CONTENTS

VOLUME I

PART I BASIC PRINCIPLES

Chapter 1

Introduction to Hydrologic Optics

1.0	Hydrologic Optics: Definition, Domain and Desiderata	1
	The Problems of Hydrologic Optics	2 3
	The Aims and Desired Goals of This Work	3
	The Plan and Scope of This Work	4
1.1	A Primer of Geometrical Radiometry and Photometry	6
	The Nature of Radiant Flux	6
	The Unpolarized-Flux Convention	7
	Geometrical Channeling of Radiant Flux	9
	Operational Definitions of the Densities	10
	Field and Surface Interpretations of Radiant Flux and its Densities	12
	Operational Definitions of Field and Surface Quantities	12
	Summary of Concepts and Some Principal Formulas of	
	Geometrical Radiometry	14
	n ² -Law for Radiance	18
	The Bridge to Geometrical Photometry	18
1.2	A Survey of Natural Light Fields	22
	The Solar Constant	22
	General Irradiance Levels at Earth's Surface	24
	General Illuminance Levels at Earth's Surface	25
	Gross Features of Atmospheric Radiative Transfer	27
	Radiative Transfer Across the Air-Water Surface	28
	Glitter Patterns on the Air-Water Surface	32
	Subsurface Refractive Phenomena	33
	The Decay of the General Light Field with Depth	37
	Behavior of Radiance Distributions with Depth	39
	The Asymptotic Radiance Hypothesis	41
	Underwater Irradiance Distributions	42
	Subsurface Contrast Reduction by Scattering and Absorbing Effects	44
	Subsurface Contrast Reduction by Refractive Effects	48
	The Polarization of Underwater Light Fields	50
	Biological Sources of Submarine Light Fields	53

1.3	Three Simple Models for Light Fields	55
	The Two-Flow Model	55
	The Radiance Model	58
	The Diffusion Model	61
1.4	Some Deductions from the Light Field Models	66
	The Decay of the General Light Field with Depth	66
	Reflectance and Transmittance of Finitely Deep Hydrosols	68
	Invariant Imbedding Relations for Irradiance	71
	A Theoretical Basis for the Law:	81
	$N_* (z,\theta) = N_* (0,\theta) e^{-kz}$	
	Computing Radiances from the Simple Model	84
	Derivation of the Contrast Transmittance Law and the	
	Radiance Difference Law	89
	Contrast Transmittances for General Backgrounds	92
	The Multiplicative Property of Contrast Transmittance	93
	Theory of the Secchi and Duntley Disks	96
	Theory of Absorption Measurements in Natural Hydrosols	103
1.5	Some Properties of Artificial Light Fields in Natural Waters	109
	The Pure Absorption Case	109
	Derivation of the Semi-empirical Diffusion Model for Point Sources	110
	Two Examples of the Empirical Diffusion Model	112
	Radiance Distribution Produced by a Submerged Uniform Point Source	113
	An Empirical Study of Light Fields Produced by Collimated Sources	114
1.6	Inherent and Apparent Optical Properties of Hydrosols	118
	Operational Definitions of the Inherent Optical Properties	119
	The Volume Attenuation Function	119
	The Volume Scattering Function	122
	Volume Total Scattering Function and Volume Absorption Function	123
	Selected Physical Measurements of the Inherent Optical Properties	125
	Operational Definitions of the Apparent Optical Properties	135
	Preliminary Observations on the Classification of Natural Hydrosols	138
1.7	Some General Modes of Classification of Natural Optical Media	139
	Modes of Classification	139
1.8	Colorimetric Radiative Transfer	142
	The Quantitative Description of Color	143
	An Example of Experimentally Determined Chromaticity Coordinates On the Use of Simple Models for Theoretical Predictions of	149
	Chromaticity Coordinates	151

1.9	Applicati	ions of Hydrologic Optics to Underwater Visibility Problems	154
	Introduct	tion to the Nomographs	154
		Selection of the Proper Chart	156
	1	A.1 Introduction	156
	1	A.2 Natural Illumination	156
	1	A.3 Effect of Depth and Water Clarity	157
		Stratified Water	157
		Effect of Sea-State	157
		Examples	160
	1	A.4 Adaptation Level	160
		Inclination Factor	160
		Bottom Influence	162
	1	A.5 Calculation of Adaptation Luminance	162
		A.6 Chart Selection	163
	В. 1	Using the Nomographs	163
]	B.1 Introduction	163
]	B.2 Objects on the Bottom	163
		Object Size and Shape	163
		Vertical Path of Sight	163
		Inclined Paths of Sight	165
		B.3 The Secchi Disk	169
		B.4 Target Markings	170
		B.5 The Measurements of Target Reflectance	170
		B.6 Horizontal Paths of Sight	170
		B.7 The R∞ Correction	172
		B.8 Correction of the Sighting Range	172
		Interpretation of Sighting Range	193
		C.1 Introduction	193
		C.2 Effect of Lack of Warning	193
		C.3 Effect of Observer Training	193
		C.4 Effect of Observer Visual Capability	194
		isualization of Water Clarity	194
		D.1 Introduction	194
		D.2 Estimation of Sighting Range	194 195
		D.3 Estimation of Adaptation Luminance	
		D.4 Estimation of α and K	195
	J	D.5 Characterization of Natural Waters	195
1.10		ions of Hydrologic Optics to the Food-Chain Problem in the Sea	196
		eral Exponential Law of Change	197
		terra Prey-Predator Equations	198
		eral Food-Chain Equations	199
		ration of the Food-Chain Theory with a Radiant Energy Term	201
		eral Three-Term Equations	202
		si-Steady State Equations	202
	-	ilibrium Solutions eneral Properties of Equilibrium Solutions	203 204
		merar i ropernes di Equindrulli Sulundlis	∠∪4

