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[1] Efforts to understand and model the dynamics of the upper ocean would be
significantly advanced given the ability to rapidly determine mixed layer depths (MLDs)
over large regions. Remote sensing technologies are an ideal choice for achieving
this goal. This study addresses the feasibility of estimating MLDs from optical properties.
These properties are strongly influenced by suspended particle concentrations, which
generally reach a maximum at pycnoclines. The premise therefore is to use a gradient
in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer.
Using a global data set collected during World Ocean Circulation Experiment cruises from
1988–1997, six algorithms were employed to compute MLDs from either density or
temperature profiles. Given the absence of published optically based MLD algorithms,
two new methods were developed that use c660 profiles to estimate the MLD.
Intercomparison of the six hydrographically based algorithms revealed some significant
disparities among the resulting MLD values. Comparisons between the hydrographical
and optical approaches indicated a first-order agreement between the MLDs based
on the depths of gradient maxima for density and c660. When comparing various
hydrographically based algorithms, other investigators reported that inherent fluctuations
of the mixed layer depth limit the accuracy of its determination to 20 m. Using this
benchmark, we found a �70% agreement between the best hydrographical-optical
algorithm pairings.
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1. Introduction

[2] Created by the confluence of atmospheric and radia-
tional forces, the oceanic upper mixed layer is of importance
to many oceanographic disciplines. Defined as being quasi-
homogeneous in salinity and temperature [Kara et al., 2000;
Price et al., 1986], this layer plays an integral part in air-sea
interactions through the storage and exchange of heat,
gases, momentum, and freshwater [Ali and Sharma, 1994;
Kraus and Businger, 1994]. Oscillations in the depth of this
layer, that is, the mixed layer depth (MLD), influence the
vertical distribution of biological, chemical, and particulate
components in surface waters [Gardner et al., 1995]. In

addition, biological productivity is proportional to the MLD
[Behrenfeld and Falkowski, 1997].
[3] Given its importance, measuring the MLD on basin-

wide scales would be of great value to oceanographic and
atmospheric scientists. Configuring an airborne or space-
borne remote sensing platform is a natural choice. A few
studies have addressed the potential of this approach.
They include the use of airborne light detection and
ranging (lidar) systems [Hoge et al., 1988; Lee et al.,
2002], the Advanced Very High Resolution Radiometer
(AVHRR) satellite [Yan et al., 1990], the GEOSAT
satellite altimeter [Ali and Sharma, 1994], and an assim-
ilative technique combining sea surface height, salinity,
and temperature [Durand et al., 2003]. Implicit in each of
these techniques is the derivation of mixed layer depths
from a remotely detectable parameter, such as the depth
of subsurface particle-scattering layers (lidar), sea surface
temperature (AVHRR), or changes in sea level (GEO-
SAT). Because these techniques are based on different
parameters, the identification and quantification of the
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MLD are highly method dependent. Additional uncertainty
arises from the absence of a standardized, precise definition
of the MLD.
[4] One faces the same challenges even when using in

situ data. Numerous algorithms exist for determining the
MLD from hydrographical measurements. The most com-
monly used algorithms require vertical profiles of either
temperature or density. Several authors provide discussions
and examples of the various MLD definitions [Brainerd and
Gregg, 1995; Kara et al., 2000; Lukas and Lindstrom,
1991]. As this study demonstrates, predicted MLD values
can differ by an order of magnitude.
[5] Our objective is to investigate the feasibility of

using an optical technique for estimating the mixed layer
depth. The reason why we expect optical properties to be
correlated with the mixed layer depth pertains to the
particle distribution in the upper ocean. The vertical
structure of particulates is the result of many processes.
Some of these are purely physical, such as advection and
mixing, while others are biological, such as phytoplank-
ton-related processes (e.g., growth, swimming, and sink-
ing). Processes indirectly affecting particle distributions
include the advection and mixing of nutrients and the
vertical structure of irradiance, which depends on the
nature and the distribution of the particulates and dis-
solved materials, which in turn depend on the processes
mentioned above. The activity of predators is difficult to
estimate a priori. The timescales for the biological and
physical processes are different as well. In general, the
biogeochemical and physical forcing functions in the
mixed layer are different from those deeper in the ocean.
We therefore anticipate a difference in biogeochemical
parameters above and below the pycnocline. Since these
differences manifest themselves as differences in optical
parameters, we expect to see differences in optical prop-
erties above and below the pycnocline.

[6] To achieve global coverage, we used hydrographic
and optical property profiles that were collected as part of
the World Ocean Circulation Experiment (WOCE, see
http://whpo.ucsd.edu/) from 1988–1997. MLDs were com-
puted from either temperature or density profiles by six
algorithms and compared to MLDs derived only from
optical data. Since there are no published algorithms for
calculating mixed layer depths from inherent optical prop-
erties of seawater, two of the hydrographic methods were
adapted for this purpose. Comparisons were made to deter-
mine the highest correlation between a hydrographically
based and optically based algorithm. We note that while an
extensive data set was used, it is limited in both geograph-
ical and seasonal coverage.

2. Methods

[7] All of the algorithms discussed below were imple-
mented in MATLAB

TM

version 5.2.1 on an Apple Macintosh
with a 450 MHz PowerPC G3 CPU.

2.1. WOCE Data Set

[8] Data sets from 1988–1997 are available that con-
tain both CTD and beam transmissometer measurements
(CTD data are available on the Web at http://whpo.ucsd.
edu/; transmissometer data are available at http://ocean-
ography.tamu.edu/%7Epdgroup/DataDir/SMP-data.html).
Data from 2,085 sampling stations spanning the world
ocean (Figure 1) were analyzed in this study. Each record
includes vertical profiles of temperature, salinity, and
beam transmission measured at 2 m intervals. Sampling
was performed evenly in terms of time of day. On a
seasonal basis, however, data collection primarily took
place between the months of February and August
(Figure 2). Most of the samples were collected between
1992–1995.

