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Abstract: Field observations and theoretical studies have shown that shapes 
of the volume scattering functions (VSFs) of oceanic particles in the 
backward directions, i.e., VSFs normalized by the total backscattering 
coefficient, exhibit a surprisingly low variability at angles near 120 degree, 
which is also confirmed by measurements of VSFs in coastal waters around 
the US. To investigate what this minimum variability angle (θ*) represents, 
we estimated mean values of the VSFs in the backward angles using four 
mean value theorems: mean value for integral, weighted mean value for 
integral, classic mean value for differentiation and Cauchy’s mean value. 
We also estimated the angles corresponding to the minimum values of the 
VSFs. We found θ* to be very close to the angles representing the classic 
mean values for differentiation of the VSFs. The low variability is due to 
the fact that the classic mean values vary little with the composition and 
sizes of particles. 
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1. Introduction 

The volume scattering function (β(θ), m−1 sr−1) describes the angular distribution of scattered 
light by an assemblage of particles as a function of scattering angle, θ. It is one of the key 
determinants of the light field in the ocean [1]. The backward portion of the VSF (i.e., 90 ≤ θ 
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≤180°) is of particular importance for applications of ocean color because it largely dictates 
the magnitude and shape of reflected solar radiation from the ocean [2] that is amenable to 
remote observation, say, from a satellite [3]. The backscattering coefficient (bb, m

−1) is often 
used to quantify the overall backward scattering and is defined as 

 
2

2 ( )sinbb d
π

π
π β θ θ θ=   (1) 

Both particles and seawater contribute to the volume scattering additively. Molecular 
scattering by seawater has been known relatively well for several decades [4] and recent 
improvements [5–8] allow its prediction to within 2% of laboratory measurements. In the 
remaining part of the paper, VSFs or β(θ) refers to the volume scattering function due to 
particles, which can be easily estimated by subtracting the seawater contribution from the 
measured VSFs. Normalizing β(θ) with bb or alternatively the χ factor, defined as 

/2
( )sin

( )
2 ( ) ( )

b
db

π

π
β θ θ θ

χ θ
πβ θ β θ

= =  , describes the shape of β(θ) or 1/β(θ) in the backward 

directions. In the past, because of instrumentation difficulty, field measurements of the VSFs 
in the ocean were scant [9, 10]. Analyzing all the field data available up to his time, Oishi 
[11] found χ varies the least at 120° with a mean value of 1.14 and a standard deviation of 
~5%. Let θ* denote the angle at which χ exhibits minimum variability. Recent technological 
advancement has allowed VSFs to be measured more frequently and extensively [12, 13], 
which led to a renewed interest in the behavior of the χ factor [13–17]. Sullivan and 
Twardowski [13] found θ* was between 110 – 120° based on an extensive data set collected 
by MASCOT, a prototype instrument measuring VSFs between 10 and 170° at 10° interval. 
Boss and Pegau [17] analyzed data collected near the LEO-15 site off the coast of New 
Jersey, using another prototype instrument, VSM [12] measuring VSFs at a finer angular 
resolution of 0.25°, and found θ* = 118° and χ(118°) = 1.10 ± 4%. We have measured VSFs 
using an improved version of VSM at three coastal waters around U.S., Monterey Bay (MT), 
Chesapeake Bay (CB) and Mobile Bay (MB) [18]. Combining our data with the data 
measured at the LEO-15 site we found that while VSFs at backward angles exhibit over 2 
orders of magnitude variation (Fig. 1-(a)), the χ factor shows a minimum variability at 122° 
and χ(θ*) = 1.10 ± 1.45% (Fig. 1-(b)). 

The behavior of χ(θ) has also been simulated for spherical particles following the power-
law size distribution. Under this simplified assumption, χ(θ) were modeled for different 
power-law exponents and different refractive indices [11, 17, 19]. Additional modeling was 
also done for different cut-off sizes at the small size end of power-law function and for coated 
particles [20]. All of simulated χ(θ) intersect around 112 - 120°, indicating very limited 
variability in this angular range. 

The χ represents the form of the VSFs in the backward angles, which is very sensitive to 
the shape [21], composition [22], and size distributions of particles and expected to vary 
significantly for different aquatic environment with differing particle assemblages [23]. The 
existence of a consistent angle at which χ values estimated from different waters exhibit little 
variability is intriguing. This behavior was also found for mono-specific phytoplankton 
cultures [16]. To further investigate this phenomenon, we examine particles of different sizes 
using an optical inversion technique that we recently developed [24] with results that have 
been validated in different studies [18, 25–28]. 
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Fig. 1. (a) The backward portion of VSFs measured in Chesapeake Bay (CB), Mobile Bay 
(MB, Alabama), Monterey Bay (MT, California) and the LEO-15 site. (b) The χ factor 
estimated for the VSFs shown in (a). The three values are, respectively, the angle at which χ 
exhibits the minimum variability, the mean value of χ at this angle, and its coefficient of 
variation (std/mean). 