1.11	Future Problems of Hydrologic Optics Problem One: To Establish Theoretically the Physical Basis of the Inherent Optical Properties of Natural Hydrosols	205
	Problem Two: To Establish Complete Empirical Classifications of Natural Hydrosols Problem Three: To Establish a Unified Automatic Computation	207
	Program for Prediction Computations and Data Reduction Computations in Geophysical Optics (the GEOVAC)	208
1.12	Bibliographic Notes for Chapter 1	208
	VOLUME II	
	Chapter 2	
	Radiometric and Photometric Concepts	
2.0	Introduction	1
2.1	Radiant Flux Basic Photoelectric Effects Operational Definition of Radiant Flux	3
2.2	The Meaning of 'Radiant Flux'	8
2.3	Fundamental Geometric Properties of Radiant Flux	10
2.4	Irradiance and Radiant Emittance Definition of Irradiance The Meaning of 'Irradiance' Terrestrial Coordinate Systems Representation of Irradiance in Terrestrial Frames The Cosine Law for Irradiance Radiant Emittance	14 14 16 19 24 26 28
2.5	Radiance Radiance Distributions Irradiance from Radiance Radiance from Irradiance Field Radiance vs. Surface Radiance	30 34 35 41 44
2.6	An Invariance Property of Radiance The Radiance-Invariance Law The Operational Meaning of Surface Radiance The n²-Law for Radiance	46 46 49 51

2.7	Scalar Irradiance, Radiant Energy, and Related Concepts	54
	Radiant Density	54
	Scalar Irradiance	55 56
	Spherical Irradiance	56
	Hemispherical Irradiance	58
	Radiant Energy over Space	60
	Radiant Energy over Time	61
	Scalar Radiant Emittance	61
2.8	Vector Irradiance	62
	A Mechanical Analogy	62
	General Definition of Vector Irradiance	65
	The General Cosine Law for Irradiance	66
2.9	Radiant Intensity	70
	Operational Definition of Empirical Radiant Intensity	70
	Field Intensity vs. Surface Intensity	72
	Theoretical Radiant Intensity	73
	Radiant Intensity and Point Sources	74
	Cosine Law for Radiant Intensity	77
	Generalized Cosine Law for Radiant Intensity	80
2.10	Polarized Radiance	83
	Operational Definition of Polarized Radiance	85
	The Standard Stokes and Standard Observable Vectors	88
	Analytic Link Between S and N	90
	Standard and Local Reference Frames	91
	Radiant Flux Content of Polarized Radiance	94
2.11	Examples Illustrating the Radiometric Concepts	95
	1. Radiance of the Sun and Moon	96
	2. Radiant Intensity of the Sun and Moon	98
	3. Radiant Flux Incident on Portions of the Earth	101
	4. Irradiance Distance-Law for Spheres	103
	5. Irradiance Distance-Law for Circular Disks; Criterion for a Point Source	105
	6. Irradiance Distance-Law for General Surfaces	106
	7. Irradiance via Line Integrals	109
	8. Solid Angle Subtense of Surfaces	112
	9. Irradiance via Surface Integrals	115
	10. Radiant Flux Calculations	117
	11. Intensity Area-Law for General Surfaces	119
	12. On the Possibility of Inverse nth Power Irradiance Laws	120
	13. Irradiance from Elliptical Radiance Distributions	131
	14. Irradiance from Polynomial Radiance Distributions	138
	15. On the Formal Equivalence of Radiance and Irradiance Distributions	143

2.12	Transition from Radiometry to Photometry The Individual Luminosity Functions	151 152
	The Standard Luminosity Functions	157
	Photometric Bedrock: the Lumen	161
	Luminance Distributions	163
	Transition to Geometrical Photometry	165
	General Properties of the Radiometric-Photometric Transition Operator	169
	The Mathematical Basis for Geometrical Photometry	169
	Summary and Examples (Tables of Radiometric and Photometric Concepts)	170
2.13	Generalized Photometries	183
	Linear Photometries	184
	Nonlinear Photometries	185
2.14	Bibliographic Notes for Chapter 2	187
	Chapter 3	
	The Interaction Principle	
3.0	Introduction	188
	The Physical Basis of the Linearity of the Interaction Principle	189
	Plan of the Chapter	193
3.1	A Preliminary Example	194
	Empirical Reflectances and Transmittances for Surfaces	194
	The Problem	196
	The Present Instance of the Interaction Principle	197
	Solution of the Problem	198
	Discussion of Solution Related Problems and Their Solutions	199 200
	An Alternate Form of the Principle	200
	The Natural Mode of Solution	203
3.2	The Interaction Principle	205
J. 2	Discussion of the Interaction Principle	206
	The Place of the Interaction Principle in Radiative Transfer Theory	208
	The Levels of Interpretation of the Interaction Principle	208
3.3	Reflectance and Transmittance Operators for Surfaces	210
	Geometrical Conventions	210
	The Empirical Reflectances and Transmittances	212
	The Theoretical Reflectances and Transmittances	213
	Variations of the Basic Theme	215

