
Chapter 7


Invariant Imbedding Methods:

Introduction


For the plane-parallel geometry found in most hydrologic optics 
problems, there exist solution methods that are vastly more efficient than 
Monte Carlo simulation.  We now begin the development of one of these 
analytical (meaning deterministic or  non-statistical) methods for solving the 
RTE in one spatial dimension.  Many such methods are available; they go by 
names such as discrete ordinates methods, spherical harmonics methods, 
iterative methods, matrix methods, and invariant imbedding methods.  Van de 
Hulst (1980) gives an excellent descriptive summary of the available solution 
methods, including the strengths and weaknesses of each.  Some analytical 
methods are of great power and considerable generality.  Others were 
developed for specific problems (such as Rayleigh scattering) and have found 
little or no application in hydrologic optics.  Kattawar (1991) has compiled 43 
original papers on solution methods applicable to the plane-parallel geometry 
of interest here.  His book is a good place to survey the richness of 
mathematical methods that has been brought to bear on solving the RTE. 

Our emphases in this book is on the development of solution methods 
arising from invariant imbedding theory, a branch of applied mathematics. 
Looking ahead, we will learn that these invariant imbedding methods have the 
following desirable characteristics: 

! They are applicable to the solution of the RTE (5.23), including 
internal sources, depth-dependent IOP's, arbitrary incident radiances, 
wind-blown air-water surfaces, and a finite or infinite-depth bottom. 
The only restriction is that of plane-parallel geometry1. 

1Invariant imbedding methods can be formulated for other one-
parameter geometries as well.  Examples of their use can be found in 
problems with spherical or cylindrical symmetry in which quantities depend 
only on the radial coordinate. 
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! All quantities are computed with the same accuracy.  In particular, 
there is no statistical noise in the numerical results. 

! The methods are mathematically elegant and provide deep insights 
into the internal structure of radiative transfer theory.  Many profound 
relationships are revealed among the building blocks of the theory. 

! The methods are computationally efficient.  The solution algorithms 
are fast and numerically stable.  Moreover, computation time is a 
linear function of optical depth.  Thus computing a radiance 
distribution from the surface to . = 10 requires only twice the 
computer time as the same computation carried to . = 5. 

The price one pays for the above benefits is mathematical complexity. 
Monte Carlo methods are easily understood in terms of fundamental radiative 
processes and elementary probability theory.  Invariant imbedding methods 
require a considerable amount of mathematical development in going from the 
RTE to its solution, and the associated computer programming is much more 
tedious. 

Because of the mathematical sophistication required for a direct attack 
on the integro-differential RTE (5.23), we choose to introduce the essential 
aspects of invariant imbedding theory via its application to the much simpler 
two-flow irradiance equations [see Supplementary Note 11].  The two-flow 
equations, with their two unknowns Ed and Eu, are compactly represented in 
terms of 1×2 vectors and 2×2 matrices.  After the manipulation of these 
quantities is mastered, it will be easy to make the transition to the radiance 
case.  The radiance equations will have N unknowns, namely the quad-
averaged radiances in N quads, and representations in terms of 1×N vectors 
and N×N matrices. The form of the radiance matrix equations, however, will 
be identical to the matrix equations developed here for irradiances.  This 
chapter is concerned with developing invariant imbedding methods for solving 
the two-flow equations; the extension of these methods to the solution of the 
RTE is made in Chapter 8.  Chapter 9, which discusses the special case of 
homogeneous water, will also make considerable use of the formulas 
developed here. 

It is interesting to note that Monte Carlo and invariant imbedding 
methods are almost the same age.  Monte Carlo methods were systematically 
developed during the second world war by scientists and mathematicians such 
as Fermi, von Neumann and Ulam.  Their interest was in neutron diffusion 
problems associated with the development of the atomic 
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bomb.  The basic ideas of invariant imbedding can be traced back to an insight 
by the astrophysicist Ambarzumian (1943).  The subsequent development of 
the theory and its application to radiative transfer problems was made by 
Chandrasekhar, Bellman, Preisendorfer, and others.  The fullest exposition of 
invariant imbedding as applied to hydrologic optics is seen in Preisendorfer's 
six-volume treatise Hydrologic Optics (Preisendorfer, 1976). 

One of the primary goals of the present book is to extract the essence 
of Hydrologic Optics, without the mathematical rigor and generality that 
characterize Preisendorfer's books.  The path to this goal is not easy, but it can 
be taken one step at time. Let us begin. 

7.1	 The Two-Flow Equations as a 
Mathematics Problem 

In Section 5.10 we obtained several equivalent forms of the two-flow 
equations for upward and downward plane irradiance.  The most compact form 
was 

We omit the wavelength argument 8 for brevity, but we show the depth 
argument z to emphasize that all quantities can vary with depth. 

We also saw that knowledge of the water IOP's, source functions, and 
boundary conditions is insufficient for solving these equations.  We must 
provide additional information in order to determine the four J's and D's, which 
are AOP's.  For our present purposes, we assume that the needed additional 
information has been obtained either from measurement or from theoretical 
considerations, so that the four J's and D's are considered known, as are the 

Sinternal source functions Eod
S and E .ou 

The boundary conditions that are to be satisfied at the air-water surface 
S[a,w] are given by Eqs. (4.5) and (4.6): 

Ed(aWe assume that the air-incident irradiance ) is known; it is easily 
computed if the sky radiance distribution L(a; ), 0= d, is given. Likewise, 
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we assume that the four surface irradiance transfer functions (which are also 
AOP's) are known.  They can be computed as in Chapter 4, given the sky 
radiance distribution and sea state.  Note that the water-leaving irradiance 
Eu(a) is unknown. 

For concreteness, let us assume that the maximum depth of interest z 
= m is an opaque Lambertian surface, as would be the case for a sandy or 
muddy bottom.  Equation (4.83) then gives the boundary condition to be 
satisfied at z = m: 

where R is the known irradiance reflectance of the bottom boundary layer 
S[m,b]. 

Table 7.1 collects the above equations and highlights the known 
quantities.  It is now easy to state the mathematics problem at hand:  find Ed(z) 
and Eu(z), a # z # m, such that each of Eqs. (7.1)-(7.5) is simultaneously 
satisfied. Actually finding these solution irradiances is less easy. 

We note first that Eqs. (7.1)-(7.5) constitute a two-point boundary 
value problem.  This means that the differential equations (7.3) and (7.4) must 
satisfy boundary conditions at two different depths, namely at the water 
surface and at the bottom.  Two-point problems are generally much harder to 
solve than are initial value problems, which must satisfy a boundary condition 
at only one point. Suppose for the moment that we also know Eu(a) and that 
the water is infinitely deep.  Then we could solve Eq. (7.1) for Eu(w), after 
which we could get Ed(w) from Eq. (7.2).  Then we could integrate Eqs. (7.3) 
and (7.4) downward starting with the known initial values Ed(w) and Eu(w), 
and thereby obtain Ed(z) and Eu(z) throughout the water column.  But, alas, we 
do not know Eu(a), and we do have to satisfy Eq. (7.5). We can at least 
console ourselves with the observation that our differential equations are 
linear, for it is linearity that opens the door for invariant imbedding methods. 

