PHOTOCATHODE PROTECTION CIRCUIT

Richard L. Ensminger and Robert F. Howarth

SIO Ref. 67-1
January 1967

Naval Ship Systems Command
Advanced Research Projects Agency
Contract NObs-92058, Task 4
PHOTOCATHODE PROTECTION CIRCUIT

Richard L. Ensminger and Robert F. Howarth

A photocathode protection circuit applicable to high voltage electron multiplier devices has been developed and successfully used. Application to a Westinghouse WL-23111 image dissector tube is described. The protection circuit features the positive firing action of a silicon-controlled rectifier, current cutoff by reverse biasing of the photocathode, and photocathode current calibration and monitoring. Inherent safeguard against socket leakage and arcing is also discussed.

Introduction

When working with photosensitive devices it is often desirable to have some means of protection against accidental flooding of the photocathode with excessive light flux. Permanent damage to or destruction of the photo device can result from such accidents. This is especially true when using high-voltage electron multiplier devices such as the image orthicon, the image dissector, or any multiplier phototube.

Cognizance of this problem at the Visibility Laboratory led to the development of the Photocathode Protection Circuit shown in Fig. 1 and described below. With the components as shown, the protective action can be set to occur at photocathode currents from a few tenths of a microampere to several microamperes. Rearrangement of the Q1 emitter resistors permits extension of this range.

Description of Operation

The firing point of the silicon-controlled rectifier, SCR 1, is set by means of adjusting the control R1 such that protection activation occurs when the photocathode current is of the desired magnitude. Firing SCR 1 energizes K1 relay which transfers the photocathode from its most negative potential [\(-E\)] to a more positive voltage .8E. Since .8E is more positive than the G6 voltage, the photocathode is effectively biased off and electron flow is prevented irrespective of the incident light flux. The neon tube Ne-2 is ignited by the protective switching and serves as an indication of the state of the protection circuit.

Because of its permanent magnet armature construction, K1 remains in the protective position until it is reset by SW 2b. After resetting, the circuit remains in the normal operation mode or else immediately trips, depending on the magnitude of the photocathode current. SW 2a and SW 2b are separate, mechanically ganged Micro-switches adjusted so that when initially pressed, SW 2a opens before SW 2b opens; when depressed, SW 2b closes before SW 2a closes. This arms the protective SCR 1 so that it is ready to function before the photocathode circuit is closed through SW 2a.

The 33K resistor and the 1 \(\mu\)f capacitor shown in the SCR 1 gate circuit act as a low pass filter and serve to prevent undesired firing of the SCR when uncapping the photocathode.
Calibration Feature

Utilizing the voltage divider usually available when operating the phototube, one can cause a known current to flow in the base circuit of Q1 by setting SW 1 to the N.O. position (CAL). R3 is then adjusted to set the meter M1 at a desired deflection. Circuit stability and calibration can then be periodically checked as desired. The meter also serves to indicate the average photocathode current during normal operation. It provides for a current sensitivity of 5 microamperes full scale at a point in the circuit that is 2850 volts negative with respect to ground. Conventional methods of current metering would be difficult to employ in this situation since a passive meter of this sensitivity would probably be adversely affected by the electrostatic field.

Application to Image Dissector

The Photocathode Protection Circuit of Fig. 1 has been in use on a Westinghouse WL-23111 image dissector for several months at the Visibility Laboratory. Operation has been reliable, repeatable, and quite satisfactory. It is worth mentioning with regard to this tube (mechanically equivalent to the 5820-type image orthicon) that protection against excessive or catastrophic leakage through its jumbo annular socket is provided by the protection circuit. We have been able to find only one such socket available commercially. Designed for image orthicon use, where its pin voltages are near ground, it is made of Bakelite. When used with the image dissector, its pin voltages are about -2500V, socket leakage is about .3 microamperes and is, of course, somewhat dependent on humidity, dust, and mechanical pressures. Since arcing and leakage in this socket have been bothersome, and we have been unable to locate a superior commercial socket, a replacement socket of Kel-F has been constructed by our own machine shop. This is expected to eliminate the problem entirely.

The cost of the components for the Photocathode Protection Circuit is about $100 which, relative to the $3,000 cost of the image dissector tube, is not unreasonable.
A photocathode protection circuit applicable to high voltage electron multiplier devices has been developed and successfully used. Application to a Westinghouse WL-23111 image dissector tube is described. The protection circuit features the positive firing action of a silicon-controlled rectifier, current cutoff by reverse biasing of the photocathode, and photocathode current calibration and monitoring. Inherent safeguard against socket leakage and arcing is also discussed.
Security Classification

KEY WORDS

<table>
<thead>
<tr>
<th>ROLE</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK A</td>
<td></td>
</tr>
<tr>
<td>LINK B</td>
<td></td>
</tr>
<tr>
<td>LINK C</td>
<td></td>
</tr>
</tbody>
</table>

- Image Dissector
- Photocathode Protection
- Protection Circuit

INSTRUCTIONS

1. **ORIGINATING ACTIVITY** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S)** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE** Enter the date of the report as day, month, year or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. **PROJECT NUMBER** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S)** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S)** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ___________."
 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ___________."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through ___________."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph represented as (TS) (S) (C) or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

UNCLASSIFIED

Security Classification