3.4	Applications to Plane Surfaces	217
	Example 1: Irradiances on Two Infinite Parallel Planes	217
	Example 2: Irradiances on Two Infinite Parallel Planes, Reexamined.	
	A First Synthesis of the Interaction Method	220
	Example 3: Irradiances on Finitely Many Infinite Parallel Planes	223
	Example 4: Irradiances on Infinitely Many Infinite Parallel Planes	227
	Example 5: The Algebra of Reflectance and Transmittance Operators for	
	Planes. Radiometric Norm. Iterated Operators. Operator Algebras and	
	Radiative Transfer	230
	Example 6: Radiances of Infinite Parallel Planes	244
	Example 7: Terminable and Non Terminable Interreflection Calculations.	
	A Terminable Calculation. Truncation Error Estimates. Quantum-	
	terminable Calculations.	248
	Example 8: Two Interacting Finite Plane Surfaces	254
3.5	Applications to Curved Surfaces	258
	Example 1: Open Concave Surfaces	258
	Example 2: Closed Concave Surfaces; the Integrating Sphere	262
	Example 3: Open and Closed Convex Surfaces	266
	Example 4: General Two-Sided Surfaces	267
	Example 5: General One-Sided Surfaces	271
3.6	Reflectance and Transmittance Operators for Plane-Parallel Media	279
	Geometrical Conventions	279
	The Empirical Reflectances and Transmittances	280
	The Theoretical Reflectances and Transmittances	282
	Variations of the Basic Theme	284
3.7	Applications to Plane-Parallel Media	285
	Example 1: Irradiances on Plane-Parallel Media	286
	Example 2: Radiances in Plane-Parallel Media	290
	Example 3: The Classical Principles of Invariance	294
	Example 4: The Invariant Imbedding Relation	297
	Example 5: Semigroup Properties of Transmitted and	
	Reflected Radiant Flux	300
	Example 6: The Generalized Invariant Imbedding Relation	301
	Example 7: Group-Theoretic Structure of Natural Light Fields.	
	Group Theory, Radiative Transfer and Quantum Theory.	307
3.8	Interaction Operators for General Spaces	314
	Geometrical Conventions	314
	The Empirical Scattering Functions	317
	The Theoretical Scattering Functions	318
	Variations of the Basic Theme	322

3.9	Applications to General Spaces Example 1: Principles of Invariance on Spherical, Cylindrical,	322
	Toroidal Media	325
	Example 2: Invariant Imbedding Relation for One-Parameter Media	327
	Example 3: One-Parameter Media with Internal Sources	330
	Example 4: Principles of Invariance for General Media	336
	Example 5: Invariant Imbedding Relation in General Media	339
	Example 6: Reflecting Boundaries and Interfaces	340
	Example 7: The Unified Atmosphere-Hydrosphere Problem	343
	Example 8: Several Interacting Separate Media	344
3.10	Derivation of the Beam Transmittance Function	344
3.11	Derivation of the Volume Attenuation Function	349
3.12	Derivation of Path Radiance and Path Function	351
	The Path Radiance	351
	The Path Function	352
	The Connection Between Path Function and Path Radiance	354
3.13	Derivation of Apparent-Radiance Equation	361
3.14	Derivation of the Volume Scattering Function	364
	Regularity Properties of σ	366
	The Integral Representation of the Path Function	367
3.15	The Equation of Transfer for Radiance	368
	Steady State Equation of Transfer	370
	Time Dependent and Polarized Equations of Transfer	371
3.16	On the Integral Structure of the Interaction Operators	372
	The Mathematical Prerequisites	373
	Interaction Operators for Surfaces	377
	Interaction Operators for General Media	378
	Interaction Measures and Kernels	380
3.17	Further Examples of the Interaction Method	383
	Example 1: The Path Function Operator	383
	Example 2: The Path Radiance Operator	384
	Example 3: The Volume Transpectral Scattering Operator	386
	Miscellaneous Examples	387
3.18	Summary of the Interaction Method	388
	Summary of the Interaction Method	388
	Remarks on the Stages of the Interaction Method	389
	The Interaction Method and Quantum Theory	390
	The Interaction Principle as a Means and as an End Conclusion	391

3.19	Bibliographic Notes for Chapter 3	392
	VOLUME III	
	PART II THEORY OF LIGHT FIELDS	
	Chapter 4	
	Canonical Forms of the Equation of Transfer	
4.0	Introduction	1
4.1	Radiance in Transparent Media	2
4.2	Radiance in Absorbing Media	3
4.3	Koschmieder's Equation for Radiance	5
4.4	The Classical Canonical Equation	7
4.5	The General Canonical Equation for Radiance Canonical Representation of Apparent Radiance The Canonical Form for Stratified Media	14 16 17
4.6	Canonical Representation of Polarized Radiance A Simple Model for Polarized Light Fields Experimental Questions	19 21 22
4.7	Abstract Versions of Canonical Equations	24
4.8	Bibliographic Notes for Chapter 4	27
	Chapter 5	
	Natural Solutions of the Equation of Transfer	
5.0	Introduction	29
5.1	The n-ary Radiometric Concepts n-ary Radiance n-ary Scalar Irradiance n-ary Radiant Energy General n-ary Radiometric Functions	31 31 34 34 35