Figure 1. WOCE sampling sites. Collection sites for the data used in this study are marked.
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[9] The beam transmission values were measured at
660 nm and converted to the total beam attenuation coef-
ficient (c) according to the expression

c ¼ � ln T=100ð Þ
z

; ð1Þ

where c is the total beam attenuation coefficient (m�1), T is
the transmission (%), and z is the beam path length (m). We
used total beam attenuation coefficient at 660 nm (c660)
instead of beam transmission because c660 is more relevant
to the issue of remotely measuring mixed layer depths.
Ideally, one would use the backscattering coefficient (bb).
However, the WOCE data set only provides profiles of
c. Fortunately, the total beam attenuation coefficient at
660 nm is an excellent proxy for particle concentration
[Pak et al., 1988]. The total beam attenuation coefficient
represents the summation of the beam attenuation
coefficients for seawater (cw), dissolved organic matter or
‘‘yellow matter’’ (cy), and particles (cp). Mathematically,
this is expressed as

c ¼ cw þ cy þ cp: ð2Þ

Since cw may be regarded as a constant and cy(660) is
negligible, except in turbid waters, changes in c are largely
attributable to changes in particle concentration. Particulate
beam attenuation is dominated by scattering, but absorp-
tion also plays a role. In mathematical terms,

cp ¼ ap þ bp; bp ¼ bpf þ bpb ; ð3Þ

where ap denotes absorption by particles and bp corre-
sponds total scattering, which has both forward (bpf) and
backward (bpb) components. For determining mixed layer
depths by optical means, particulate backscattering (bpb) is
the component of interest. Although absorption by
phytoplankton will affect cp, at 660 nm scattering
dominates absorption, often by a factor of 2–3. To a first
order, variability in c660 is a measure of variability in
particulate scattering. Hence we expect a gradient in c660
to manifest itself as a gradient in bpb(660) as well.

2.2. Algorithms for Computing MLD
on the Basis of Hydrographic Data

[10] Numerous algorithms exist for computing mixed
layer depths from temperature or density profiles. Most of
these methods use criteria based on either a fixed difference
from the surface value or a gradient in excess of a specific
value to determine the MLD [Lukas and Lindstrom, 1991;
Brainerd and Gregg, 1995; Kara et al., 2000]. Temperature-
based techniques have been used most frequently, owing to
the ease of reliably measuring temperature. For regions with
weak haloclines, both the temperature- and density-based
techniques produce nearly equivalent results [Brainerd and
Gregg, 1995]. However, density-based methods are more
reliable for regions subject to intense freshwater input or
where salinity is important for stabilizing the upper water
column, such as in the sub-Arctic [Brainerd and Gregg,
1995; Levitus, 1982; Lukas and Lindstrom, 1991] or where
evaporation can destabilize the mixed layer [Lee et al.,
2000; Gardner et al., 1999]. Kara et al. [2000] found their
density-based technique consistently better at predicting
MLD than their temperature-based analog. In this study,
MLDs were computed using one temperature-based and
five density-based algorithms. An overview of each method
is presented below. Details may be found in the cited
references. To avoid any possible bias due to short-term
surface effects, such as diurnal heating, profile data above a
10 m depth were omitted from analysis.
2.2.1. Method 1: Kara Isothermal Layer Depth (ILD)
[11] This method belongs to the temperature difference

category. Unlike similar approaches, Kara et al. [2000]
provide quantitative analysis justifying the selection of an
optimal DT criterion of 0.8 �C. Starting with the reference
temperature at 10 m, Tref, adjacent temperatures in the
profile are compared until a difference >0.1DT is found.
Tref is then set to the temperature at the shallower of the
two depths. The ILD is determined to be the depth at
which the temperature has changed by an absolute value
of DT from the updated Tref. If no depth range is found
within which the temperature change is >0.1DT, the
profile is searched again, looking for a temperature
change of DT relative to the temperature at 10 m. If
found, the ILD is set to this depth, otherwise, it is set to
the depth at the bottom of the profile.

Figure 2. Distributions of sample collection times. The
three plots show the distributions of collection times for the
2085 records analyzed in this study. Histograms are
presented for time of day, month of the year, and year.
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2.2.2. Method 2: Kara Density Difference (Kara)
[12] This method follows an analogous procedure to that

of method 1. A density profile is generated from the WOCE
temperature and salinity data, using the equation of state for
seawater developed by Millero and Poisson [1981]. The
density variation, Dst, is determined from the temperature
change, DT, in the equation of state

Dst ¼ st T þ DT ; S;Pð Þ � st T ; S;Pð Þ; ð4Þ

where S is salinity and P is the pressure, which is set to zero.
For convenience, density (r) is expressed as st = r � 1000
(kg m�3). As with the ILD, DT was set to 0.8 �C.
2.2.3. Method 3: Lukas-Lindstrom Fixed Density
Gradient (fxGrad)
[13] Lukas and Lindstrom [1991] use a density gradient

criterion of 0.01 kg m�4 to define the MLD. Starting with
‘‘surface’’ (i.e., 10 m) values, the density profiles computed
as part of method 2 were searched until the gradient
criterion was exceeded between adjacent 2-m data points.
The MLD was taken to be the shallower of the two depths in
the interval.
2.2.4. Method 4: Levitus Density Difference (Lev)
[14] Levitus [1982] defines the MLD to be the depth at

which Dst = 0.125 kg m�3, relative to the surface density,
that is, the density at 10 m.
2.2.5. Method 5: Maximum Density Gradient (Grad)
[15] The WOCE temperature and salinity data were used