2. Small and large particles 

The technical details of the inversion method have already been reported [18, 24]. Briefly, a 
measured VSF is partitioned using an optimization technique into contributions by different 
particle species, each of which is represented by a unique combination of log-normal size 
distribution and composition (we use refractive index as a proxy for composition). The Log-
normal function closely represents size distribution of particles resulting from natural 
processes of breakage [29], coagulation [30], or cell division [31]. Particles are simulated 
using asymmetrical hexagonal shape instead of spheres (an extreme shape having the smallest 
surface-area/volume). The inversion method has been tested in studies of natural bubble 
population [25, 26], phytoplankton and non-algal particles [27], particulate organic and 
inorganic matter [28] and bulk particulate size distributions [18] that are consistent with 
independent estimates. In this study, we will further group different particle species into two 
distinctive groups; small particles, representing those with sizes < 0.2 µm and large particles. 
There are two reasons for this approach: (1) marine particles are often operationally 
partitioned into dissolved (small) and particulate (large) particles via filtration; and (2) small 
and large particles exhibit distinctive shapes in VSFs. With this approach, we have 

 
, ,

( ) ( ) ( )s l

b b s b lb b b

β θ β θ β θ= +
= +

 (2) 

where subscript s and l denote small and large particles, respectively. An example of such 
partitioning of VSFs is shown in Fig. 2. Note that VSFs for large particles have strong 
forward scattering as compared to small particles. 

From Eq. (2), it follows 

 

( ) ( )
( ) ( ) ( )

( ) ( )

( ) (1 ) ( )

s l
s l

s ly y

β θ β θχ θ χ θ χ θ
β θ β θ

χ θ χ θ

= +

= + −
 (3) 

where [ ]0,1y ∈ . The variability of χs(θ) and χl(θ) was further examined for each of the four 

experiment sites in Fig. 3. Several features can be discerned clearly. First, χ varies but the 
general angular shapes are similar within each particle group. Second, the general shapes of χ 
differ significantly between the two particle groups. Third, the χ factor shows minimum 
variability at angles about 120° for both groups, even though the exact values of χs(θ*) and 
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χl(θ*) are different. And finally, there are insignificant differences in χs(θ) or χl(θ) between 
different experiment sites. 

 

Fig. 2. A measured VSF (solid black line) is partitioned into contributions by small (green line) 
and large (red) particles using the inversion technique. The sum of VSFs due to small and large 
particles (dashed black line) matched the observed VSF nicely. 

 

Fig. 3. The variability of χ factor estimated for two different size groups and for different 
experiment sites. The bulk χ is estimated using Eq. (3). The three values in each panel are, 
respectively, the angle at which χ exhibits the minimum variability, the mean value of χ at this 
angle, and its coefficient of variation (std/mean). 

3. Theoretical interpretation 

While both direct observation and optical inversion indicate the existence of this minimum 
variability angle θ*, the question remains as to what θ* represents? Following the weighted 
mean value theorem for integrals, there exists 1 [ 2, ]θ π π∈ , for which it follows from Eq. (1) 

that: 1 12
2 ( ) sin 2 ( )bb d

π

π
πβ θ θ θ πβ θ= = . Oishi [11] conjectured that θ* ≈θ1. To evaluate 

whether this is indeed the case, we merged β(θ) measured in the four field experiments into 
one data set and estimated θ1 for both small and large particle groups. Figure 4 compares the 
values estimated for θ1 with the minimum variability angle, θ*. Clearly, these two angles are 
not the same. Actually if the two angles were the same, then χ(θ*) = 1, differing considerably 
from either theoretical or experimental results that have shown χ(θ*) ≈1.05 – 1.20. Expanding 
on Oishi’s approach, we estimated three other angles (θ2, θ3, and θ4) [ 2, ]π π∈ , based on: the 
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mean value theorem for integrals, 2 2

2
( ) ( )d

π

π
β θ β θ θ

π
=  ; the classic mean value theorem, 

3

2
( ) ( ( ) ( 2))β θ β π β π

π
′ = − ; and Cauchy’s mean value theorem, 

4 4

4

( ( )sin ) '( )sin( ) ( 2)sin( 2)

sin( ) sin( 2) cos( )

