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Lab 11:  RRS Semi-analytic Inversion     29 June 2023 
written and designed by Collin Roesler – updated by Patrick Gray 

 
 

1.1 Introduction and Lab Goals 
The purpose of satellite remote sensing is to derive properties of the earth, ocean, or 
atmosphere from observations of electromagnetic radiation either emanating from the target 
of interest (e.g., NIR emission), reflecting from the solar source (e.g., ocean color), or reflecting 
from a satellite-based source (e.g., RADAR or LIDAR). Approaches range from purely empirical 
models (e.g., chlorophyll estimation from ocean color) to nearly purely analytic (e.g., 
altimetry), to somewhere in between semi-analytic (e.g., most derived products). Today we 
will explore the semi-analytic approach to estimating oceanic IOPs from ocean color remote 
sensing. The goals are to (1) provide students with improved intuition about how variations in 
IOPs drive variations in the magnitude and spectral dependence of remote sensing reflectance, 
and (2) provide a simple Matlab code for semi-analytic inversion to investigate how results 
vary with range of data sets, models and parameterization.  
 
Recall that the relationship between ocean IOPs and the remote sensing reflectance can be 
modeled in the forward sense using radiative transfer codes such as Hydrolight®. The inverse 
approach requires an approximation to the radiative transfer equation; the most common 
results from the quasi-single scattering approximation (QSSA) which yields the equation: 

𝑅!"(𝜆) =& 𝑔# × )
𝑏$(𝜆)

𝑎(𝜆) + 𝑏$(𝜆)
-
#

#
 

Where 𝑖 is typically 1 or 2 and sometimes the 𝑏$ term in the denominator is removed when 
𝑎 ≫ 𝑏$. The form of the equation suggests that because the spectral variations in the IOPs 
determine the spectral variation in the reflectance, an optimization approach can be used to 
statistically determine the relative magnitudes for each IOP that best determine reflectance, 
which is a typical regression approach. Recall that the IOPs are additive and thus the spectral 
variations in the IOPs can be further decomposed into components that are determined by 
operational considerations or because of similar spectra: 

𝑎(𝜆) =& 𝑎#(𝜆)
%

#
=	𝑎&(𝜆) + 𝑎'()*(𝜆) + 𝑎%+,(𝜆) + 𝑎-./0(𝜆) 

𝑏$(𝜆) =& 𝑏$#(𝜆)
%

#
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Beer’s Law states that the IOPs are proportional to the concentration of the material doing the 
absorption or backscattering. Thus, each component IOP can be separated into a scalar (i.e., 
concentration, 𝐶#) and a vector (e.g., concentration-specific spectrum, 𝑎#∗(𝜆)	𝑜𝑟	𝑏$#

∗(𝜆)): 
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The selection of the concentration-specific IOP spectra will depend upon the specific 
component and the operational consideration for how concentration or magnitude is 
measured. For example, the chlorophyll concentration is often used to define the 
concentration-specific phytoplankton absorption spectrum: 

𝑎'()*(𝜆)(𝑚34) = 𝐶'()* × 𝑎'()*∗ (𝜆) = [𝐶ℎ𝑙](
𝑚𝑔
𝑚5 ) × 𝑎'()*

∗ (𝜆)(
𝑚6

𝑚𝑔) 

where the chlorophyll-specific phytoplankton absorption, 𝑎'()*∗ (𝜆), is estimated from 
measurements (and therefore is one of the sources of “semi” in semi-analytic inversion). 
Alternatively, the absorption at a reference wavelength, 𝜆!78, is used to define the CDOM 
concentration-specific absorption spectrum: 

𝑎-./0(𝜆)(𝑚34) = 𝐶-./0 × 𝑎-./0∗ (𝜆) = 𝑎-./0:𝜆!78;(𝑚34) × exp	 ?−𝑆-./0 × :𝜆 − 𝜆!78;B 

and the spectral dependence is approximated by the analytic exponential function 
parameterized by the single coefficient for the exponential slope, 𝑆-./0. Comparable 
expressions are used for non-algal absorption, or a single component that is the sum of CDOM 
and NAP (i.e., referred to as colored detrital matter, CDM, is that a good descriptor?). Particle 
backscattering is generally described by a power function, the spectral dependence of which is 
parameterized by the exponent eta, 𝜂: 

𝑏$'(𝜆)(𝑚34) = 𝐶$' × 𝑏$'∗ (𝜆) = 𝑏$':𝜆!78;(𝑚34) × E
𝜆!78
𝜆 F

9

 

Substituting the expressions for each component IOP into the QSSA for the reflectance leads to 
the canonical form of a non-linear regression where the concentration-specific IOP spectra are 
known eigenvectors (blue terms) and the concentration terms are eigenvalues (red terms) to 
be estimated by least squares minimization. In the simplest form: 