to generate a corresponding density profile, according to the
equation of state for seawater [Millero and Poisson, 1981].
This profile was smoothed with a five-point moving average
and used to compute the density gradient. The depth of the

maximum absolute gradient magnitude, max jDst/Dzj, was
considered to be the MLD. While this is not a standard
hydrographic definition, oceanic particle distribution is
often closely related to the density structure. Therefore this
definition was added to the suite of MLD algorithms.
2.2.6. Method 6: Steyn Ideal Fit (Steyn)
[16] This algorithm was developed to detect atmospheric

mixed layer structures from lidar backscattering profiles
[Steyn et al., 1999]. In lieu of backscattering data, this
technique has been adapted to utilize density profiles and
c660 profiles. The strategy is to fit an idealized profile, r(z),
to an observed profile, robs(z), by minimizing an error
condition or cost function. One might argue that such a
procedure presupposes the existence of an idealized profile.
However, Steyn et al. state that the method will only detect
mixed layers in profiles resembling the chosen ideal. As will
be shown with examples, the formulation of the idealized
profile is sufficiently robust to cope with extreme profile
shapes.
[17] The equation for the idealized profile used in this

study is

r zð Þ ¼
rmixed þ rdeep

2
�
rmixed � rdeep

2
erf

z�MLD

h

� �
; ð5Þ

where rmixed and rdeep are the densities within the mixed
layer and deep water portions of the profile, respectively,
and h is proportional to the thickness of the transition zone
between the mixed layer and deep water (Figure 3). The
error function, erf(), dictates the density gradient in the
transition zone between the mixed upper layer and stratified
deeper water. Values of the four idealized parameters
(rmixed, rdeep, MLD, and h) are determined through an
iterative process that minimizes the difference between r(z)
and robs(z) in accordance with a sequential similarity
detection algorithm. This metric is based upon the sum of
absolute differences and was used instead of a root-mean-
square deviation because of its computational efficiency and
robustness [Barnea and Silverman, 1972].
[18] As in the work by Steyn et al. [1999], the multidi-

mensional minimization was achieved with a simulated
annealing algorithm [Press et al., 1992]. Kirkpatrick et al.
[1983] present a detailed explanation of the simulated
annealing concept and Press et al. [1992] provide computer
code for implementing the algorithm. In general terms,
simulated annealing is a stochastic search technique for
locating the global extremum of a function space. A cost
function dictates whether the process seeks a minimum or
maximum value. The simulated annealing algorithm is
particularly good at escaping local minima and maxima.
[19] To start the simulated annealing process, an initial

search space is defined that is sufficiently large. As de-
scribed by Press et al. [1992], the search space for a
function of N variables has N + 1 vertices. In the present
case, there are four variables (rmixed, rdeep, MLD, and h), so
the search space will have five vertices, each of which
represents a unique evaluation of the idealized profile
(equation (5)). To create a large initial space, four of the
vertices were set to extreme values that correspond to each
of the variables (Figure 4a). The fifth vertex was dynami-
cally determined for each observed profile in the WOCE
data set. Specifically, rmixed and rdeep were set to the

Figure 3. Idealized density profile. The Steyn method for
determining the MLD fits an idealized profile to an
observed one. The densities rmixed and rdeep correspond to
the mixed layer and deep water portions of the profile,
respectively. The thickness of the transition zone (h) is the
distance between the mixed layer and deep water.
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densities at the top and bottom of the profile, respectively,
MLD was set to the depth of the maximum absolute density
gradient, and h was set to a depth range ±2.0% of the MLD
value.
[20] The cost function used to find the parameter values is

defined as

Cost ¼
X
z

jrobs zð Þ � r zð Þj; ð6Þ

which represents the difference between the observed
density profile, robs(z), and the idealized profile, r(z), on a
per depth basis. Upon completion of the simulated
annealing process, rmixed, rdeep, MLD, and h will be set
to values that correspond to the global minimum of
equation (6), that is, to values that yield the best fit of the
idealized profile to the observed one. To demonstrate the
robustness of this technique, samples from each major
ocean basin are plotted in Figure 5a.
[21] For convenience, the above methods are referred

to as hydrographical methods, even though the Steyn
algorithm was adapted from atmospheric mixed layer
studies.

2.3. Algorithms for Computing MLD
on the Basis of Optical Data

[22] Since no published methods for determining MLDs
or scattering layer depth from profiles of beam attenuation

were found, two of the above hydrographical techniques
were adapted for use with these data.
2.3.1. Method 1: Maximum Beam Attenuation
Gradient (OGrad)
[23] The WOCE beam attenuation profile was smoothed

with a five-point moving average and used to compute the
gradient. The depth of the maximum absolute gradient
magnitude, max jDc/Dzj, was considered to be the MLD.
This method is the same as hydrographic method 5, but
applied to optical data.
2.3.2. Method 2: Steyn Ideal Fit (OSteyn)
[24] This procedure is essentially the same as Steyn

above, but with beam attenuation used instead of density.
The idealized profile is a function of the four parameters
cmixed, cdeep, MLD, and h, where cmixed and cdeep represent
the beam attenuation at the top and bottom of the profile,
respectively. The initial search space (Figure 4b) was
created in a similar manner. A cost function in the form
of equation (6) was used, but with beam attenuation
substituted for density. Examples of these idealized fits
are shown in Figure 5b.
[25] Both of these definitions are gradient based. The

application of a fixed difference method to the c660
profiles is not practical because of the large range of
possible values. Beam attenuation in the ocean can vary
by three orders of magnitude, so it is not reasonable to
apply an absolute Dc criterion. For example, Barnard et
al. [1998] show a range of 0.02 to 1.66 m�1 for c660 for

Figure 4. Initial search space for simulated annealing. Unique combinations of the four unknowns in
the idealized profile equation are used to specify four of the five vertices defining the search space.
Numerical values are listed in the plot of each vertex. The fifth vertex is not shown, since it was
dynamically determined for each observed profile in the WOCE data set. Figures 4a and 4b depict the
vertices for the Steyn and OSteyn methods, respectively.
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a global data set that excluded estuarine waters but not
shelf waters.

