Geophys. Res. Oceans* 111:C05S01

Contents

A Conversation with Karl K. Turekian
Karl K. Turekian and J. Kirk Cochran .. 1

Climate Change Impacts on Marine Ecosystems
Scott C. Doney, Mary Ruckelshaus, J. Emmett Duffy, James P. Barry, Francis Chan,
Chad A. English, Heather M. Galindo, Jacqueline M. Grebmeier, Anne B. Hollowed,
Nancy Knowlton, Jeffrey Polovina, Nancy N. Rabalais, William J. Sydeman,
and Lynne D. Talley ... 11

The Physiology of Global Change: Linking Patterns to Mechanisms
George N. Somero ... 39

Shifting Patterns of Life in the Pacific Arctic and Sub-Arctic Seas
Jacqueline M. Grebmeier .. 63

Understanding Continental Margin Biodiversity: A New Imperative
Lisa A. Levin and Myriam Sibuet ... 79

Nutrient Ratios as a Tracer and Driver of Ocean Biogeochemistry
Curtis Deutsch and Thomas Weber .. 113

Progress in Understanding Harmful Algal Blooms: Paradigm Shifts
and New Technologies for Research, Monitoring, and Management
Donald M. Anderson, Allan D. Cembella, and Gustaaf M. Hallegraeff 143

Thin Phytoplankton Layers: Characteristics, Mechanisms,
and Consequences
William M. Durham and Roman Stocker .. 177

Jellyfish and Ctenophore Blooms Coincide with Human Proliferations
and Environmental Perturbations
Jennifer E. Purcell ... 209

Benthic Foraminiferal Biogeography: Controls on Global Distribution
Patterns in Deep-Water Settings
Andrew J. Gooday and Frans J. Jorissen .. 237
Plankton and Particle Size and Packaging: From Determining Optical Properties to Driving the Biological Pump

L. Stemmann and E. Boss ... 263

Overturning in the North Atlantic

M. Susan Lozier .. 291

The Wind- and Wave-Driven Inner-Shelf Circulation

Steven J. Lentz and Melanie R. Fewings ... 317

Serpentinite Mud Volcanism: Observations, Processes, and Implications

Patricia Fryer .. 345

Marine Microgels

Pedro Verdugo ... 375

The Fate of Terrestrial Organic Carbon in the Marine Environment

Neal E. Blair and Robert C. Aller .. 401

Marine Viruses: Truth or Dare

Mya Breitbart .. 425

The Rare Bacterial Biosphere

Carlos Pedrós-Alió .. 449

Marine Protistan Diversity

David A. Caron, Peter D. Countway, Adriane C. Jones, Diane Y. Kim, and Astrid Schnetzer ... 467

Marine Fungi: Their Ecology and Molecular Diversity

Thomas A. Richards, Meredith D.M. Jones, Guy Leonard, and David Bass ... 495

Genomic Insights into Bacterial DMSP Transformations

Mary Ann Moran, Chris R. Reisch, Ronald P. Kiene, and William B. Whitman .. 523

Errata

An online log of corrections to Annual Review of Marine Science articles may be found at http://marine.annualreviews.org/errata.shtml