7.2 Solution Algorithm for a Two-flow Problem 

Although we cannot solve Eqs. (7.1)-(7.5) via a straightforward 
integration of the two-flow equations, we can however formulate an equivalent 
problem, which does yield to solution as an initial value problem.  Since we 
seldom get something for nothing, we should not be surprised that we must 
add something to Eqs. (7.1)-(7.5) in order to effect the desired 
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Table 7.1.  The two-flow irradiance equations and associated boundary 
conditions. The underlined quantities are assumed known. 

water equation 
layer equations to be satisfied number 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

transformation.  That "something" is provided by our old friend, the interaction 
principle. 

A global interaction principle 

The interaction principle provided us with the boundary conditions at 
the water surface and bottom; recall Secs. 4.1 and 4.11.  However, we have not 
yet exploited this principle within the water body S[w,m]. To see how this is 
done, suppose that we are at an arbitrary depth z within the water body, w # z 
# m. For an opaque bottom, the slab of water S[z,b] is irradiated only by an 
incident irradiance Ed(z); there is no irradiance Eu(b) coming up from below 
the bottom boundary.  Likewise the slab has a response irradiance Eu(z), but 
Ed(b) = 0 for an opaque bottom.  The internal sources E S(z) and Eod

S(z) withinou 

S[z,m] give rise to some contribution E t(m,z) to the total response irradiance; u 

E t(m,z) is independent of the incident irradiance Ed(z). By assumption, there u 

are no sources within the lower boundary S[m,b]. 
The interaction principle applied to S[z,b] asserts the existence of a 

standard reflectance function R(z,b) and a source-induced upward irradiance 
E t(b,z) such that the total upward response irradiance at level z is given byu 
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(7.6) 

Equation (7.6) is the global interaction principle for the present problem. 
The standard reflectance R(z,b) is just the irradiance reflectance of 

everything – namely the water plus the bottom boundary – below depth z. The 
quantity E t(b,z) is the upwelling irradiance at z owing to the cumulative u 

contribution of all sources between the bottom at b and level z.  Beginning in 
Section 7.6, the superscript "t" will remind us that this source-induced 
irradiance is associated with what will be called the "transport" solution of the 
two-flow equations.  A confusingly similar quantity will arise in our 
development in Section 7.5 of the so-called "fundamental" solution; that 
quantity will be given an "f" superscript. 

But just as was the case with the air-water surface boundary conditions, 
the interaction principle is of no help unless we can find a way to compute 
R(z,b) and E t(b,z). Fortunately, this is easily done. u 

Differential equations for R(z,b) and Eu
t(b,z) 

Let us differentiate the interaction principle (7.6) with respect to z: 

(7.7) 

We can now use the two-flow equations (7.3) and (7.4) to replace dE /dz andu 

dEd /dz in Eq. (7.7).  The result is 

where we have omitted the depth arguments for brevity.  We can now use Eq. 
(7.6) to replace Eu(z), which gives 

Let us now arrange this equation into two groups of terms, one with Ed(z) as 
a coefficient and one containing only source-related terms.  The result is 
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(7.8) 

We now observe that because the irradiance Ed(z) incident on the slab S[z,b] 
is completely arbitrary and independent of the internal sources, the two 
quantities in brackets in Eq. (7.8) must individually be zero. [Consider the 
analogous simple equations 5x + y = 0 and 10x + y = 0, which have only the 
simultaneous solution x = 0 and y = 0. Here the numbers 5 and 10 play the 
role of different values of Ed(z).] We thus obtain two differential equations for 
R(z,b) and E t(b,z):u 

(7.9) 

(7.10) 

These equations hold for all z in w # z # m. Note that Eq. (7.9) is nonlinear, 
owing to the presence of the RDudR term. 

Now when z = m, the depth of the opaque bottom, we have 

(7.11) 

(7.12) 

The first equation follows because R(z,b) for z = m is the reflectance of 
everything below depth m, which is just the known reflectance R of the opaque 
Lambertian bottom.  E t(b,z) = 0 for z = m because there are no internal sources u 

within the opaque bottom S[m,b]. Note that Eqs. (7.11) and (7.12), when 
substituted into Eq. (7.6) evaluated at z = m, reduce Eq. (7.6) to the bottom 
boundary condition (7.5). 

The J's, D's and internal sources Eou
S and Eod

S appearing in Eqs. (7.9) 
and (7.10) are all known throughout S[w,m].  We can therefore simultaneously 
integrate this pair of equations in an "upward sweep" from depth z = m to 
depth z = w, beginning with the initial conditions (7.11) and (7.12) at z = m. 
The values of R(z,b) and E t(b,z) just below the air-water surface are denoted u 

by R(w,b) and E t(b,w), respectively.u 
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The integrations just described constitute the first step of our solution 
procedure. Note that the upward integrations of Eqs. (7.9) and (7.10), 
beginning with the initial values (7.11) and (7.12), incorporate the lower 
boundary conditions into what will eventually be the solution irradiances.  We 
now show how to incorporate the upper boundary conditions into the solution. 

Incorporation of the surface boundary conditions 

The global interaction principle (7.6) holds for any z value within the 
water body; in particular it holds for z = w. We can use this observation to 
eliminate Eu(w) from boundary condition (7.2), thereby obtaining an equation 
for Ed(w). Thus Eq. (7.2) becomes 

Recall that R(w,b) and E t(b,w) are now known from the integration of Eqs. u 

(7.9) and (7.10).  Solving this last equation for Ed(w) yields 

(7.13) 
where 

(7.14) 
and 

(7.15) 

We now know the downward irradiance just below the air-water surface. 
We can obtain Eu(w) in a similar fashion. Substituting Eq. (7.13) for 

the left-hand-side of boundary condition (7.2) gives 

which involves only Eu(w) and known quantities. Solving for Eu(w) and 
writing out T(a,w,b) and E(a,w,b) as in Eqs. (7.14) and (7.15) gives 

The first term on the right-hand-side can be simplified by letting x = 
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R(w,b)r(w,a) and recalling that 

[Note that 0 # x < 1 because both R(w,b) and r(w,a) are reflectances, which are 
restricted to the interval 0 to 1 on physical grounds.]  The resulting equation 
for Eu(w) is 

(7.16) 
where 

(7.17) 
and 

(7.18) 

Clearly, the values of Ed(w) and Eu(w) just obtained incorporate information 
about the nature of the air-water surface itself (via the r and t factors) as well 
as about the water body and bottom boundary [the R(w,b) term], and the 
internal sources [the E t(b,w) term].u 

We are now able to integrate the two-flow equations (7.3) and (7.4) as 
an initial value problem, starting with the Ed(w) and Eu(w) values just 
computed and integrating downward from z = w to the bottom at depth z = m. 
This integration yields the irradiances throughout the water body S[w,m]. In 
practice, we would save the values of Ed(z) and Eu(z) at whatever specific 
depths z1, z2, ... were of interest to us in a particular problem. 

The only remaining unknown is the upward irradiance leaving the air-
water surface.  Eu(a) is easily obtained from boundary condition (7.1), because 
we now know Eu(w). We have now completely solved the mathematics 
problem posed in the previous section. 

Recapitulation and interpretation 

Because the preceding development was somewhat abstract, it is 
worthwhile to summarize what we have done, and to provide a physical 
interpretation for the mathematical operations.  The solution of Eqs. (7.1)-(7.5) 
involves five steps: 

(i) Integrate Eqs. (7.9) and (7.10) in an upward sweep from z = m to z = 
w, starting with the initial conditions (7.11) and (7.12), to obtain R(w,b) 
and E t(b,w).u 
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(ii) Compute T(a,w,b) and E(a,w,b), and R(a,w,b) and E(b,w,a), by Eqs. 
(7.14) and (7.15), and (7.17) and (7.18), respectively.