2.4. Algorithm Comparisons

[26] The MLDs from each algorithm were compared
using descriptive statistical quantities and numerical differ-
ences. The descriptive statistical measures include the mean,
standard deviation, and the coefficient of variation (CV).
Defined as the ratio of the standard deviation to the mean
[Zar, 1999], the CV is a dimensionless, relative measure of
dispersion, indicating the consistency of values in a series.
The magnitude of the standard deviation tends to increase or
decrease proportionately with similar changes in the mean.
Normalizing the standard deviation by the mean removes its
impact on the variability.
[27] The uncertainty between two different algorithm

MLD values was expressed in two ways. The first method

used the numerical difference. The MLD uncertainty (in
meters) between algorithms A1 and A2 is expressed as

E1 A1;A2; ið Þ ¼ MLDA1 ið Þ �MLDA2 ið Þ; ð7Þ

where i refers to a given sample in the WOCE data set.
Using this metric, intercomparisons were made between
each of the six hydrographically based MLD algorithms
to assess the degree of consistency amongst them. These
comparisons also serve as a reference for evaluating the
optically derived MLDs. In a similar fashion, differences
were computed for all twelve unique pairings of
hydrographic and optical algorithms, with the convention
that algorithm A1 always referred to one of the optical
methods. Second, a percent difference was defined as

Figure 5. Comparison of idealized and observed profiles. Sample profiles corresponding to (a) density
and (b) beam attenuation are depicted for each major ocean basin. Black lines are the WOCE data, and
gray lines represent the optimal fit of the idealized profiles.
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E2 A1;A2; ið Þ ¼ MLDA1 ið Þ �mean A1;A2; ið Þj j
mean A1;A2; ið Þ � 100%;

where ð8Þ

mean A1;A2; ið Þ ¼ MLDA1 ið Þ þMLDA2 ið Þ
2

:

Because there is no correct value, the mean between two
MLDs being compared was used as the ‘‘correct’’ MLD
value. Percent differences were computed for all unique
pairings of hydrographic-hydrographic and hydrographic-
optical algorithms.
[28] A final set of algorithm comparisons was made on

the basis of linear least squares analysis of subsets of MLD
values. The subdivisions correspond to five difference
criteria (<5 m, <10 m, <20 m, <50 m, and <200 m) for
each of two seasonal designations (summer and winter). The
best and worst hydrographical-hydrographical and hydro-
graphical-optical algorithm pairings were determined by
ranking the product of the least squares coefficient of
determination (r2) and the percentage of MLD values
satisfying a given difference criterion. The r2 values were
weighted in this manner to strike a balance between
instances with a high r2 involving a small number of MLDs
and those with a low r2 encompassing a larger percentage of
MLD values.

2.5. Filtering of MLD Values

[29] Among the sampling stations, profile depths ranged
from 84–200 m, with 1,798 (86%) extending to 200 m. For
each of these stations, 8 mixed layer depths were computed
using the 6 hydrographically based methods and 2 optically
based methods. To avoid biasing the distribution of MLD
values, if any of the 8 values was equal to the profile depth,
all data associated with that sampling station were omitted
from the analysis. This filtering step reduced the number of
sampling stations from 2,085 to 1,803.
[30] For seasonal analysis, summer was defined as June–

August in the northern hemisphere and December–Febru-
ary in the southern hemisphere. Winter was defined as
December–February in the northern hemisphere and
June–August in the southern hemisphere. As a result of
these assignments, 814 of the 1,803 (45%) available stations
were sampled in summer and 297 (16%) were sampled in
winter.

3. Results

[31] After filtering according to season, the mean, median,
and standard deviation were computed for the MLDs
derived from each of the six hydrographic algorithms
(Table 1) and both optical algorithms (Table 2). When
plotted, these descriptive statistics reveal several patterns

Table 1. Hydrographical-Hydrographical MLD Algorithm Comparisonsa

Algorithm Pairing Minimum Maximum Median Mean s CV, % Percent <5 Percent <10 Percent <20 Percent <50

Hemisphere-Adjusted Summer (N = 814)
Lev, fxGrad 0.091 79.198 5.910 7.144 8.216 114.995 27.273 (6.05) 92.383 (9.68) 96.069 (10.20) 98.894 (10.65)
Lev, Kara 0.007 54.575 2.106 4.700 7.166 152.456 74.816 (2.52) 87.224 (3.64) 94.226 (4.42) 99.754 (5.59)
fxGrad, Kara 0.002 60.628 7.294 9.117 7.951 87.204 18.673 (6.04) 76.904 (10.28) 93.120 (12.22) 99.017 (13.57)
ILD, Kara 0.001 115.408 1.168 5.250 10.446 198.953 76.290 (1.65) 85.381 (2.45) 91.892 (3.39) 99.017 (5.08)
Lev, ILD 0.009 118.062 2.514 7.451 12.191 163.609 66.462 (2.48) 79.115 (3.71) 88.329 (5.20) 98.280 (7.57)
fxGrad, ILD 0.040 124.286 7.879 12.084 12.467 103.169 13.268 (6.43) 64.619 (10.61) 86.364 (13.29) 97.789 (15.94)
Grad, ILD 0.002 153.825 4.037 13.364 23.348 174.708 57.494 (3.31) 70.270 (4.47) 83.047 (6.45) 92.260 (8.34)
Grad, Kara 0.002 156.562 4.368 15.234 24.166 158.632 54.791 (3.52) 65.848 (4.74) 77.150 (6.74) 91.278 (9.79)
Grad, Steyn 0.000 183.000 4.830 14.183 20.933 147.598 50.614 (1.88) 63.145 (3.25) 75.553 (6.46) 94.963 (12.73)
Lev, Grad 0.003 160.243 5.165 18.044 26.148 144.917 49.263 (3.92) 61.057 (5.28) 73.464 (7.81) 88.206 (11.61)
fxGrad, Grad 0.000 166.000 10.000 20.477 24.604 120.155 13.145 (4.43) 39.189 (8.70) 70.639 (12.75) 89.066 (17.42)
ILD, Steyn 0.001 169.735 13.165 22.689 26.245 115.669 25.921 (2.66) 42.752 (5.16) 62.285 (9.64) 89.066 (17.62)
Kara, Steyn 0.002 174.781 16.729 25.137 26.419 105.101 21.130 (3.07) 35.872 (5.88) 55.037 (11.16) 88.206 (20.32)
Lev, Steyn 0.024 171.720 19.481 27.748 27.811 100.227 21.007 (3.20) 33.661 (5.94) 50.369 (11.82) 83.784 (22.07)
fxGrad, Steyn 1.176 181.000 21.507 30.672 26.692 87.022 3.194 (4.79) 20.025 (11.14) 45.946 (16.89) 83.170 (28.15)