Equation of Transfer for n-ary Radiance, Diffuse Radiance, and Path Function	36
Canonical Equations for n-ary Radiance	38
Concluding Observations	42
The Natural Solution for Radiance	42
Truncated Natural Solutions for Radiance	45
Optical Ringing Problem. One Dimensional Case	49
Geometry of the Time-Dependent Light Field	49
The Equation of Transfer	55
Operator Form of the Equation of Transfer	56
The Natural Solution	58
An Example	59
Concluding Observations	65
Optical Ringing Problem. Three Dimensional Case	66
The Characteristic Ellipsoid	66
Time dependent R and T Operators and the Natural Solution	68
Truncated Natural Solution	69
Transport Equation for Residual Directly Observable,	
and n-ary Radiant Energy	72
Residual Radiant Energy	72
Transport Equation for Residual Radiant Energy	75
The Attenuation Time Constant	76
General Representation of Residual Radiant Energy	79
Transport Equation for n-ary Radiant Energy	80
Transport Equation for Directly Observable Radiant Energy	81
The Natural Solution for Directly Observable Radiant Energy	82
Solutions for the n-ary Radiant Energy Equations	83
Natural Integral Representations of n-ary Radiant Energy	84
Natural Closed Form Representations of n-ary Radiant Energy	86
General Integral Representations of n-ary Radiant Energy	87
Standard Growth and Decay Formulas for n-ary Radiant Energy	87
Properties of Time Dependent n-ary Radiant Energy Fields and Related Fields	89
•	90
1 2	93
-	95
	and Path Function Canonical Equations for n-ary Radiance Concluding Observations The Natural Solution for Radiance Truncated Natural Solutions for Radiance Optical Ringing Problem. One Dimensional Case Geometry of the Time-Dependent Light Field The Equation of Transfer Operator Form of the Equation of Transfer The Natural Solution An Example Concluding Observations Optical Ringing Problem. Three Dimensional Case The Characteristic Ellipsoid Time dependent R and T Operators and the Natural Solution Truncated Natural Solution Transport Equation for Residual Directly Observable, and n-ary Radiant Energy Transport Equation for Residual Radiant Energy The Attenuation Time Constant General Representation of Residual Radiant Energy Transport Equation for n-ary Radiant Energy Transport Equation for Directly Observable Radiant Energy Transport Equation for Directly Observable Radiant Energy Transport Equation for Directly Observable Radiant Energy Solutions for the n-ary Radiant Energy Equations Natural Integral Representations of n-ary Radiant Energy General Integral Representations of n-ary Radiant Energy General Integral Representations of n-ary Radiant Energy General Integral Representations of n-ary Radiant Energy

5.11	Dimensionless Forms of n-ary Radiant Energy Fields and Related Fields	97
	Conversion Rules for Dimensionless Quantities	98
	Dimensionless Forms for U ^o (t)	101
	Dimensionless Farms for U ⁿ (t)	101
	Dimensionless Forms for U* (t)	102
	Dimensionless Forms for U (t)	103
	Dimensionless Forms for U (t; α), U (t; a)	104
	Some Graphical Representations of Solutions in Dimensionless Form	105
	A Discussion of Time Constants	114
5.12	Global Approximations of General Radiance Fields	117
5.13	Light Storage Phenomena in Natural Optical Media	121
	Everyday Examples of Light Storage	121
	Storage Capacity	123
	Methods of Determining Storage Capacity	124
	Example	126
5.14	Operator-Theoretic Basis for the Natural Solution Procedure	127
5.15	Bibliographic Notes for Chapter 5	132
	Chapter 6	
	Classical Solutions of the Equations of Transfer	
6.0	Introduction	134
6.1	The Bases of the Sperical [Spherical] Harmonic Method	135
	Physical Motivations	135
	An Algebraic Setting for Radiance Distributions	141
6.2	Abstract Spherical Harmonic Method	143
	Finite Forms of the Abstract Harmonic Equations	147
6.3	Classical, Spherical Harmonic Method: General Media	149
	The Orthonormal Family	149
	Properties of the Orthonormal Family	153
	General Equations for Spherical Harmonic Method	157
6.4	Classical Spherical Harmonic Method: Plane-Parallel Media	158
	A Formal Solution Procedure	160
	A Truncated Solution Procedure	163
	Vector Form of the Truncated Solution, Summary	165

6.5	Three Approaches to Diffusion Theory The Approach via Fick's Law The Approach via Sperical [Spherical] Harmonics Radiance Distribution in Diffusion Theory Approaches via Higher Order Approximations The Approach via Isotropic Scattering	172 173 175 181 183 186
6.6	Solutions of the Classical Diffusion Equations Plane-Parallel Case Point Source Case Discrete Source Case Continuous Source Case Primary Scattered Flux as Source Flux Higher Order Scattered Flux as Source Flux Time Dependent Diffusion Problems	193 193 198 202 205 207 211 214
6.7	Solutions of the Exact Diffusion Equations Infinite Medium with Point Source Infinite Medium with Arbitrary Sources Semi-infinite Medium with Boundary Point Source Semi-infinite Medium with Internal Point Source Observations on the Functional Relations for f _c and f _o	218 219 225 228 233 236
6.8	Bibliographic Notes for Chapter 6 VOLUME IV	237
	Chapter 7	
	Invariant Imbedding Techniques for Light Fields	
7.0	Introduction	1
7.1	Differential Equations Governing the Steady State R and T Operators Local Forms of the Principles of Invariance The Differential Equations for R and T Discussion of the Differential Equations Functional Relations for Decomposed Light Fields	2 2 4 8 9
7.2	Differential Equations Governing the Time Dependent R and T Operators Time Dependent Local Forms of the Principles of Invariance Time Dependent Invariant Imbedding Relation Integral Representation of Time Dependent R and T Operators Time Dependent Principles of Invariance Differential Equations for the Time Dependent R and T Operators Discussion of the Differential Equations	17 18 19 21 23 24 26