𝑅!"(𝜆) =
𝑓
𝑄 × E

𝑏$&(𝜆) + 𝑪' × 𝑏$𝒑
∗ (𝜆)

𝑎&(𝜆) + 𝑪'()* × 𝑎'()*∗ (𝜆) + 𝐶%+, × 𝑎%+,∗ (𝜆) + 𝐶-./0 × 𝑎-./0∗ (𝜆)F 

In this lab, students will explore how well this model estimates the magnitude and spectral 
dependence of a measured remote sensing reflectance spectrum, and how the robustness of 
the fit varies with the number and parameterization of eigenvectors. The code is explicitly 
provided to allow students to easily see how definitions and parameterizations are 
incorporated into the inversion so that they can easily modify it to replicate other forms of the 
reflectance equation, other published algorithms, other parametrizations of the eigenvectors, 
and new forms that they may develop themselves.  
 
1.2 Activities 

1.2.1 Semi-analytic inversion by eye using Excel (Ha, ha! Wait, what? Really?  Yes, really.) 

Open up the excel file Semi_analytic_inversion_Roesler.xlsx 

As a class we will go through the inversion by guessing the eigenvector values. Yes, it is 
possible to set up a macro to have Excel do this for you but that is not the point of this 
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exercise. The point is to have students develop intuition about reasonable values for the 
eigenvalues in the ocean and about how various combinations of the eigenvectors reconstruct 
reflectance spectra. This approach will be used for three different measured reflectance 
spectra that represent the blue waters of the oligotrophic open ocean, green waters of the 
eutrophic coastal ocean, and the yellowish waters of an estuarine system.  As a group we will 
compare eigenvalues between students and consider the reasonableness of the answers. 
 
1.1.2 Code to perform semi-analytic inversions. 

Data sets 

Four data sets of field-measured irradiance reflectance spectra are provided for the four 
oceanic regimes of Roesler and Perry (1995). These were measured with a LiCOR hyperspectral 
irradiance sensor that was deployed to measure the upwelling irradiance spectrum, 𝐸;(𝜆), just 
beneath the sea surface, and the downwelling irradiance spectrum, 𝐸<(𝜆), just above the sea 
surface by flipping the sensor. A fifth data set is provided that consists of a set of Hydrolight®-
simulated (thank you Curt) radiance reflectance spectra, where 𝐿;(𝜆) is modeled for a nadir-
viewing 10o

 solid angle sensor like the HTSRB just beneath the sea surface, and 𝐸<(𝜆) is 
modeled just beneath the sea surface. The Excel file Rrs_L_HL_simulation.xls provides the 
details of Hydrolight® inputs for each of the 24 spectra (and thus the data for validating the 
inversion results). 

Once the data set is selected, students will need to provide an appropriate f/Q value for the 
data set. For example, if the data set is irradiance reflectance, f/Q is approximately 0.33; if the 
data set is radiance reflectance, f/Q is approximately 0.0825. 
 
Python code 

The code and data to run this lab are available here: 
https://github.com/patrickcgray/inverse_modeling. A direct link to a colab running the 
notebook is here: 
https://colab.research.google.com/github/patrickcgray/inverse_modeling/blob/main/inverse
modelRC.ipynb. All the datasets are available as .csv files which need to be placed in a 
directory called data/ and are pulled into the notebook from there. 

Matlab code 

The main program to run is Rrs_inversion_RP1995.m. There are two programs that provide 
phytoplankton absorption spectra; phyto_avg_abs.m is a generic chlorophyll-specific 
absorption spectrum generated from the mean of a large number of spectrophotometrically-
measured phytoplankton absorption spectra and phyto_species_abs.m provides four species-
specific chlorophyll-specific phytoplankton absorption. The function denan.m simply removes 
rows of data for which a NaNs appear; it is used to clean up spectrally-interpolated reflectance 
arrays for which there are no data. 
 
Eigenvectors 

The eigenvectors provided include the measured phytoplankton absorption spectra, as well as 
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analytic functions for CDOM and NAP absorption and power functions for particle 
backscattering. Parameters defining the exponential slopes, e.g., 𝑆-./0 and 𝑆%+,, and power 
exponent, h, are defined in the code, but students are encouraged to modify these values to 
explore the sensitivity of the retrievals, or to put in values that better represent their data sets 
and parameter ranges. 
 
Models 

The inversion code provides 8 different inversion models for students to explore. This is by no 
means exhaustive, but by providing these 8 examples, it should be clear how to modify the 
code to add other models. For example, the code is provided for the simplest form of the QSSA 
reflectance equation, the ratio of backscattering to absorption. Think about what lines of code 
to add to model the form of the equation that is the ratio of backscattering to the sum of 
absorption plus backscattering; then how to formulate the two-term QSSA. The model 
numbers and expressions are: 

(1) 𝑅!"(𝜆) =
8
=
× )

$!"(?)A𝑪#×$!𝒑
∗ (?)