(iii) Compute Ed(w) and Eu(w) by Eqs. (7.13) and (7.16), respectively. 

(iv) Integrate the two-flow Eqs. (7.3) and (7.4) in a downward sweep from 
z = w to z = m, starting with the initial values obtained in step (iii), and 
saving the results at all desired depths z, w # z # m. 

(v) Compute Eu(a) from Eq. (7.1). 

Each step of the solution algorithm has a physical interpretation.  The 
integrations in step (i) represent the "construction" of the water body S[w,m] 
by starting with the bottom boundary and adding infinitesimal layers of water. 
Equations (7.9) and (7.10) govern how the reflectance and internal source 
properties of the water body evolve as more and more layers of water are 
added. 

T(a,w,b) is called the complete downward transmittance of S[a,b] at 
level w. It has a most important interpretation.  We can understand its physical 
significance by recalling its use in Eq. (7.13).  For the moment, assume that 
there are no internal sources, so that Eu

t(b,w) = 0, and hence E(a,w,b). Then 
Eq. (7.13) reads 

(7.19) 

where we have expanded (1 ! x)!1 as before.  The first term in the series 
expansion on the right-hand side of Eq. (7.19) represents a contribution to 
Ed(w) from Ed(a) being transmitted [by t(a,w)] through the air-water surface. 
The second term in this series represents the part of Ed(a) that has been 
transmitted through the surface, reflected back upward by everything below 
level w [the R(w,b) term], and then reflected back downward again by the air-
water surface [the r(w,a) term].  The subsequent terms of the series represent 
successive inter-reflections of this nature.  Figure 7.1 illustrates the first three 
terms on the right-hand side of Eq. (7.19). 

The complete downward reflectance R(a,w,b) of S[a,b] at level w has 
a similar interpretation.  As is seen in Eq. (7.17), each of the inter-reflection 
terms just described for T(a,w,b) is now followed by one more reflection 
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Fig. 7.1.  Illustration of the physical significance of the complete transmittance 
T(a,w,b).  The circled numbers correspond to the first three terms of the series 
expansion in Eq. (7.19) 

R(w,b), which converts downwelling irradiance into an upwelling irradiance 
contribution to Eu(w) in Eq. (7.16). 

In a similar manner, the complete source-induced downward irradiance 
E(a,w,b) defined in Eq. (7.15) takes the upwelling irradiance E t(b,w)u 

generated at depth w by internal sources between the bottom at b and depth w, 
reflects it back downward by the air-water surface, and carries out an infinite 
series of inter-reflections between the water body plus bottom, S[w,b], and the 
surface S[a,w]. The complete source-induced upward irradiance E(b,w,a) has 
a similar interpretation. 

The true importance of the complete operators1 T, R, and E is this: 
they account for all orders of multiple scattering within the entire medium 
S[a,b].  The inclusion of multiple scattering effects in radiative transfer 
problems is often difficult. There are many techniques for obtaining 

1The standard notation for the complete operators T, R, and E (as 
seen in H.O., for example) uses script letters instead of bold face. 
Unfortunately, a script font was not available on the author's wordprocessor. 
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approximate solutions of the RTE that ignore multiple scattering effects.  The 
term [1 - R(w,b)r(w,a)]!1, which appeared so naturally in the preceding 
development, represents the algebraic sum of an infinite number of inter-
reflections, which is equivalent to an infinite number of multiple scatterings 
by the photons within the medium.  This last statement is made here without 
proof, but it should at least seem plausible to the reader. 

Preisendorfer shows that the above algebraic solution procedure is 
completely equivalent to the so-called natural solution procedure, or the 
scattering-order solution procedure, in which the radiance (in general) is 
expanded in a series of terms representing the contributions of successive 
orders of multiple scattering.  In these solution procedures, the calculations are 
terminated after a certain number of multiple scattering orders has been 
accounted for.  These matters are discussed in detail in H.O. III, Chapter 5 and 
in H.O. IV. We also note that Monte Carlo methods effectively account for 
multiple scattering if the photon packets are followed until they contain a 
negligible amount of energy. 

It should by now be obvious that we are on the trail of some very 
powerful mathematical concepts.  We have seen, albeit in a very simple 
setting, how to transform a linear, two-point boundary value problem into a 
nonlinear initial value problem.  Such a transformation is the hallmark of 
invariant imbedding theory. Although non-linear differential equations are 
wisely avoided by those who work only with a pencil and paper, the numerical 
solution of our particular equations poses no problems.  Moreover, we have 
obtained a solution that accounts for all orders of multiple scattering, is free 
of statistical noise, and produces intermediate quantities that are easily 
interpreted. 

It is certainly true that for the irradiance problem just discussed, we 
could simply measure Ed and Eu just below the water surface, and then begin 
with solution step (iv) above.  But our goal here is to introduce a solution 
method.  Looking ahead to Chapter 8, we will find that these same ideas are 
applicable to the solution of the RTE.  There, we can reasonably expect to 
know the incident sky radiance distribution, but certainly not the full radiance 
distribution just below the surface.  Moreover, we will find that the 
corresponding J's and D's are functions only of the inherent optical properties 
of the water body, so that no assumptions about their values will be needed in 
order to perform the integrations corresponding to steps (i) and (iv)  above. 
We may also anticipate that the quantities corresponding to R(z,b), r(a,w), etc. 
will all be matrices, because they will describe the reflectance of radiance in 
many different directions, not just from the downward to the upward 
hemispheres.  However, there is much more to be learned at the irradiance 
level before tackling the radiances. 
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7.3	 Transport and Fundamental Operators 
for the Air-Water Surface 

The surface boundary conditions 

can be written in matrix form as 

(7.20) 

The 2×2 matrix M(a,w) is called the transport operator (or transport matrix) 
for slab S[a,w]. M(a,w) is so named because its elements show how irradiance 
is transported (i.e. transmitted and reflected) back and forth by the slab S[a,w]. 
Note also that M(a,w) transforms the irradiances incident on S[a,w] from 
above and below, Ed(a) and Eu(w), into the response irradiances Eu(a) and 
Ed(w), which are leaving S[a,w]. 

We can also solve the surface boundary conditions for Eu(w) and Ed(w) 
in terms of Eu(a) and Ed(a). The result is 

Placing these equations in matrix form gives 

(7.21a) 

(7.21b) 

(7.21c) 
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The 2×2 matrix M(a,w) is called the fundamental operator (or fundamental 
matrix) for S[a,w]. Note that M(a,w) transforms the upward and downward 
irradiances at one depth (z = a) into the irradiances at another depth (z = w). 
The "+" and "!" subscripts on the elements of M(a,w) remind us of which 
elements transform downward irradiance (the + or = d direction) into upward 
irradiance (the ! or = u direction), and so on1. 

Equations (7.21a) and (7.21b) show how to obtain the elements of 
M(a,w) from those of M(a,w). The inverse transformation is easily obtained 
by writing out Eq. (7.21b) as two equations, and then solving them for Eu(a) 
and Ed(w) in terms of Eu(w) and Ed(a). One can then make the identification 

(7.22) 

The similar structures of the matrices in Eqs. (7.21) and (7.22) should be 
noted.  The operators M(a,w) and M(a,w), and their generalizations, will play 
central roles in our subsequent developments. 