Hemisphere-Adjusted Winter (N = 297)
Lev, fxGrad 0.012 106.128 6.162 8.788 12.522 142.490 23.232 (4.63) 88.552 (7.42) 93.266 (7.49) 97.980 (8.12)
Lev, Kara 0.417 64.368 5.705 9.504 10.576 111.270 44.108 (3.30) 70.370 (4.37) 87.542 (5.95) 98.990 (8.21)
fxGrad, Kara 0.115 81.664 8.952 12.225 11.708 95.770 13.468 (1.58) 60.943 (8.39) 86.869 (10.21) 97.306 (12.43)
Grad, Steyn 0.000 102.454 6.002 12.764 19.071 149.410 47.811 (0.91) 64.646 (1.80) 79.461 (3.39) 94.613 (6.35)
ILD, Kara 0.017 63.518 3.767 10.744 14.278 132.890 54.882 (1.05) 67.677 (1.80) 78.788 (3.71) 96.633 (8.25)
Grad, ILD 0.032 117.768 7.608 14.536 17.999 123.830 40.741 (1.73) 58.249 (2.83) 77.104 (4.45) 92.593 (7.38)
Lev, ILD 0.026 65.958 8.414 16.794 17.818 106.100 38.047 (1.74) 53.872 (2.88) 67.003 (5.40) 93.266 (12.88)
fxGrad, ILD 0.038 73.477 11.123 19.611 18.347 93.560 12.458 (1.37) 46.128 (5.33) 65.993 (7.63) 88.889 (14.51)
ILD, Steyn 0.011 126.839 14.487 21.426 21.638 100.990 23.232 (1.44) 38.384 (2.61) 62.290 (5.69) 88.889 (10.81)
Grad, Kara 0.069 114.448 13.123 22.047 22.457 101.860 31.650 (2.07) 43.771 (2.89) 57.239 (4.36) 86.195 (11.55)
fxGrad, Grad 2.000 93.000 18.000 28.347 24.221 85.440 8.081 (1.42) 23.569 (4.00) 52.189 (7.02) 78.451 (14.23)
Lev, Grad 0.009 138.128 18.612 27.821 26.274 94.440 26.936 (1.93) 40.067 (3.12) 50.842 (4.84) 79.125 (13.55)
Kara, Steyn 0.436 127.525 23.772 27.894 22.383 80.240 13.131 (1.50) 24.916 (3.32) 42.761 (6.17) 86.532 (16.74)
fxGrad, Steyn 0.245 124.999 31.341 33.778 24.937 73.830 7.407 (2.12) 22.222 (3.22) 36.027 (5.28) 76.431 (19.61)
Lev, Steyn 0.009 149.764 30.152 33.102 25.646 77.480 16.835 (1.22) 22.222 (2.36) 34.007 (5.17) 77.778 (18.82)
aThe numerical differences between MLDs associated with pairs of algorithms were computed and grouped according to hemispherically corrected

season (summer and winter). Only MLDs that were less than the corresponding profile depth were used in the difference calculations. Data in columns
labeled Percent <5, 10, 20, and 50 refer to the percentage of MLD values that differed by less than 5, 10, 20, and 50 m, respectively. The value in
parentheses is the average percent difference, which indicates the degree of dissimilarity between the MLDs from two algorithms. Smaller percentages are
better. Algorithm pairings are sorted according to the <20 m difference criterion.
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(Figure 6). Because of stronger mixing, MLDs are consis-
tently deeper in winter than summer. In general, fxGrad and
Lev produced the shallowest MLDs, irrespective of season,
while Grad, Steyn and the two optical methods tended to
yield deeper MLDs. ILD and Kara values lie in between
these bounds. These groupings reflect the similarities and
differences among the different algorithmic definitions of
the mixed layer depth. For example, the behavior of the
Steyn algorithms is attributable to the chosen parameteriza-
tion of the idealized profile. Defining the MLD to be at the
top of the transition zone (Figure 3) would probably
improve the correlation between Steyn/OSteyn and the
other methods. Also noteworthy is the fact that the Steyn
algorithms focus on fitting the overall shape of a profile, at
the expense of finer-scale features (Figures 5a and 5b).
[32] Another way to view the differences between algo-

rithms is to consider the percentage of MLD points that
satisfy a given difference criterion. Taking the seasonal
analysis further, hydrographic-hydrographic and hydro-
graphic-optical algorithm comparisons were made on the
basis of difference criteria of <5 m, <10 m, <20 m, and
<50 m (Tables 1 and 2). In general, the top five pairings
are reasonably consistent for all difference criteria, regard-
less of season. The interhydrographic results reveal slightly
stronger agreement in summer, while the converse is true
for the hydrographic-optical algorithms.
[33] Among the hydrographic-hydrographic pairings,