D"(?)A𝑪#&'(×D#&'(
∗ (?)A-)*+×D)*+

∗ (?)
- 
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8
=
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- 
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8
=
× )

$!"(?)A𝑪#56.77×$!𝒑𝒔𝒎𝒂𝒍𝒍
∗ (?)A𝑪#7.<=>×$!𝒑𝒍𝒂𝒓𝒈𝒆

∗ (?)

D"(?)A𝑪#&'(×D#&'(
∗ (?)A-)*+×D)*+
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8
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8
=
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(8) 𝑅!"(𝜆) =
8
=
× )

$!"(?)A𝑪#56.77×$!𝒑𝒔𝒎𝒂𝒍𝒍
∗ (?)A𝑪#7.<=>×$!𝒑𝒍𝒂𝒓𝒈𝒆
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(9) 𝑎'(𝜆) = 𝑪<#D* × 𝑎<#D*∗ (𝜆) + 𝑪<#EF × 𝑎<#EF∗ (𝜆) + 𝐶%+, × 𝑎%+,∗ (𝜆) 

The specific eigenvectors and parameters that are used to define them are summarized in 
Table 1. 
 
Table 1. Details of the 8 models in the inversion code Rrs_inversion_RP1995.m and the values 
of the parameters defining the eigenvector equations.  
Model bbp bbp_s, bbp_l acdm acdom, anap aphyt adiatom, adino 

eigenvector 
function 

1 power 
function 

2 power 
functions 

1 exponential 2 exponentials 1 spectrum 2 spectra 
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parameters h=0.75 hsmall = 1  
hsmall = 0 

𝑆!"# = -0.0145 𝑆$%& 		=	-0,01 
𝑆!"'# = -0.02 

generic diatom, dino 

1 X 
 

X 
 

X 
 

2 X 
 

X 
  

X 
3 X 

  
X X 

 

4 X 
  

X 
 

X 
5 

 
X X 

 
X 

 

6 
 

X X 
  

X 
7 

 
X 

 
X X 

 

8 
 

X 
 

X 
 

X 
9    X (nap only)  X 

Inversion exercises   

1. Spectral resolution:  Select one of the data sets. Select one model. Run in both full 
spectral resolution and at the MODIS wavelengths. How does spectral resolution impact 
the retrieved coefficients and the fit between modeled and measured R? 

2. Model selection:  Select one of the data sets. Select full spectral resolution. How much do 
the inversion results vary between the 8 models? Does the fit between measured and 
modeled R change as you add more eigenvectors? Which eigenvectors induce the most 
change? Can you ascribe any pattern to the inclusion of one or more eigenvectors? 

3. Eigenvector parameterization:  Select one data set, full spectral resolution, one model. 
Keeping all else constant, modify the eigenvector parameters one by one (exponential 
slopes of CDOM and NAP, power exponent(s) for particle backscattering, temperature 
and salinity for water IOPs). How much variation in retrieved eigenvalues do you find as 
you modify the eigenvector parameterization? How does the fit between measured and 
modeled R change? To which eigenvector parameterization is the model most sensitive? 
Are the results the same for all data sets? Why or why not? 

4. There is a lot of interest in using this approach to solve for multiple pigment-based 
phytoplankton groups. How does the fit between the measured and modeled reflectance 
spectra change as the number of phytoplankton eigenvectors increases? Look at the 
differences between measured and modeled reflectance; which wavebands exhibit the 
most difference? Are they associated with known pigment absorption peaks? How can 
this be further exploited? 

5. How does inverting multiple phytoplankton groups directly from ap spectra compare to 
inverting from Rrs? You can explore this with your own data to see how different the 
output is with  

6. There is a lot of interest in using this approach to solve for spectral slope of bbp. Some 
solve for eta, the power function exponent, while models 5-8 provide two endmember 
power functions meant to represent communities of small particles (backscattering slope 
of -1) compared to large particles (backscattering slope of 0). The retrieved eigenvalues 
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for these two endmembers can be combined to allow for infinite solutions of the particle 
backscattering slope between -1 and 0. Think about the stability of a least-squares 
minimization will respond to these two approaches. 

7. Validation is the most important part of algorithm development.  

a. For each model, what measurements do you need to make, along with the 
radiometric ones to derive the measured R(l), to provide a full validation data set? 
What considerations are you going to have to make to ensure the most accurate 
validation schema? What approximations will you have to make? 

b. As shown in the lecture, there was validation data associated with each of the 
spectra in Roesler and Perry (1995). For your validation exercise, compare the 
retrieved (𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 × 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟(𝜆)) (component IOP spectra) with those 
input to the Hydrolight® run. Divide and conquer to determine the conditions for 
which the inversion results yield strong validation, and for which are they weak. 