7.4	 The Fundamental Solution for 
Source-free Water Bodies 

Let us now re-examine step (iv) of the solution procedure of Section 
7.2.  This was the step in which we integrated the two-flow equations (7.3) and 
(7.4) downward from depth w. The initial values for the integration were the 
irradiances Eu(w) and Ed(w) just below the surface.  These values were 
determined by the combined effects of the incident irradiance Ed(a), the air-
water and bottom boundaries, the internal sources, and the J's and 

1We have chosen downward as the positive (+) direction. 
Preisendorfer (1976) always chose upward as the positive direction; 
therefore his +(!) is our !(+). When comparing the present results with the 
corresponding development in H.O. or in other works with positive upward, 
it is necessary to interchange plus and minus signs on all such quantities. 
Also, H.O. uses a script M for fundamental operators. 
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D's of the entire water body.  The results of the integration were the irradiances 
Eu(z) and Ed(z) at any depth within the water body S[w,m]. 

We now pose a question.  Is it possible to integrate the two-flow 
equations using "general" initial values, thereby obtaining a "general" set of 
irradiances, which can then be used to generate the specific solution 
irradiances for any particular values of the initial conditions?  If the answer is 
yes (and it is), then we can integrate the two-flow equations once for any given 
water body (i.e. for any given set of J's and D's), and then "apply" different 
boundary conditions to the general solution in order to obtain solutions for the 
particular set of boundary conditions of interest.  The details of this process 
follow. 

For simplicity, let us first consider the case of a source-free water 
body: Eod

S(z) = E S(z) = 0. Now let ou 

(7.23) 

be a pair of dimensionless initial values at level w. We next integrate the 
source-free two-flow equations 

(7.24) 

in a downward sweep from level w to any depth z, beginning with the initial 
(1)(z)values of Eq. (7.23).  Call the dimensionless results of this integration Eu 

and Ed
(0)(z). Now repeat this integration of Eqs. (7.24) beginning with 

(1)(z).and call the results E (0)(z) and Edu 

It soon will be convenient to write these results in matrix form, so 
define 

By virtue of their construction, M!+(w,z) and M++(w,z) satisfy 

(7.26) 
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with the initial conditions 

(7.27) 

Here we read upper signs together and lower signs together on the M's. We 
have replaced the "d" and "u" subscripts on the J's and D's with "+" and "!", 
respectively, for consistency with the M's. Likewise M!!(w,z) and M+!(w,z) 
satisfy 

(7.28) 

with the initial conditions 

(7.29) 

Equation (7.26) shows that M!+ and M++ behave differentially like Ed, and Eq. 
(7.28) shows that M!! and M+! behave like E .u

The two pairs of dimensionless functions [M!!(w,z), M!+(w,z)] and 
[M+!(w,z), M++(w,z)], where w is held fixed and z varies, constitute the 
fundamental solutions of the source-free two-flow Eqs. (7.24).  They are given 
this distinguished name because any solution of Eq. (7.24) can be written as 
a linear combination of them.  The proof of this statement is as follows.  The 
1×2 vectors representing the initial conditions at z = w, namely 

and 

are clearly linearly independent.  It then follows from the theory of differential 
equations that the solution vectors of Eqs. (7.26) and (7.28) remain linearly 
independent for any depth z, if the J's and D's are continuous functions of z (see 
Coddington and Levinson, 1955, pp 28 and 69).  The linearly independent 
fundamental solutions at depth z therefore can serve as a basis for the 
representation of any arbitrary 1×2 solution vector.  In particular, if Eu(z) and 
Ed(z) are the results of integrating Eqs. (7.24) starting with the arbitrary initial 
conditions Eu(w) and Ed(w), then 

Placing these equations in matrix form gives 
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(7.30) 

Note that M(w,z), the fundamental operator for S[w,z],, works exactly like the 
fundamental operator for the air-water surface, M(a,w), which was defined in 
the previous section.  M(w,z) transforms the solution at depth w into the 
solution at any depth z within the water body.  Only the manner in which the 
elements of M(w,z) and M(a,w) are computed is different in the two cases. 

The mapping and group properties of 

the fundamental solution 

We now point out two important properties of the fundamental 
solution.  First, it can be associated with any pair of depths z  and z in S[w,m].o

We can repeat the integrations of Eqs. (7.26) and (7.27), starting at any depth 
w # z # m, with the initial conditions o 

and integrating to any other depth z, which can be greater than or less than zo 

. I2 denotes the 2×2 identity matrix.  Equation (7.30) then has the more general 
form 

(7.31) 

which is known as the mapping property of M(w,z). 
Second, by virtue of its construction via the integrations of Eqs. (7.26) 

and (7.28), M(zo,z) possesses the group property 

(7.32) 

In constructing M(z1,z), we of course start the integration at depth z1, using the 
initial conditions M(z1,z1) = I2. Letting z  = z in Eq. (7.32) gives o

which means that 
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(7.33) 

The fundamental operator M(z1,z) therefore has a unique inverse that can map 
the solution at z back to z1. 

7.5	 The Fundamental Solution Including 
Internal Sources 

The preceding two sections have illustrated the conceptual power of the 
fundamental solutions.  We now need to extend the above developments to 
include the effects of internal sources within the water body. 

The two-flow equations in matrix form 

The convenience of matrix notation should by now be obvious.  We 
can write the general two-flow equations (7.3) and (7.4) in matrix form by 
defining 

(7.34) 

(7.35) 

and 

(7.36) 

The minus sign on the E S(z) component of E S(z), like those seen in K(z),ou	 o 

merely accounts for the sign in Eq. (7.4); it in no way implies a negative value 
for the irradiance itself.  The two-flow equations now become 

(7.37) 

The 2×2 matrix K(z) is known as the local transfer matrix because it specifies 
the radiative transfer properties of the medium in terms of the local 
transmittances and local reflectances. 

Using definition (7.34), Eqs. (7.26) and (7.28) have the compact form 
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(7.38) 

where the initial conditions are now 

(7.39) 

The solution of the source-free form of Eq. (7.37) is now expressible in terms 
of the fundamental operator as 

(7.40) 

Incorporation of internal sources 

We can deduce the required analytic form of the solution of Eq. (7.37) 
by physical reasoning.  Consider an infinitesimally thin layer of water of 
thickness dzo between depths z  and z / z  + dz , which can be above or belowo o o

z . The internal sources at level zo generate an irradiance o

at level z. This internal-source irradiance vector acts just like the initial 
irradiance vector E(w) = [Eu(zo), Ed(zo)] in Eq. (7.31).  Thus E S(zo)dz M(zo,z)o o

is the resultant irradiance vector at depth z induced by the internal sources at 
depth z . Adding up such contributions from all levels zN between any twoo

arbitrary levels z  and z giveso

The superscript "f" on E f(zo,z) and Ed
f(zo,z), and on their vector form Ef(zo,z),u 

reminds us that these fundamental source-induced irradiances are associated 
with the fundamental operator. 