Lev-fxGrad and Lev-Kara exhibit the smallest differences
in both summer and winter. Of the two, Lev-Kara has the
smallest percent difference (typically <6%) for all tested
criteria, except for differences <50 m in winter. Combina-

tions involving optical algorithms, however, show seasonal
dependencies. OGrad paired with either Grad or ILD
produced the best results in summer, while OSteyn teamed
with either Grad or ILD yielded the smallest differences in
winter. Note that the top performing hydrographic algo-
rithms are the same in both instances. Results for Grad
coupled with OGrad (summer) or OSteyn (winter) generally
have the smallest percent differences, ranging from 1.48%
to 12.77%, depending on the difference criterion. The
coefficients of variation are disappointingly large in all
instances (>100%). This statistic is a relative measure of
dispersion that reflects the inconsistency of values in a
series. The effect of these CVs is evident in the variability
among MLD algorithms as plotted in Figure 6.
[34] Considering the top five interhydrographical pairings

(Table 1), MLDs agree to within 50 m nearly 100% of the
time, irrespective of season. Better than 90% of MLDs in
summer and 80% in winter satisfy the <20 m difference
criterion. As for the top five hydrographical-optical pairings
(Table 2), nearly 90% of the MLDs lie within 50 m and
better than 60% are within 20 m of one another, regardless of
season. The hydrographical-optical results are particularly
encouraging given that both optical MLD definitions (1) are
based on a gradient criterion for beam attenuation profiles
and (2) tend to produce larger depths.
[35] A final series of comparisons was made by per-

forming a linear least squares fit on subsets of MLD values
corresponding to the same difference criteria and seasonal
designations. For the hydrographical-hydrographical pair-
ings (Table 3), the best summer results have r2 values 	 0.9
and usually involve the Lev-fxGrad algorithm. The worst

Table 2. Optical-Hydrographical MLD Algorithm Comparisonsa

Algorithm Pairing Minimum Maximum Median Mean s CV, % Percent <5 Percent <10 Percent <20 Percent <50

Hemisphere-Adjusted Summer (N = 814)
OGrad, ILD 0.064 174.332 10.964 19.958 23.372 117.110 31.327 (2.97) 47.052 (5.37) 66.093 (9.02) 89.066 (14.87)
OGrad, Grad 0.000 172.000 10.000 22.608 28.583 126.430 34.889 (2.65) 46.806 (4.19) 64.005 (7.60) 82.924 (12.77)
OGrad, Kara 0.007 174.545 12.701 21.089 23.615 111.980 30.221 (3.06) 45.086 (5.63) 62.285 (9.47) 88.206 (15.92)
OGrad, Lev 0.021 175.070 12.337 22.457 25.258 112.470 30.221 (3.00) 44.840 (5.79) 61.671 (9.53) 85.749 (16.64)
OSteyn, ILD 0.009 175.320 14.979 22.912 23.537 102.730 22.973 (2.74) 36.855 (4.61) 60.565 (9.54) 88.084 (16.92)
OSteyn, Grad 0.008 172.989 13.774 24.755 27.421 110.770 23.587 (2.28) 39.189 (4.36) 59.828 (8.48) 84.029 (15.38)
OSteyn, Steyn 0.003 174.947 17.415 26.821 27.680 103.200 20.762 (2.42) 34.398 (4.37) 54.177 (7.48) 83.170 (14.94)
OGrad, fxGrad 0.000 182.000 16.000 26.431 26.717 101.080 15.111 (4.51) 32.924 (8.20) 53.931 (13.20) 83.538 (21.78)
OSteyn, Kara 0.067 175.534 18.008 25.136 23.486 93.430 18.305 (2.80) 30.958 (5.51) 53.317 (11.05) 87.101 (19.39)
OGrad, Steyn 0.005 179.000 17.254 27.368 29.341 107.210 23.464 (2.60) 38.084 (4.51) 53.194 (8.19) 82.432 (16.73)
OSteyn, Lev 0.015 176.059 18.492 26.672 24.891 93.320 17.076 (2.63) 30.835 (5.80) 53.071 (11.47) 84.275 (20.50)
OSteyn, fxGrad 0.038 182.989 22.836 31.257 26.010 83.210 7.248 (3.56) 19.533 (7.36) 43.366 (14.83) 80.713 (25.97)