7.3	Algebraic and Analytic Properties of the R and T Operators Partition Relations for R and T Operators Alternate Derivations of the Differential Equations for R and T Operators	27 27 31
	Asymptotic Properties of R and T Operators	33
7.4	Algebraic Properties of the Invariant Imbedding Operators	35
	The Operator $M(x,z)$	35
	The Connections Between $M(x,z)$, $\mathcal{M}(x,z)$, and $\mathcal{M}(z,x)$	37
	Invertibility of Operators Representations for the Components of $\mathcal{M}(x,z)$, $\mathcal{M}(z,x)$	39 41
	• • • • • • • • • • • • • • • • • • • •	44
	The Isomorphism ϕ Between $\Gamma_2(a,b)$ and $G_2(a,b)$	
	The Physical Interpretation of the Star Product The Link Between $\mathcal{M}(a,x,b)$ and $\mathcal{M}(a,y,b)$	46 47
	Representation of $\mathcal{M}(x,y,z)$ by Elements of $\Gamma_2(a,b)$	49
	A Constructive Extension of the Domain of $\mathcal{M}(x,y,z)$	50
	Representation of $\mathcal{M}(v,z; u,y)$ by Elements of $\Gamma_2(a,b)$ And $\Gamma_3(a,b)$	51
	The Connection Between $\Psi(x,y)$ and $\mathcal{M}(s,y)$	52
	A Star Product for the Operators $\mathcal{M}(x,y,z)$	54
	Possibilities Beyond $\mathcal{M}(v,x;u,w)$	58
	Possibilities Beyond $\Gamma_2(a,b)$	61
7.5	Analytic Properties of the Invariant Imbedding Operators	68
	Differential Equations for $\mathcal{M}(x,y)$	69
	Differential Equations for $\mathcal{M}(x,y,z)$	71
	Differential Equations for $\mathcal{M}(v,x;u,w)$	76
	Differential Equations for $\mathcal{M}(x,y)$ and $\Psi(s,y)$	79
	Analysis of the Differential Equation for R(y,b)	80
7.6	Special Solution Procedures for R (a b) and T(a b) in Plane-Parallel Media	83
	The General Equation for $R(a,b;\epsilon',\epsilon)$	86
	The Isotropic Scattering Case for R	86
	A Sample Numerical Solution for $r(x;\mu',v)$ The General Equation for $T^*(a,b;\epsilon';\epsilon)$	90 93
	The Isotropic Scattering Case for T*	95
7.7	General Solution Procedures for R(a,b) and T(a b) in Plane-Parallel Media	97
7.8	The Method of Modules for Deep Homogeneous Media	103
	The Invariant-Imbedding Relation for Deep Hydrosols	104
	The Module Equation Empirical Bases for the Use of the Module Equations	106 106
	Dimonical Dases for the Cae of the Wichit Dauanons	100

7.9	The Method of Semigroups for Deep Homogeneous Media	108
	The Semigroup Equations for $\Im(z)$	109
	The Infinitesimal Generator A	112
7.10	The Method of Groups for Deep Homogeneous Media	114
	The Return of the Group $\Gamma_2(0,\infty)$	115
	The Infinitesimal Generator of $\Gamma_2(0,\infty)$	116
	The Exponential Representation of $\mathcal{M}(y)$ and $N(y)$	117
	The Exponential Representation of $\mathcal{A}(y)$	117
	Numerical Procedures of N(y): The Exponential Technique	119
	The Characteristic Representation of N(y)	122
	Asymptotic Property of N(y)	127
	Asymptotic Properties of Polarized Radiance Fields	128
7.11	Method of Groups for General Optical Media	129
	Analysis of the Group Method: Initial Data	129
	Analysis of the Group Method: Limitations of the Equation of Transfer	130
	Analysis of the Group Method: Summarized	135
	The General Method of Groups Observations on the Method of Groups	135 138
	Observations on the Method of Groups The Method of Groups and the Inner Structure of Natural Light Fields	141
7.12	Homogeneity, Isotropy and Related Properties of Optical Media	143
7.12	Local Concepts	144
	Global Concepts	148
	Summary	151
	Conclusion	152
7.13	Functional Relations for Media with Internal Sources	152
	Preliminary Relations	153
	Integral Representations of the Local Ψ-Operators	154
	Integral Representations of the Global Ψ-Operators	162
	Incipient Patterns and Nascent Methods	164
	Dual Integral Representations of the Global Ψ-Operators	167
	Logical Descendants of $\Psi(s,y:a,b)$	171
	Differential Equations for the Dual Operators	173
	A Colligation of the Component Ψ-Operator Equations	176
	Asymmetries of the Ψ-Operator	179
	A Royal Road to the Internal-Source Functional Equations	181
	Summary and Prospectus	186
	Final Observations on the Relationships Between the Operators	100
	$\mathcal{M}(v,x:u,w)$ and $\Psi(s,y:a,b)$	188

7.14	Invariant Imbedding and Integral Transform Technique An Integral-Transform Primer Time Dependent Redictive Transfer	188 191 194
	Time Dependent Radiative Transfer Heterochromatic Radiative Transfer	194
	Multidimensional Radiative Transfer	197
	Conclusion	200
7.15	Bibliographic Notes for Chapter 7	200
	VOLUME V	
	Chapter 8	
	Models for Irradiance Fields	
8.0	Introduction	1
8.1	Invariant Imbedding Relation for Irradiance Fields	2
8.2	General Irradiance Equations	5
8.3	Two-Flow Equations: Undecomposed Form	8
	Equilibrium Form of the Two-Flow Equations Ontogeny of the Two-Flow Equations	13 13
8.4	Two-Flow Equations: Decomposed Form	14
	Principles of Invariance for Diffuse Irradiance	18
	Classical Models for Irradiance Fields	19
	Collimated-Diffuse Light Field Models	19
	Isotropic Scattering Models Connections with Diffusion Theory	23 24
8.5	Two-D Models for Irradiance Fields	25
	On the Depth Dependence of the Attenuating Functions	25
	Two-D Model for Undecomposed Irradiance Fields	30
	Two-D Models for Internal Sources	37
	Two-D Model for Decomposed Irradiance Fields	43
	Inclusion of Boundary Effects	46
8.6	One-D and Many-D Models	51
	One-D Models for Undecomposed Irradiance Fields	52
	One-D Model for Internal Sources	55
	One-D Models Many D Models	56 57
	Many-D Models	37