We now can add the source-induced contribution (7.41) to the source-
free solution (7.40) to generate the general solution of Eq. (7.37): 

(7.42) 

(7.41)
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We leave it as an exercise for the reader to verify that the vector E(z) of 
Eq.(7.42) does indeed satisfy the two-flow equations and the associated initial 
conditions.  Equation (7.42) is valid for all z  and z in S[w,m].o

Two special cases of Eq. (7.42) will be of use in the next section.  The 
first is obtained by setting z  = w, the depth just below the air-water surface. o

Then Eq. (7.42) can be expanded into 

(7.43) 

(7.44) 

The second case occurs when z  = m, the maximum depth of interest.  Equationo

(7.42) then has the same form as Eqs. (7.43) and (7.44), but with 
m replacing w: 

(7.45) 

(7.46) 

Historical notes 

The fundamental-solution approach to radiative transfer theory as seen 
here is a direct application of the classical theory of differential equations; see, 
for example, Coddington and Levinson (1955).  However, this  approach was 
discovered independently by Preisendorfer after close analysis of early 
formulations of the interaction principle. For example, equations 
corresponding (at the radiance level) to Eqs. (7.32) and (7.40) were first 
presented in Preisendorfer (1961).  Fundamental solutions for source-free 
media are treated in detail in H.O. IV. The extension of the theory to include 
internal sources was first presented in Preisendorfer and Mobley (1988). 

The fundamental-solution formalism can be viewed as the 
"mathematical" approach to radiative transfer theory. The "physical" approach 
is given by the transport-solution formalism.  The transport formalism is 
developed in H.O. II, Chapter 3, starting with the interaction principle.  We 
next investigate how the transport-solution and the fundamental-solution 
treatments of radiative transfer theory are related. 
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7.6 The Transport Solution for Bare Slabs 

The transport solution of the two-flow equations arises when we pose 
the following problem.  As always, it is assumed that we know the local 
transmittances Jdd and J , the local reflectances Ddu and Dud, and the internal uu

sources E S and Eod
S throughout the water body S[w,m]. Suppose that weou 

know the incident irradiances Ed(w) and Eu(z) on the slab S[w,z]. We wish to 
find the response irradiances Eu(w) and Ed(z) leaving the slab. This in turn 
requires us to determine four numbers, namely T(z,w), R(z,w), T(w,z) and 
R(w,z), and two irradiances E t(z,w) and Ed

t(w,z), such thatu 

(7.47) 

(7.48) 

The R's and T's in Eqs. (7.47) and (7.48) are called the standard 
reflectances and standard transmittances for slab S[w,z]. We shall use the 
term standard operators to denote the standard reflectances and transmittances 

talong with the transport source-induced irradiances Eu
t and Ed . 

The physical interpretation required of T(z,w) is that of an upward 
transmittance that carries a part of the incident irradiance Eu(z) upward through 
the slab to depth w. Likewise, R(w,z) is a reflectance that shows how much of 
Ed(w) is returned upward at level w by the slab S[w,z]. E t(z,w) is the upward u 

irradiance at level w generated by the internal sources within the slab; the 
superscript "t" reminds us that this quantity is associated with the transport 
solution.  Note in particular that the transport source-induced irradiance 
E t(z,w) is distinct from the fundamental source-induced irradiance E f(z,w),u u 

which is obtained from Eq. (7.41) by letting z  = z and z = w. The quantities o

in Eq. (7.48) have correspondingly simple interpretations. 
The reader will surely note that Eqs. (7.47) and (7.48) strongly 

resemble equations that we have written down previously after invoking the 
interaction principle; recall, for example, the surface boundary conditions (7.1) 
and (7.2).  We shall say more about this matter presently.  For the moment, 
though, let us continue with the observation that the needed R, T, and E t 

functions of Eqs. (7.47) and (7.48) can be obtained immediately from the 
fundamental solutions, which we have just computed.  Solving Eqs. (7.43) and 
(7.44) for Eu(w) and Ed(z) gives 
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(7.49) 

(7.50) 

where each M±± has depth arguments (w,z). Comparing these equations with 
Eqs. (7.47) and (7.48) shows that 

(7.51) 

and that 

(7.52) 

Equations (7.39) and (7.41) show that if z = w, the last two equations reduce 
to 

(7.53) 

and 

(7.54) 

as we expect on physical grounds. 
Proceeding in parallel with the above analysis, we can suppose that we 

know the incident irradiances at depths z and m, Ed(z) and Eu(m), respectively. 
The response irradiances for the slab S[z,m] are then Eu(z) and Ed(m), and we 
can write 

(7.55) 

(7.56) 
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Solving Eqs. (7.45) and (7.46) for Eu(z) and Ed(m) and comparing the result 
with Eqs. (7.55) and (7.56) gives 

(7.57) 

and 

(7.58) 

where for z = m 

(7.59)

 and 

(7.60) 

Equations (7.47) and (7.48) are the downward global interaction 
principles for slab S[w,z], and Eqs. (7.55) and (7.56) are the upward global 
interaction principles for S[z,m]. The sense of direction comes from the 
direction of integration as we "build" a slab starting at either the top or bottom 
boundaries.  Thus in Eqs. (7.47) and (7.48) we think of starting at depth w and 
integrating Eqs. (7.26) and (7.28) downward to depth z, starting with initial 
conditions (7.27) and (7.29), in order to obtain the fundamental solution 
M(w,z).  For slab S[z,m] we start at depth m and integrate upward to depth z 
to obtain M(m,z). 

Equations (7.47)-(7.48) and (7.55)-(7.56) are also called the transport 
solutions for their respective slabs S[w,z] and S[z,m]. Taken together, these 
equations constitute the transport solution of the two-flow equations within the 
water body S[w,m].  Note that these equations, viewed together, give us four 
equations for the two unknown internal irradiances Eu(z) and Ed(z), and for the 
two unknown response irradiances of the water body, Eu(w) and 
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Ed(m), in terms of the incident irradiances Ed(w) and Eu(m), and the internal 
source contributions.  Equations (7.51) and (7.57) show how the standard 
operators can be obtained from the fundamental operators M(w,z) and M(m,z). 
Equations (7.52) and (7.58) show how the transport internal-source 
contributions  are obtained from the fundamental internal-source 
contributions . 

Comments on notation 

The reader already may have inferred the rules for interpreting the 
depth arguments of the various R's, T's, and E's seen in the transport solution. 
Recall that we always have a # w # z1 # z2 # m # b. In our notation, R(z1,z2) 
stands for the reflectance of slab S[z1,z2] for downward irradiance incident at 
depth z1, which yields upward irradiance also at level z1. If we write R(z2,z1), 
we are still working with slab S[z1,z2], but R(z2,z1) 
is the reflectance of S[z1,z2] for upward irradiance incident at z2 and leaving the 
slab in a downward direction at z2. Likewise T(z2,z1) is the transmittance of 
S[z1,z2] for incident upward irradiance at z2 leaving the slab at z1,whereas 
T(z1,z2) is for the transmission of downward irradiance from z1 to z2. 

E t(z2,z1) and Ed
t(z1,z2) both refer to slab S[z1,z2], but E t(z2,z1) is theu u 

E
source-induced upward irradiance leaving the slab at level z1, whereas 

d
t(z1,z2) is the source-induced downward irradiance leaving the slab at depth 

z2.  Strictly speaking, the "u" and "d" subscripts on E t are redundant, since we 
can deduce the sense of the irradiance from the order of the depth arguments. 
However, we shall retain the "u" and "d" for notational consistency with Eu 

and Ed elsewhere in the equations. A little bit of redundancy is sometimes a 
good thing.  We should also remember that E f(z1,z2) and Ed

f(z1,z2) each haveu 

the same order of depth arguments, since these terms represent irradiances at 
one depth carried to another depth by the fundamental operator. 