β θ θβ π π β π π
π π θ

− =
−

. The symbol ′ denotes differentiation. Note 

that we do not have VSF measurements at exactly 180°; the measurements were down to 
177.3° in the LEO-15 experiment and down to 179° in the other three experiments. We used 
β(177.3) or β(179) directly in the above estimations. We tested by extrapolating the VSFs to 
180°, with negligible differences in the estimations of these angles. Also, we estimated the 
minimum β(θ) angle (θ5), i.e., 5( ) 0β θ′ = . The comparisons for these four additional angles 
are also shown in Fig. 4. For both small and large particle populations and for the bulk 
particle population, θ3, among all the four angles, is the closest to θ* in values and exhibits 
the smallest variability. 

 

Fig. 4. Comparison of four mean value angles of θ1, θ2, θ3, and θ4 and minimum angle θ5 
(circles with various colors) with the minimum variability angle θ* (black line) for small, large 
and bulk (small + large) particle populations. 

Figure 4 naturally leads to a question—why are the angles (θ3) estimated for different 
particle groups more similar to each other? In an attempt to answer this question, we look at 
two extreme cases, particles of sizes smaller than the wavelength in vacuum (λ), i.e. 

size
02 m

λ
π

< , with m0 being the refractive index of the medium (m0 ≈1.33 for water) and 

particles of sizes larger than the wavelength, i.e. size 
0

20

m

λ>  [32]. Assuming λ = 0.532 µm, 

particles smaller than the wavelength are roughly of sizes < ~0.07 µm and those larger than 
the wavelength of sizes > ~10 µm. For oceanic particles smaller than the wavelength, the 
scattering can be approximated as [32], 

 21
( ) 1 cos

1

δβ θ θ
δ

−+
+

  (4) 

where δ is the depolarization ratio. For oceanic particles larger than the wavelength, the 
scattering in the backward angles is predominately due to reflected light [33] and “the 
scattering pattern caused by reflection on very large convex particles with random 
orientation is identical with the scattering pattern by reflection on a very large sphere of the 
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same material and surface condition” [32]. Following Fournier [34], the VSF due to 
reflection can be approximated as: 

 
2 2 2 2 2 22 2

1 2 1 1 2 2( ) (1 ) (1 )r r r r r rβ θ + + − + −  (5) 

where 1

cos cos

cos cos
i t

i t

m
r

m

θ θ
θ θ

−
=

+
, 2

m cos cos

m cos cos
i t

i t

r
θ θ
θ θ

−
=

+
, sin sini tmθ θ= , and 2 iθ π θ= − . Here 

and hereafter, m represents the refractive index of particles relative to water. We estimated the 
values for the five angles of (θ1, θ2, θ3, θ4 and θ5) from Eq. (4) for particles smaller than the 
wavelength and they are 125°, 135°, 110° 145° and 90°, respectively. Similarly, we estimated 
the values from Eq. (5) for particles much larger than the wavelength. They vary slightly with 
the refractive index, and range approximately 111 – 112° for θ1, 116 – 117° for θ2, 117 – 119° 
for θ3, 120 – 122° for θ4, and 180° for θ5, respectively. Between the two sets of estimates, the 
difference for θ3 is the smallest, varying only 7 – 9° between extremely small and large 
particles, whereas the differences for other angles are at least 15° or larger. Two interesting 
notes regarding the minimum β(θ) angle (θ5): it shifts from 90° for particles smaller than the 
wavelength to 180° for particles larger than the wavelength and its value does not change 
with the refractive index for extremely large particles (geometric optics). 

Next, we examine if these two extreme cases would form a bounding constraint. In nature, 
particles form a continuum in sizes, ranging from molecules to particulates of sizes 
millimeters or larger and all contribute to the volume scattering functions. The β(θ) by 
oceanic particles is often approximated using Fournier and Forand [35] phase function [see 
also 33], developed based on two simplified assumptions: particles follow a power law (or 
Junge) size distribution and have the same refractive index, with the values of the power-law 
exponent and index of refraction relative to water varying −5.0 – −3.5 and 1.02 – 1.20, 
respectively [33]. Figure 5 shows the variation of θ3 estimated for the Fournier and Forand 
phase functions as a function of the power-law exponent (or Junge slope) and the refractive 
index of particles. Relatively, θ3 is found to be more sensitive to the size distribution than the 
composition of particles. For size distributions favoring the smaller particles with a steeper 
slope, the values of θ3 are close to the theoretical value of 110° estimated for particles of sizes 
less than the wavelength, and θ3 approaches 120° as large particles become increasingly 
dominant. This indicates that the variability of θ3 is well constrained, at least from this 
simplified theoretical analysis. Our result is consistent with the early finding by Boss and 
Pegau [17] showing that χ(117) based on Fournier and Forand phase functions have roughly 
the same value as χ(117) by seawater, for which β(θ) is the same as Eq. (4) for particles 
smaller than the wavelength. 