8.7	Invariant Imbedding Concepts for Irradiance Fields	61
	Example 1: R and T Factors in Two-D Models	62
	Example 2: R and Factors in One-D Models	64
	Example 3: Differential Equations for R and T Factors	65
	Example 4: Third Order Semigroup Properties of R and Factors	67
	Example 5: Systematic Analyses of Boundary Effects	71
	Example 6: Invariant Imbedding Operator for Interacting Media	76
	Example 7: Differential Equations Governing R and T Factors	79
	Example 8: Method of Modules for Irradiance Fields	80
	Example 9: Method of Semigroups for Irradiance Fields	81
	Example 10: Irradiance Fields Generated by Internal Sources	81
8.8	A Model for Vector Irradiance Fields	87
	The Quasi-Irrotational Light Field in Natural Waters	88
	Interpretations of the Integrating Factor	89
	The Curl and Divergence of the Submarine Light Field	91
	General Representation of the Submarine Light Field	93
	Example 1: The Case of Isotropic Scattering	94
	Example 2: Asymptotic Form of the Light Field	95
	Global Properties of the Irradiance Field	97
8.9	Canonical Representation of Irradiance Fields	98
8.10	Bibliographic Notes for Chapter 8	101
	PART III THEORY OF OPTICAL PROPERTIES	
	Chapter 9	
	General Theory of Optical Properties	
9.0	Introduction	105
0.1		106
9.1	Basic Definitions for Optical Properties	106
9.2	Directly Observable Quantities for Light Fields in Natural Hydrosols	109
	Introduction	109
	Classical Two-Flow Theory: The Theoretical K Functions	111
	Diffuse Absorption Coefficient k	111
	The R-Infinity Formulas	113
	The Inequalities	114
	Observations on Inadequacies of Classical Theory	115
	Exact Two-Flow Theory: Experimental K Functions and R Functions	115
	The Basic Reflectance Relation	118
	The Exact Inequalities The Significance of the Condition $0 < V(z + 1)$	119
	The Significance of the Condition $0 \le K(z,+)$	120

9.2	Directly Observable Quantities for Light Fields in Natural Hydrosols (Cont)	109
	Relative Magnitudes of H and K Functions	121
	Characteristic Equation for $K(z,\pm)$	123
	The Depth Rate of Change of R(z,-)	123
	Connections Among the K Functions	123
	K Function for Radiance	125
	General K Functions	125
	Integral Representations of the K Functions	126
	Integral Representations of the Irradiance and Radiance Fields	126
9.3	The Covariation of the K Function for Irradiance an Distribution Functions	128
	Some Elementary Physical and Geometrical Features of $K(z,-)$ and $D(z,-)$	128
	The General Law Governing $K(x,-)$ and $D(z,-)$	136
	The Absorption-Like Character of $K(z,-)$	138
	Forward Scattering Media	140
	The Covariation Rule for $K(z,-)$ and $D(z,-)$	141
	Illustrations of the Rule	143
	The Contravariation of $K(z,+)$ and $D(z,+)$	144
	A Covariation Rule of Thumb	145
9.4	General Analytical Representations of the Observable Reflectance Function	146
	The Differential Equation for R(•,-): Unfactored Form	148
	The Differential Equation for R(•,-): Factored Form	149
	Second-Order Form of Differential Equation for R(•,-)	149
	The Equilibrium-Seeking Theorem for R(•,-): Preliminary Observations	150
	The Equilibrium-Seeking Theorem for R(•,-)	152
	Observation 1	154
	Observation 2	155
	The Integral Representations of $R(z,-)$	156
	Applications	157
	Special Closed Form Solution	157
	Differential Analyzer or Digital Solutions	159
	Series Solutions	159
	Equivalence Theorem for R(•,-)	159
	Connections with the Two-Flow Theory	160
	Summary	162
9.5	The Contrast Transmittance Function	162
	The Concept of Contrast	165
	Regular Neighborhoods of Paths	166
	Contrast Transmittance and Its Properties	168
	Alternate Representations of Contrast Transmittance	171
	Contrast Transmittance as an Apparent Optical Property	172
	On the Multiplicity of Apparent Radiance Representations	177

9.6	Classification-of Optical Properties	178
9.7	Bibliographic Notes for Chapter 9	182
	Chapter 10	
	Optical Properties at Extreme Depths	
10.0	Introduction	183
10.1	On the Structure of the Light Field at Shallow Depths: Introductory Discussion	184
10.2	Experimental Basis for the Shallow-Depth Theory Summary of the Experimental Evidence	187 192
10.3	Formulation of the Shallow-Depth Model for K an R Functions Formulas for $H(z,\pm)$ Formulas for $K(z,\pm)$ Formula for $R(z,-)$ Comparisons of Experimental Data with Calculations Based on the Model Hypotheses on the Fine Structure of Light Fields in Natural Hydrosols	193 193 194 196 197 199
10.4	Catalog of K Configurations for Shallow Depths Some Special Fine Structure Relations Conclusion	201 208 211
10.5	A General Proof of the Asymptotic Radiance Hypothesis Introduction Preliminary Definitions Formulation of the Problem The Functions P,Q,R, The Limit of $K_q(\bullet,\mu,\phi)$ The Limit of $K(\bullet,\mu,\phi)$ Notes and Observations	212 212 213 218 219 222 226 227
10.6	On the Existence of Characteristic Diffuse Light: A Special Proof of the Asymptotic Radiance Hypothesis Introduction Physical Background of the Method of Proof The Proof The Equation for the Characteristic Diffuse Light	230 230 231 233 237