Generally, then, R(u,v), T(u,v) and E t(u,v) are associated with slab 
S[r,s], where r is the lesser of u and v, and s is the greater of u and v, since the 
notation S[r,s] always has r # s. For R(u,v) irradiance enters and leaves at 
level u, while for T(u,v), irradiance enters at u and leaves at v. For Et(u,v), 
irradiance always leaves at v. 

The term "bare slab" in the section title means that we are considering 
the water body S[w,m] without regard for the effects of its boundaries.  In 
essence, we have mathematically peeled off the air-water surface S[a,w] and 
the bottom S[m,b] to leave an "unbounded" or "bare" slab of water, S[w,m]. 
Our next task is to learn how to account for the effects of the boundaries, 
which are always physically present. 
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7.7 The Transport Solution for Bounded Slabs 

The transport solutions of the previous section were obtained by 
consideration of only the water body S[w,m]. We now must learn how to 
incorporate the effects of the air-water surface and of the bottom boundary on 
the solution within the water body. 

We first consider a composite medium S[a,z] consisting of the air-
water surface S[a,w] appended to a slab of water S[w,z], where w # z # m. We 
write S[a,z] = S[a,w] c S[w,z], where c indicates the union of the two slabs. 
We assume that we know the transport solutions for each of S[a,w] and S[w,z] 
individually, i.e. we know all of the terms r(a,w), R(w,z), etc., which appear in 
the transport solutions (7.1)-(7.2), (7.47)-(7.48),  and (7.55)-(7.56). 

We now ask two questions.  First, if we know the external incident 
irradiances Ed(a) and Eu(z), can we find the internal response irradiances 
Eu(w) and Ed(w) at the interface between the slabs?  Second, can we find the 
external response irradiances Eu(a) and Ed(z) for the composite slab? The 
first question will be answered when we develop the imbed rules for composite 
media.  Knowing Eu(w) and Ed(w), we can then find the external responses; 
this development leads to the union rules for composite media. 

Imbed rules (downward case) 

For reference, the most general1 transport solution for S[a,w] is 

(7.61) 

For S[w,z] we have 

(7.62) 

(7.63) 

(7.64) 

1We include the possibility of internal sources in S[a,w] so that the 
results being derived will hold for the union of any two slabs, not just the 
air-water surface plus a layer of water.  If S[a,w] represents just a 
discontinuity in the inherent optical properties, the internal-source terms are 
zero, and Eqs. (7.61) and (7.62) reduce to the boundary conditions (7.1) and 
(7.2) 
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We can now solve Eqs. (7.62) and (7.63) for the internal responses Eu(w) and 
Ed(w) in terms of the incident irradiances Ed(a) and Eu(z). The results are 

(7.65) 

(7.66) 

where 

(7.67) 

(7.68) 

(7.69) 

and 

(7.70) 

(7.71) 

(7.72) 

Equations (7.65) and (7.66) are the invariant imbedding relations for 
S[a,z], written for a general internal level w, a # w # z. As a mnemonic aid, 
note that level w, which appears on the left hand side of the equations, is 
imbedded within (lies between) depths a and z. The R, T, and E functions are 
respectively the complete reflectances, complete transmittances and complete 
source-induced irradiances for S[a,z]. Equations (7.67)-(7.72) are the imbed 
rules for the composite medium. The imbed rules show how the standard 
operators for two slabs are combined to generate complete operators for the 
composite slab. 

We have written the reflectances and transmittances for S[a,w] as lower 
case letters, e.g. r(a,w), as is consistent with our notation for the air-water 
surface.  If we wish to regard S[a,w] as an arbitrary slab of water, we could 
write the standard reflectances and transmittances as R(a,w), etc., in parallel 
with our notation for S[w,z]. 

We also have taken care to maintain the order of the reflectances and 
transmittances when developing the imbed rules.  Note for example, that we 
write "r(w,a)R(w,z)" in Eq. (7.67), but "R(w,z)r(w,a)" in Eq. (7.70). We do 
this in anticipation of using these equations again in the solution of the RTE 
in Chapter 8.  There, the reflectances and transmittances will be matrices, and 
will not commute.  Here, of course, r(w,a) and R(w,z) are numbers and the two 
products are equal. 



367 7.7 The Transport Solution for Bounded Slabs 

Union rules (downward case) 

Now that we know the internal irradiances at the interface level w 
between the two slabs, we can use Eqs. (7.65) and (7.66) to eliminate Eu(w) 
and Ed(w) in Eqs. (7.61) and (7.64). This yields the external response 
irradiances Eu(a) and Ed(z) in terms of the incident irradiances.  The results are 

(7.73) 

(7.74) 

where 
(7.75) 

(7.76) 

(7.77) 

and 

(7.78) 

(7.79) 

(7.80) 

Equations (7.73) and (7.74) are the global interaction principles for the 
composite slab S[a,z] = S[a,w] c S[w,z]. These equations show how the entire 
slab S[a,z] interacts with incident irradiances to produce response irradiances. 
Equations (7.75)-(7.80) are the associated union rules. The union rules, along 
with the definitions in Eqs. (7.67)-(7.72), show how the standard operators for 
two slabs are combined to generate standard operators for the composite slab. 
We can imagine holding a and w fixed, and "constructing" the water body by 
letting z increase downward starting at level w. For this reason, we call the 
above imbed and union rules those for the "downward case." 

Imbed and union rules (upward case) 

We can also think of starting at depth m and constructing the water 
body by letting z move upward while the lower boundary S[m,b] is held fixed. 
We then obtain complementary formulas for the composite slab S[z,b] = S[z,m] 
c S[m,b]. These formulas are derived in exactly the same 
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way as those for the composite slab S[a,z].  These "upward case" formulas are
presented here for completeness.

The invariant imbedding relations for S[z,b] = S[z,m] c S[m,b] are

(7.81)

(7.82)

The  associated imbed rules for S[z,b] are

(7.83)

(7.84)

(7.85)

and

(7.86)

(7.87)

(7.88)

We have written these equations in a general form that allows the bottom
boundary S[m,b] to be partially transparent and to have internal sources.  For
an opaque reflecting bottom such as was considered in Section 7.2, t(m,b) =
t(b,m) = r(b,m) = 0, r(m,b) = R, and Ed

t(m,b) = Eu
t(b,m) = 0.