 

Fig. 5. Variations of θ3 estimated for the Fournier and Forand phase functions with the 
exponent (or Junge slope) of the power law size distribution and the refractive index of 
particles. 

We now examine bubbles, which are found in copious amounts in both rough [36, 37] and 
quiescent seas [38–40]. With m = 0.75, a (large) bubble behaves optically different from a 
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typical particle, whose m > 1. Since Eq. (4) does not depend on the particle type, the five 
angles (θ1, θ2, θ3, θ4 and θ5 = 125°, 135°, 110°, 145° and 90°, respectively) are the same for a 
bubble and a particle both of sizes smaller than the wavelength. But these five angles are 
quite different at sizes much larger than the wavelength between a bubble and a particle; for a 
bubble these five angles are 108°, 112°, 110°, 114°and 180°, respectively, as compared to 111 
– 112°, 116 – 117°, 117 – 119°, 120 – 122°, and 180°, respectively, for particles of different 
refractive indices. Interestingly, values of θ3 for bubbles are nearly the same ( = 110°) 
between the two extreme sizes, whereas the values for other angles differ significantly. Since 
the Fournier and Forand phase functions do not apply to bubble populations, we estimated 
β(θ) using Mie theory (bubbles are basically spherical) and five angles assuming the same 
power-law size distributions. For the exponent from −5 to −3.5, θ3 varies from 114° to 108°, 
tightly around 110° which is found for both extremely small and large bubbles. 

4. Discussion 

We have shown that the angle θ* at which minimum variability has been observed in the 
backward shape of β(θ) represents the location of the classic mean value of β(θ) (we denote 
this angle as θ3 in this study). While β(θ) in the backward angles is expected to vary strongly 
with the size, composition and shape of particles, the values of θ3 are surprisingly invariant. 
In terms of particles sizes, we have examined variations of θ3 in two general size fractions of 
dissolved and particulate (Fig. 4), in two end size members (Eqs. (4) and (5)), and in varying 
proportions of small and large particles. In terms of the effect of particle shape, our inversion 
method (Fig. 2) uses asymmetrical hexahedra to represent particles [41] and the reflective 
contribution to β(θ) was estimated using spheres. The former is almost a diametrical opposite 
to the latter: asymmetry vs symmetry and sharp edges vs smooth curvature. In terms of 
composition, the refractive indices used in the inversion and simulation cover the typical 
range for oceanic particles [42] and bubbles. While not exhaustive, our analyses do cover a 
wide range of possible representations of oceanic particles over a variety of water types. The 
values of θ3 estimated over all these analyses varied within a tight range of 110 – 125°. 

In remote observation of the aquatic environment (i.e., ocean color), the magnitude of the 
reflected signal is directly proportional to bb, which is very difficult to measure accurately 
(see Eq. (1)). The existence of a minimum variability angle θ* for β(θ) in the backward 
angular range has led to practical applications, because it is possible to infer bb relatively 
accurately by measuring scattering at the angle of θ* (~120°). For example, commercial 
sensors are available measuring scattering at fixed angles [19, 43], from which bb are 
estimated. 

Boss et al. [44] showed that scattering measured around 120° performs better as a 
predictor of particulate matter concentration (or total suspended solids) than measurements of 
side-scattering at 90° or the attenuation coefficient at coastal sites. Generally, VSFs vary 
strongly with the concentration, size distribution and type of particulate matter in the water 
[28]. However, taking measurement of VSFs around 120°, approximately representing the 
classic mean value of VSFs in the backward angular range that we have shown is not very 
sensitive to the size distribution and composition of particles, leaves the dominant sensitivity 
attributable to the concentration. 

Even though θ3 is most consistent with θ* and this numerical consistency remain 
relatively unchanged for different particle assemblages either by simulations or observations, 
we do not know its physical root. It remains to be investigated as to what physical 
connotation the classic mean value of β(θ) in the backward angles carries that leads to such a 
constrained variability? 
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