10.7	Some Practical Consequences of the Asymptotic Radiance Hypothesis	238
	Basic Formulas: The Irradiance Quartet	239
	The D and R Functions	240
	The K Functions	241
	The K Characterization of the Hypothesis	242
	The Basic Transfer Equations	243
	Consequences for Directly Observable Quantities:	
	The Equation for the Asymptotic Radiance Distribution	244
	The Limits of the K Functions	245
	The Limits of the D and R Functions	246
	Consequences for Some Simple Theoretical Models:	
	The Two-D Model for Irradiance Fields	247
	Critique of Whitney's "General Law"	248
	The Simple Model for Radiance Distributions	249
	Further Consequences of Asymptoticity	249
	The Standard Ellipsoid	250
	Expressions for $D(\pm)$ and $R \infty$	251
	The Determination of ε	252
	An Heuristic Proof of the Hypothesis	253
	A Criterion for Asymptoticity	254
10.8	Simple Formulas for the Volume Absorption Coefficient in	
	Asymptotic Light Fields	255
	Introduction	255
	Short Derivation of I	256
	Long Derivation of I	256
	Derivation of II	257
	Applied Numerology: A Rule of Thumb	258
100		2.50
10.9	Bibliographic Notes for Chapter 10	259
	Chapter 11	
	The Universal Radiative Transport Equation	
	The Universal Radiative Transport Equation	
11.0	Introduction	261
11.1	Transport Equations for Radiometric Concepts	263
	Equation of Transfer for Radiance	263
	Transport Equations for $H(z,\pm)$	265
	Transport Equations for $h(z,\pm)$	265
	Transport Equation for Scalar Irradiance	268
	Preliminary Unification and Preliminary Statement of	
	the Equilibrium Principle	270

11.2	Transport Equations for Apparent Optical Properties Canonical Forms of Transport Equations for K Functions Dimensionless Transport Equation for $K(\mathcal{G})$ Transport Equation for $K(z,\theta,\phi)$ Transport Equations for $K(z,\pm)$ Transport Equations for $k(z,\pm)$ and $k(z)$ Transport Equation for $k(z,\pm)$	271 272 274 274 276 277 278
11.3	Universal Radiative Transport Equation and the Equilibrium Principle	279
11.4	Some Additional Transport Equations Subsumed by the Universal Transport Equation Summary and Conclusion	281 285
11.5	Bibliographic Notes for Chapter 11	285
	Chapter 12	
	Optical Properties of the Air-Water Surface	
12.0	Introduction	1
12.1	Reflectance and Transmittance Properties of the Static Surface The Geometric Law of Reflection The Geometric Law of Refraction The Fresnel Laws for Reflectance The Fresnel Laws for Transmittance Example 1: Reflectance Under Uniform Radiance Distributions Example 2: Reflectance Under Cardicidal Radiance Distributions Example 3: Reflectance Under Zonal Radiance Distributions	3 3 5 10 15 16 21 28
12.2	Radiative Transfer and the Static Surface Irradiance Interaction Between the Surface and the Hydrosol The Threefold Irradiance Interaction: Aerosol, Air-Water Surface, and Hydrosol The Threefold Radiance Interaction: for the Static Surface Contrast Transmittance Formulas for the Static Surface Contrast Transmittance Formulas for Extended Paths Across the Static Air-Water Surface	34 35 38 39 41
12.3	Elementary Hydrodynamics of the Air-Water Surface The Fluid Transfer Process Physics of the Fluid Transfer Process General Equations of Motion of a Fluid Special Equations of Motion for the Air and Water Masses Surface Kinematic Condition	46 46 47 49 51

12.3	Elementary Hydrodynamics of the Air-Water Surface (Cont)	46
	Surface Pressure Condition	57
	Sinusoidal Wave Forms	60
	Linearized Equations of Motion	62
	Classical Wave Model	63
	Kelvin-Helmholtz Model	67
	Kelvin-Helmholtz Instability	70
	Capillary and Gravity Waves	71
	Energy of Surface Waves	72
	Superposition of Waves	76 7 0
	Spectrum of the Air-Water Surface	78
12.4	Harmonic Analyses of the Dynamic Air-Water Surface	82
	The Roots of Harmonic Analysis	83
	Harmonic Synthesis vs. Harmonic Analysis	84
	Integrals vs. Series in Harmonic Analysis	86
	Fourier Series Representations of the Air-Water Surface	87
	Hydrodynamic Basis for Harmonic Analysis of Air-Water Surfaces	91
	The Periodogram Basis of the Energy Spectrum	94
	Fourier Integral Representations of the Air-Water Surface	
	Case 1: The Surface is Aperiodic	101
	Fourier Integral Representations of the Air-Water Surface.	
	Case 2: The Surface is Periodic or Random	109
	A Working Representation of the Dynamic Air-Water Surface	
	and its Directional Energy Spectrum	115
	Geometrical Applications of the Directional Energy Spectrum	120
12.5	Wave Slope Data	132
	The Logarithmic Wind Profile Model	132
	Visual Observations on Wave Slopes	133
	Hulburt's Observations of Wave Slopes	136
	Duntley's Immersed-Wire Measurements of Wave Slopes	138
	Intuitive Picture of the Gaussian Slope Distribution	142
	The Wave-Slope Wind-Speed Law (Duntley)	145
	Cox and Munk's Photographic Analysis of the Glitter Pattern	145
	The Wave-Slope Wind-Speed Law (Cox and Munk)	149
	Schooley's Flash Photography Measurements of Wave Slopes	151
12.6	Wave Generation and Decay Data	152
	Generation of Waves: Shallow Depths, Small Fetches	153
	Generation of Waves: Deep Depths, Large Fetches	157
	Decay of Waves	161
12.7	Wave Spectrum Data	166
	Wave Spectra by Aerial Stereo Photography	166
	Wave Spectra by Floating-Buoy Motion	173
	Wave Spectra from Submarine Echo Recordings	180