The global interaction principles for S[z,b] are

(7.89)

(7.90)

and the associated union rules are

(7.91)

(7.92)

(7.93)

and
(7.94)

(7.95)

(7.96)
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Imbed and union rules for the entire medium S[a,b]

We can now express the irradiances Eu(z) and Ed(z) at any depth z
within the water body S[w,m] of the composite medium S[a,b] = S[a,w] c
S[w,m] c S[m,b], a # w # z # m # b.  All layers may include internal sources,
and the entire medium is irradiated from above by Ed(a) and from below by
Eu(b).  The desired irradiances are found by solving Eqs. (7.74) and (7.89) to
obtain the invariant imbedding relations S[a,b]:

(7.97)

(7.98)

The imbed rules for S[a,b] are

(7.99)

(7.100)

(7.101)

and

(7.102)

(7.103)

(7.104)

Finally, we obtain the external response irradiances Eu(a) and Ed(b) in terms
of the incident irradiances by solving Eqs. (7.73) and (7.90), with Eu(z) and
Ed(z) given by Eqs. (7.97) and (7.98).  The resulting global interaction
principles are

(7.105)

(7.106)

The union rules for S[a,b] are

(7.107)

(7.108)

(7.109)

and
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(7.110) 

(7.111) 

(7.112) 

We have now completed the general theoretical framework upon which 
the numerical procedure of Section 7.2 rests.  These results will play a central 
role in the solution of the RTE in Chapter 8.  It remains only to develop a self-
contained numerical procedure for computing the needed R, T, and E t 

functions for arbitrary water layers and bounding surfaces; such a procedure 
will generalize Eqs. (7.9) to (7.12). 

7.8	 Differential Equations for the 
Standard Operators 

We saw in Section 7.5 how to obtain the fundamental solution by 
integration of Eqs. (7.38) and (7.41), and we saw in Section 7.6 how the 
standard operators can be obtained from the fundamental operators.  However, 
it is numerically advantageous to develop a means for directly computing the 
standard operators, without first computing the fundamental operators.  The 
reason in part is because the fundamental operator M(zo,z) behaves 
approximately exponentially with depth z, as will be seen in Chapter 9.  Such 
behavior can cause numerical difficulties if calculations are carried to great 
depths.  The R and T standard operators, on the other hand, are bounded by 0 
and 1 since they represent physical reflectances and transmittances.  This 
benign depth behavior leads to numerically well behaved algorithms for the 
computation of the standard operators. In addition, direct computation of the 
standard operators insures the independence of the transport and fundamental 
solution methods, so that one may serve as a check on the other. 

We now show how to determine the eight standard transmittance and 
reflectance operators, and the four transport source-induced irradiances needed 
in the interaction statements (7.73)-(7.74) and (7.89)-(7.90). 

These standard operators are governed by twelve differential equations, 
which group naturally into two sextets of equations – an upward family and a 
downward family.  Each sextet of equations splits naturally into a major trio 
and a minor trio.  We shall derive the major downward trio of equations; the 
others follow in a similar fashion. 

Consider the slab S[a,z] = S[a,w] c S[w,z]. The four-step derivation of 
the major downward trio for S[a,z] begins by differentiating the 
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interaction principle (7.74) with respect to z to obtain 

Second, use the two-flow equations (7.3) and (7.4) to replace the derivatives 
of Eu(z) and Ed(z). The result is 

Third, use Eq. (7.74) to replace the occurrences of the response irradiance 
Ed(z) in the previous equation and group the terms to get 

(7.113) 

Fourth, recognize that the incident irradiance Ed(a) is arbitrary.  Likewise, note 
that the internal sources E S(z) and Eod

S(z), which generate Ed
t(a,z), can beou 

chosen arbitrarily and independently of Ed(a). In particular, Eq. (7.113) still 
Sholds if Ed(a) is zero, and E S and Eod  are nonzero.  Similarly, Eq. (7.113) still ou 

holds if Ed(a) � 0 and E S = Eod
S = 0, so that Ed

 t(a,z) = 0 throughout S[a,z].ou 

Hence, each of the three groups of terms in Eq. (7.113) must  individually be 
zero. [If a + b + c = 0, a + b = 0, and a + c = 0, then it follows that a = b = c 
= 0.]  Moreover, since Eu(z) is in general nonzero [owing to any or all of Ed(a) 

S � 0, Eou
S � 0, or Eod � 0 being true], it follows that the quantities enclosed in 

each pair of braces in Eq. (7.113) are identically zero for all z in w # z # m. 
We thus arrive at the very important Riccati differential equations for R(z,a), 
T(a,z), and Ed

t(a,z): 
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(7.114) 

(7.115) 

(7.116) 

These equations are the major downward trio. 
By similar arguments, beginning with a differentiation of Eq. (7.73), 

we arrive at the minor downward trio: 

(7.117)


(7.118)


(7.119)


First order, quadratically nonlinear differential equations like Eq. 
(7.114) are called Riccati equations.  We shall for convenience refer to the 
entire set of equations as "the Riccati equations," because of the leading role 
played by Eq. (7.114), and by Eq. (7.121) below. 

The downward sextet (7.114)-(7.119) derives its name from the 
observation that these differential equations can be integrated in a downward 
sweep beginning at z = w and ending at z = m. The required initial values are 

(7.120)


If S[a,w] represents an air-water surface, the r and t values are computed as in 
Chapter 4.  The initial values Ed

t(a,w)o and E t(w,a)o, which describe the effects u 

of any internal sources within the surface layer S[a,w], must be determined 
from independent calculations.  For an air-water surface, these quantities are 
zero. The values in square brackets show the initial 
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conditions corresponding to a transparent boundary with no internal sources, 
i.e. to the case of a bare slab.  These parenthetical values are included here to 
facilitate the later comparison of the present equations with their radiance 
counterparts in Section 8.7. 

Note that Eq. (7.114) for R(z,a) is autonomous, but that the other two 
equations of the major trio depend on R(z,a). The equations of the minor trio 
depend on the three quantities of the major trio, but not vice versa. 

If we begin with a differentiation of Eq. (7.89), we obtain the major 
upward trio: 

(7.121) 

(7.122) 

(7.123) 

The minor upward trio arising from Eq. (7.90) is 

(7.124)


(7.125)


(7.126)


Now we start the integration at level m and integrate upward to level w. The 
associated initial values are 

(7.127)


The r's, t's, Eu
t(b,m)o and Ed

t(m,b)o appropriate to the lower boundary S[m,b] 
must be supplied.  For the opaque Lambertian bottom of Section 7.2, we had 
R(m,b) = R, and all other boundary quantities equal to zero [recall Eqs. 
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(7.11) and (7.12)]. As in Eq. (7.120), the values in brackets in Eq. (7.127) give 
the initial conditions appropriate for a transparent bottom. 

Summary of the transport solution 

We now have in hand a solution algorithm for the most general 
formulation of the two-flow equations, including arbitrary upper and lower 
boundaries, and the presence of internal sources even within the boundaries 
themselves.  It is worthwhile to summarize the computation involved in the 
transport solution procedure: 

(i) Integrate the downward sextet of Riccati differential equations (7.114)-
(7.119) in a downward sweep from depth w to depth m, starting with 
the initial values shown in Eq. (7.120).  Likewise, integrate the upward 
sextet (7.121)-(7.126) from depth m to depth w, starting with the initial 
conditions of Eq. (7.127).  Save the results of these integrations at 
depths w / z1, z2, ..., zk / m, where z1, ..., zk are those preselected depths 
within the water body at which the solution irradiances are desired. 

(ii) Evaluate the six complete transmittance, reflectance, and source-
induced irradiance operators seen in the imbed rules (7.99)-(7.104). 
These operators are evaluated at all depths z1, ..., zk where a solution is 
desired.  That is, we compute and save T(b,w,a), T(b,z2,a), ..., 
T(b,m,a), and so on.  Note that these computations make use of the 
standard operators governed by the major upward and downward trios 
of Riccati equations. 

(iii) Compute the upward and downward irradiances at depths z1, ..., zk 

using the invariant imbedding relations (7.97) and (7.98). 