Hemisphere-Adjusted Winter (N = 297)
OSteyn, ILD 0.042 101.608 11.367 16.569 16.367 98.780 24.916 (1.57) 45.118 (2.93) 70.034 (5.54) 95.623 (10.17)
OSteyn, Grad 0.023 129.474 11.233 19.192 22.841 119.010 25.253 (1.48) 45.455 (2.94) 70.034 (5.31) 91.246 (8.38)
OGrad, ILD 0.006 101.477 11.646 16.762 16.934 101.030 26.599 (1.72) 45.118 (2.86) 68.013 (5.16) 95.286 (10.39)
OGrad, Grad 0.000 134.000 12.000 20.209 24.179 119.650 26.599 (1.51) 41.414 (2.55) 64.983 (4.93) 90.236 (8.83)
OGrad, Steyn 0.040 150.999 15.183 24.735 25.749 104.100 18.855 (1.69) 35.017 (2.97) 59.596 (5.55) 86.195 (10.33)
OSteyn, Steyn 0.045 144.585 15.096 23.413 24.404 104.230 19.865 (1.54) 35.690 (2.85) 59.259 (5.31) 87.542 (9.92)
OSteyn, Kara 0.254 103.298 18.124 22.998 19.159 83.310 18.519 (1.88) 31.313 (3.08) 55.219 (6.18) 89.899 (14.46)
OGrad, Kara 0.062 103.025 18.336 23.033 19.155 83.160 17.508 (1.73) 29.630 (2.84) 54.545 (6.62) 89.562 (14.66)
OGrad, Lev 0.057 105.155 19.901 25.181 21.140 83.950 17.172 (1.40) 30.640 (3.49) 50.168 (6.71) 84.512 (15.61)
OSteyn, Lev 0.123 105.428 20.475 25.705 21.092 82.050 16.162 (1.64) 29.966 (2.99) 49.158 (6.03) 84.848 (15.93)
OSteyn, fxGrad 0.041 123.722 22.134 29.318 23.693 80.810 15.488 (1.63) 25.253 (2.90) 46.128 (6.30) 77.104 (15.91)
OGrad, fxGrad 0.000 130.000 22.000 28.758 23.960 83.320 17.508 (2.17) 26.263 (3.10) 43.771 (6.35) 77.441 (15.74)
aThe numerical differences between MLDs associated with pairs of algorithms were computed and grouped according to hemispherically corrected

season (summer and winter). Only MLDs that were less than the corresponding profile depth were used in the difference calculations. Data in columns
labeled Percent <5, 10, 20, and 50 refer to the percentage of MLD values that differed by less than 5, 10, 20, and 50 m, respectively. The value in
parentheses is the average percent difference, which indicates the degree of dissimilarity between the MLDs from two algorithms. Smaller percentages are
better. Algorithm pairings are sorted according to the <20 m difference criterion.
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pairings consist of Steyn coupled with either fxGrad or Kara.
In winter, Lev-fxGrad is typically the best pairing and r2

values are also 	 0.9. The worst winter pairings consist of
Steyn and either fxGrad or Kara.
[36] Regarding the hydrographical-optical algorithm pair-

ings (Table 4), optimal combinations for summer data are
either Grad-OGrad or ILD-OGrad, having r2 values >0.9
for difference criteria as large as 20 m. The corresponding
worst pairing is always fxGrad-OSteyn. In winter, the best
results are associated with either ILD-OGrad or ILD-

OSteyn. For difference criteria as large as 20 m, r2 values
range from 0.87 to 0.98. Again, fxGrad-OSteyn tends to be
the worst pairing.
[37] The degree of correlation between the pairings is

more easily interpreted graphically. For example, consider
the best and worst hydrographical-hydrographical pairs
(Table 3) and the best hydrographical-optical pair (Table 4)
satisfying the <20 m difference criterion for both summer
and winter. All MLD values derived from these algorithms
are plotted (Figures 7 and 8) to illustrate the spread in the

Figure 6. Seasonally adjusted, global ocean, mixed layer depths. MLDs are grouped according to
hemispherically adjusted summer and winter periods. The mean (dots), median (short horizontal lines),
and standard deviation (line length = ±1s) of the MLDs computed with each algorithm are plotted for
both seasons.
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data. Dashed lines delineate the 20 m accuracy limit
asserted by Kara et al. [2000]. Points between these lines
represent MLDs that differ by less than 20 m. Data lying
outside of the dashed lines were excluded from the least
squares analysis. Although not as strongly correlated, the
best hydrographical-optical pairings fall within the
extremes of the interhydrographic combinations. This
pattern is also evident in Tables 1–4.

4. Discussion

[38] The goal of this study was to investigate the potential
for determining oceanic mixed layer depths from profiles of
total beam attenuation at 660 nm, c660. Two different
gradient-based algorithms were developed to derive MLDs
from the c660 profiles. To evaluate the merit of these
approaches, the optically derived MLDs were compared to
MLDs computed with more ‘‘conventional’’ algorithms
utilizing temperature or density profiles.
[39] For all scenarios pertaining to the hydrographical

intercomparisons, the best pairings involved two fixed
difference algorithms (Table 3), indicating the consistency
of MLDs derived from them. In fact, the Lev-fxGrad
combination is the strongest pairing. This result does not
imply that these two algorithms are more accurate or
superior to the others, but rather that Lev and fxGrad are
more strongly correlated than all other unique hydrograph-
ical-hydrographical combinations. All of the worst pairings
consisted of Steyn with either fxGrad or Kara, which is
attributable to their different approaches in computing the
mixed layer depth, that is, ideal fit versus fixed difference.
The hydrographical-optical results were similarly dominated
by a few pairings (Table 4). Grad-OGrad produced the best
results for the majority of cases, which is not surprising
given that both represent gradient-based algorithms. What
was unexpected, however, is how favorably ILD compared
to OGrad and OSteyn, since these pairs represent fixed
difference to gradient-based algorithm combinations. Not-
withstanding these two pairings, combinations between
algorithms based on fundamentally different strategies gen-
erally yielded the poorest results. Of these types of pairings,
fxGrad-OSteyn faired the worst in the majority of cases.
[40] The quality of the algorithm pairings is more

apparent when the data are presented graphically. Plots

corresponding to the best hydrographical-hydrographical
pairs in both summer and winter (Figures 7 and 8, respec-
tively) show that the MLDs are more tightly clustered than
those for the best hydrographical-optical pair. This pattern is
indicative of the higher r2 values associated with the hydro-
graphical-hydrographical pairings (Tables 3 and 4). Plots of
the worst hydrographical-hydrographical pairs clearly show
how large the disparity can be between the various algo-
rithms. Also evident is the tendency of the Steyn algorithm
to produce deeper MLDs, a propensity also present in the
global, seasonal MLD plots (Figure 6). Finally, there does
not appear to be any ocean basin clustering. For a given
season, MLDs from each ocean basin generally span a
similar range.
[41] Several factors account for much of the disparity