12.8	Empirical Wave Spectra Models	181
	The Neumann Spectrum	181
	Derivation of the Neumann Spectrum	183
	Three Laws Derived from the Neumann Spectrum	186
	Alternate Forms of the One-Dimensional Spectrum	189
	General Properties of Gamma Type Spectra	190
	Wind Speed, Wavelength, and Wave Energy	193
12.9	Theoretical Wave Spectra Models	194
	The Wave Elevation Distribution	194
	The Wave Slope Distribution	197
	The Wavelength Distribution	202
	The Bretschneider Spectrum	204
	The Wave Height Distribution	205
	Models of Wind-Generated Spectra	205
	Spectral Transport Theory	208
12.10	Instantaneous Radiance Field Over a Dynamic Air-Water Surface	210
	The Geometrical Setting	211
	The Integral Equation for the Instantaneous Surface Radiance $N_+^+(S)$	212
12.11	Time-Averaged Radiance Field Over a Dynamic Air-Water Surface	216
	Direct and Indirect Radiance Averages	216
	The Stationarity Condition	219
	The Independence Condition	220
	The Weighting Functions	221
	The Time-Averaged Integral Equation for $N_+^+(S)$	222
	Structure of the Weighting Functions	224
	The Instantaneous and Time-Averaged Equations for $N\pm(S)$	234
12.12	Instantaneous and Time-Averaged Radiance Fields Within a	
	Natural Hydrosol	237
	Two Types of Time-Averaged Radiance Fields	238
	Equations of Transfer for Time-Averaged Radiance Fields	239
	Connection Between Fixed Depth and Cosurface Time-Averaged Radiances	243
12.13	Synthesis of Time-Averaged Radiance Fields	246
	Comparison with the Static Case	250
12.14	Observations on the Theory of Time-Averaged Radiance Fields or	2.50
	Dynamic Air-Water Surfaces	250
	A Hierarchy of Approximate Theories	251
	Illustrations of Some Classical Partial Theories Concluding Observations	253 260
	CONCINOURS CINSELVATIONS	7.DU

12.15	Simulation of the Reflectance of the Air-Water Surface by Mechanical Devices	260
	The Central Idea of the Sea State Simulator	261
	Ergodic Hypothesis	261
	The Discrete Case	263
	The Continuous Case	266
	Some General Observations on the Ergodic Cup Device	268
	Sea Simulator Devices Beyond the Ergodic Cup	269
12.16	Bibliographic Notes for Chapter 12	269
	Chapter 13	
	Operational Formulations of Concepts for Experimental Proce	dures
13.0	Introduction	273
13.1	Operational Definitions of the Principal Radiometric Concepts	273
13.1	Radiant Flux	273
	Irradiance	274
	Spherical Irradiance and Scalar Irradiance	278
	Radiance	281
13.2	Operational Definition of Beam Transmittance	284
	General Two-Path Method	285
	General One-Path Method	286
13.3	Operational Definitions of Path Radiances and Path Functions	287
	Operational Formulation of Path Radiance	287
	Operational Formulation of Path Function	288
13.4	Operational Definition of Volume Attenuation Function	290
	Canonical Equation Method	292
13.5	A General Theory of Perturbed Light Fields, with Applications to	
	Forward Scattering Effects in Beam Transmittance Measurements	293
	Introduction	293
	General Representation of a Perturbed Light Field	295
	Linearized Representation of Slightly Perturbed Light Fields	297
	Application to Bright-Target Technique	299
	Application to Dark-Target Technique	300
	An Outline of Possible Experimental Procedures of α in	
	Perturbed Light Fields	302
	Order of Magnitude Estimates	305
	Summary and Conclusions	307

13.6	Operational Definition of Volume Scattering Function	308
	σ-Recovery Procedures	312
	Determining the Volume Scattering Matrix in the Polarized Case	314
13.7	Direct Measurement of the Volume Total Scattering Function	316
	The General Method	317
	Observations	318
	Two Special Methods	319
	Cylindrical Medium	319
	Spherical Medium	320
13.8	Operational Definition of Volume Absorption Function	321
	Procedures for Stratified Light Fields	322
	Procedures for Deep Media	323
	General Global Method	323
	Further Procedures for General Media	323
13.9	Operational Procedures for Apparent Optical Properties	324
	The Fundamental Irradiance Quartet	325
	Discussion of the Reflectance Functions	327
	Discussion of the Distribution Functions	329
	Discussion of the K-Functions	330
13.10	Theory of Measurement of Local and Global R and T Properties	331
	Example 1: R and T Factors in Homogeneous Polarity-Free Settings	332
	Example 2: Homogeneous Media with Polarity	333
	Example 3: Forward and Backward Scattering Functions	335
	Example 4: R and T Operators for Radiance	337
	General Observations on Inverse Problems in Hydrologic Optics	339
13.11	On the Consistency of the Operational Formulations	339
	On the Relative Consistency of the Unpolarized and Polarized	
	Theories of Radiative Transfer	341
13.12	Bibliographic Notes for Chapter 13	345
	Bibliography for Volumes I-VI	347
	Index to Volumes I-VI	369