(iv) Compute the external responses	 Eu(a) and Ed(b) using the global 
interaction principles (7.105) and (7.106), along with the union rules 
(7.107)-(7.112) evaluated at, say, z1 = w. Note that these union rules 
use the standard operators computed from the minor upward and 
downward trios of Riccati equations. 

The complete solution of the two-flow problem has now been achieved. 
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7.9 Summary 

We have now penetrated deeply into the mathematical structure of 
radiative transfer theory, although not nearly so deeply as can be done.  We 
could continue to investigate the conceptual constructions of this chapter – 
invariant imbedding relations, imbed and union rules, standard and complete 
operators, fundamental and transport solutions, and so on.  However, to do so 
would take us beyond what is needed to reach our primary goal of solving the 
RTE.  The above study is continued at the irradiance level in Preisendorfer 
(1987) and in Preisendorfer and Mobley (1988). 

Our mathematical efforts already have been rewarded in the insights 
we have obtained.  For example, we have seen that the complete operators 
algebraically incorporate all orders of multiple scattering into the solution 
irradiances.  We have discovered different approaches – the transport and 
fundamental solutions – to the same problem, and we have established 
relationships between these approaches.  Moreover, our mathematical 
developments have led to a specific algorithm for solving the most general 
two-flow problem.  Indeed, this algorithm is so general and powerful that the 
RTE itself will yield to it in Chapter 8.  Obtaining numerical solutions of the 
RTE will be our greatest reward for the work expended in this chapter. 

However, in spite of the detailed developments above, we have 
neglected one small facet of the theory – the name itself.  What does invariant 
imbedding mean: in particular, what is invariant, and what is imbedded in 
what?  The name itself is due to Bellman and Kalaba (1956), and the analytic 
form of the invariant imbedding relation first appeared in Preisendorfer 
(1958b).  The underlying idea can be traced to Ambarzumian's (1943) problem 
and his revolutionary insight into its solution.  He was interested in computing 
the reflectance of an infinitely deep stellar atmosphere.  The "classical" 
approach to this problem would be to solve the RTE itself within the 
atmosphere (using, for example, Monte Carlo methods) given the incident 
radiance, and thereby eventually obtain the radiance leaving the atmosphere, 
from which the reflectance then could be computed.  Ambarzumian's insight 
was this:  the reflectance of an infinitely deep stellar atmosphere will be 
unchanged (that is to say, will be invariant) if another layer is added to or 
subtracted from the atmosphere.  He thus "imbedded" his problem (the 
reflectance of an atmosphere of depth z) in a related problem (the reflectance 
of an atmosphere of depth z + dz). He was then able to derive a functional 
equation relating the reflectance of an atmosphere of depth z to the reflectance 
of an atmosphere of depth z + dz, in the limit 
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z 6 4. The equation governing the reflectance was then solved directly, 
without the necessity of solving the RTE itself. 

Subsequent development of Ambarzumian's method showed that the 
functional forms of the equations governing the reflectances (and the 
transmittances, etc.) remain invariant even for inhomogeneous slabs of finite 
thickness.  Clearly, if we change the depth of a finite layer of water, the 
magnitude of the reflectance will change.  Therefore, the modern use of 
"invariance" refers to the forms of the governing equations, and not to the 
numerical values of the computed quantities.  Preisendorfer (1965, Section 49) 
expands further on these generalizations. 

Ambarzumian's method is clearly an ancestor of what we have done. 
Recall the solution procedure of Section 7.8.  There we developed differential 
equations governing not the irradiances themselves, but rather certain 
reflectances, transmittances, and internal sources (the standard operators) of 
the irradiances.  Our computational effort is expended in solving these 
differential equations, which describe how the various standard operators build 
up as we add infinitesimal layers of water to boundary layers of known 
properties.  We eventually obtained the irradiances within the water body from 
the standard operators (via the imbed rules for the complete operators and the 
invariant imbedding relations), and not from an explicit integration of the two-
flow equations themselves. 

Note from Eq. (7.89) that R(z,b) is just the irradiance reflectance 
Eu(z)/Ed(z) of a source-free medium S[z,b] that has no irradiance incident from 
below.  If all that we desire is this irradiance reflectance, then we need 
integrate only Eq. (7.121).  It is not necessary to explicitly compute the 
irradiances in order to obtain R(z,b). Letting m = b 6 4 gives Ambarzumian's 
problem.  Similarly, we can obtain the reflectance R(a,b) of an entire, arbitrary 
medium S[a,b] from Eq. (7.108) after integrating the Riccati Eqs. (7.114)-
(7.127). We need not compute Eu(a) itself. 

Invariant imbedding theory has undergone much refinement since 
Ambarzumian's seminal idea.  The theory has found wide application in linear 
transport problems, including radiative transfer, neutron diffusion, water wave 
propagation, electrical engineering, and acoustics. An elementary example of 
the use of invariant imbedding is given in Chapter 1 of Bellman, et al. (1963). 
The review paper by Bellman, et al. (1960) is excellent. Chandrasekhar (1960) 
discusses principles of invariance in considerable detail.  A rigorous 
mathematical development of the theory in the setting of hydrologic optics is 
found in the works of Preisendorfer, especially H.O. volumes II and IV. 
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7.10 Problems 

7.1.  Draw a figure similar to Fig. 7.1 to provide a graphical interpretation of 
the complete operator E(a,z,b) defined in Eq. (7.104). 

7.2.  Draw a figure similar to Fig. 7.1 to provide a graphical interpretation of 
the standard operator R(a,b) defined in Eq. (7.108).  Be sure to "graphically 
expand" the complete operators contained within R(a,b). 

E
7.3.  Explain in words the physical meaning of the relationship between 

d
t(w,z) and Ed

f(w,z) as seen in Eq. (7.52). 

7.4.  Carry out the steps of the derivation of the minor downward trio of 
Riccati Eqs. (7.117)-(7.119). 

7.5.  Consider the union S[w,m] = S[w,z] c S[z,m] of two optically thin slabs 
of water.  By "optically thin" we mean that the reflectances are near zero and 
the transmittances are near one, i.e. R(w,z) . 0, T(w,z) . 1, and so on.  Under 
these conditions, show that 

and 

In other words, show that for optically thin slabs, reflectances add and 
transmittances multiply. 

7.6.  Consider an optically thin body of water S[a,z]. Then, for example, Eq. 
(7.118) reduces to 

This equation reinforces our interpretation of Ddu as the downward-to-upward 
irradiance reflectance, per meter of water, of an infinitesimally thin layer of 
water.  Examine the other Riccati equations in this manner, to see if they yield 
similar physical interpretations. 

7.7.  Let S[z,b] be an optically very thick cloud layer.  In our coordinate system 
with z positive downward, the cloud layer will increase in thickness if b 
increases or if z decreases. Now reason, as Ambarzumian did, that after the 
cloud layer becomes very thick, any further increase in thickness will 
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not change the reflectance of the cloud layer as seen from above, R(z,b). Use 
this insight to derive an explicit formula for R(z,b) in terms of the four J's and 
D's.  Now, for convenience, think of the same cloud layer as being S[a,z]. 
Derive a formula for R(z,a), the irradiance reflectance of the thick cloud layer 
as seen from below. Is R(z,b) = R(a,z)? In other words, does the same cloud 
layer have the same irradiance reflectance when viewed from above or from 
below? Discuss. 
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