between the hydrographical and optical MLD algorithms.
First, the inherent fluctuations of the mixed layer depth limit
the accuracy of its determination to 20 m for 85% of
possible instances, regardless of the algorithm used [Kara
et al., 2000]. The results of this study support this level of
accuracy. We obtained median differences of approximately
6 m and 11 m for the best interhydrographical and hydro-
graphical-optical pairs, respectively, for both seasons. Also
adding to the variability are different mathematical formu-
lations, most notably, fixed difference methods versus
gradient methods. A third issue is the susceptibility of
optical parameters to biological influences. The optical
algorithms are based on profiles of beam attenuation at
660 nm which, in the open ocean, are largely attributable to
the concentration of suspended particles, both alive and
inanimate [Pak et al., 1988]. The effects of biological
processes (e.g., primary production, grazing, sinking, swim-
ming, aggregation, and photoadaptation) can impact c660
profiles in ways that are only indirectly related to physical
forcing. Growth and predation can occur even when the
hydrographical parameters are constant in time. A final
contributing factor to the discrepancies pertains to the
parameters used to estimate the mixed layer depth. In the
hydrographic case, the physical parameters directly influ-
ence the dynamics associated with the MLD (e.g., lateral
restratification). The optical parameters, on the other hand,
are largely passive, being advected with the flow [Chang
and Dickey, 2004].

Table 3. Best and Worst Combinations Among the Hydrographi-

cal MLD Algorithms for Various Difference Criteria Using World

Ocean Data

Difference
Criterion, m

Best Algorithm Pairing (r2),
% of MLDs

Worst Algorithm Pairing (r2),
% of MLDs

Summer
<5 ILD-Kara (0.994, 76.29) fxGrad-Steyn (0.998, 3.19)
<10 Lev-fxGrad (0.982, 92.38) fxGrad-Steyn (0.988, 20.03)
<20 Lev-fxGrad (0.963, 96.07) fxGrad-Steyn (0.963, 45.95)
<50 Lev-fxGrad (0.901, 98.89) Kara-Steyn (0.576, 88.21)
<200 Lev-fxGrad (0.890, 100) Kara-Steyn (0.285, 100)

Winter
<5 ILD-Kara (0.989, 54.88) fxGrad-Steyn (0.983, 7.41)
<10 Lev-fxGrad (0.993, 88.55) fxGrad-Steyn (0.988, 22.22)
<20 Lev-fxGrad (0.980, 93.27) Lev-Steyn (0.926, 34.01)
<50 Lev-fxGrad (0.929, 97.98) Kara-Steyn (0.637, 86.53)
<200 Lev-fxGrad (0.856, 100) Kara-Steyn (0.309, 100)

Table 4. Best and Worst Combinations Between All Possible

Unique Combinations of Hydrographical and Optical MLD

Algorithms for Various Difference Criteria Using World Ocean

Data

Difference
Criterion, m

Best Algorithm Pairing (r2),
% of MLDs

Worst Algorithm Pairing (r2),
% of MLDs

Summer
<5 Grad-OGrad (0.988, 34.89) fxGrad-OSteyn (0.984, 7.25)
<10 Grad-OGrad (0.963, 46.81) fxGrad-OSteyn (0.950, 19.53)
<20 ILD-OGrad (0.880, 66.09) fxGrad-OSteyn (0.881, 43.37)
<50 Lev-OGrad (0.666, 85.75) Steyn-OSteyn (0.415, 83.17)
<200 Lev-OGrad (0.261, 100) Steyn-OSteyn (0.073, 100)

Winter
<5 Grad-OGrad (0.977, 26.60) fxGrad-OSteyn (0.987, 15.49)
<10 ILD-OSteyn (0.953, 45.12) fxGrad-OSteyn (0.961, 25.25)
<20 Grad-OSteyn (0.868, 70.03) fxGrad-OGrad (0.843, 43.77)
<50 ILD-OGrad (0.636, 95.29) Steyn-OSteyn (0.436, 87.54)
<200 Lev-OGrad (0.364, 100) Steyn-OSteyn (0.087, 100)
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[42] In spite of these differences, the optical algorithms
are in first-order agreement with the conventional hydro-
graphical methods. Higher correlation between the hydro-
graphical and optical techniques may be possible at
certain times of day, such as early morning hours, when
the upper water column is well mixed and phytoplankton
photosynthesis is not operating at peak levels. Siegel et
al. [1989], Gardner et al. [1993, 1995], and Walsh et al.
[1995], among others, have shown that the diel signal can
be strong. In this study, the use of archived data pre-
cluded the optimization of sampling times. Future experi-
ments should pay close attention to the periods during

which growth and predation are minimal, so that the bio-
optical and physical structures are driven by the same
forcing factors.
[43] Of the two optical techniques, OGrad was more

strongly correlated with the conventional methods, in par-
ticular Grad (Tables 2 and 4). This result suggests that, to a
large extent, the vertical distribution of particles is governed
by density structure or by parameters that are indirectly
associated with it, such as nutrients. Optimizing the algo-
rithms for regional conditions by means of simultaneously
obtained hydrographic and attenuation profiles collected at
specific times of the diel cycle would potentially increase

Figure 7. Best and worst algorithm pairings during summer (hemispherically corrected). On the basis of
the least squares analysis (Tables 3 and 4), MLDs corresponding to the best/worst interhydrographical
algorithm pair are plotted against one another for the summer season. For comparison purposes, MLDs
for the best hydrographical-optical pair are shown in the bottom plot. Points located within the dashed
lines correspond to MLD pairs that differ by <20 m.
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the correlation between hydrographically and optically
derived MLDs.
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