
Calibration and Validation of Ocean Color Remote Sensing

Lecture 1: Basic Radiometric Terminology "Introduction to what this class is about"

Andrew Barnard College of Earth, Ocean, and Atmospheric Sciences Oregon State University

> Bowdoin College, Brunswick, ME June 12, 2023

"Light in the Sea: Man and Nature" Paint by J. Ronald V. Zaneveld, 1998

A human eyes "view" of the surface ocean

A starting point to get you thinking

What do you see in this painting?

Why is the water blue?

Why does the intensity of light change with depth.

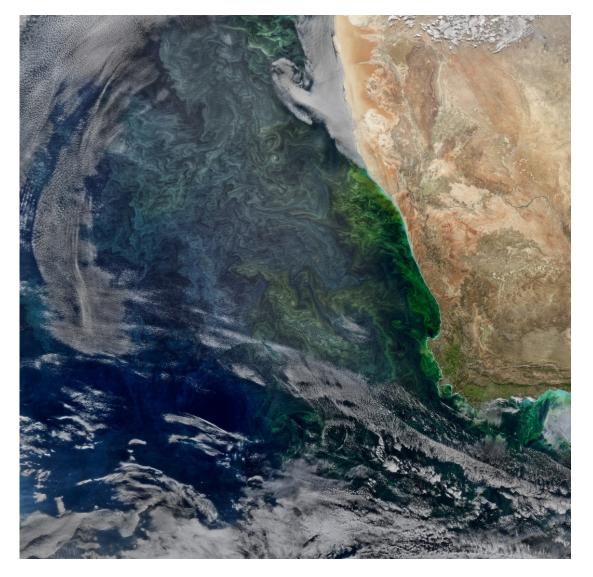
What causes the circular light pattern at the sea surface?

Why do you see light and dark patterns in the water?

What do you NOT see in this painting?

An Ocean Color satellites "view" of the Earth.

What do you see in this image?


Why do the different colors tell you?

Why does the intensity of light (brighter in some areas in the image, darker in others)?

What do you NOT see in this image?

WHAT DOES THE IMAGER ON THE SATELLITE MEASURE?

LIGHT!!!!

Aqua/MODIS Ocean Color Satellite image collected on September 2, 2017 of Africa's Benguela upwelling ecosystem

Modeling Phytoplankton

Coupled with ship-based measurements and computer models, satellite data allow scientists to observe and study different characteristics about the ocean and how they have changed over time, as well as predict how they might change in the future. This false-color image [right], generated using the NASA Ocean Biogeochemical Model, shows the primary production by diatoms, a group that tends to be large and contributes heavily to the global carbon cycle. Primary production reflects the amount of carbon that is converted using sunlight from carbon dioxide into organic carbon through a process called photosynthesis. The organic carbon represents the carbon that will be usable by higher trophic levels. These data help to improve our understanding of the global ocean carbon and biogeochemical cycles.

Credit Cicile Rousseau/USRA/NASA

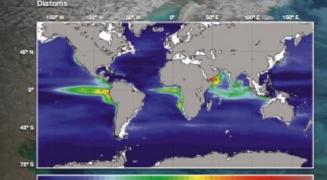
Spectral Coverage

Ocean Color Heritage Sensors compared with PACE

This graph compares the portions of the electromagnetic spectrum that the PACE Ocean Color Instrument will observe compared to previous NASA ocean color sensors. Human eyes are adapted to see a narrow band of this spectrum called visible light. Using satellite sensors to detect multiple spectral band combinations, scientists can study various aspects of ocean color in ways that they cannot from a photograph. Ocean color features, clouds, and aerosols each leave their signatures in the electromagnetic spectrum and scientists can observe and analyze these patterns to detect changes.

Find more information at http://pace.gsfc.nasa.gov.

Dredt NASA


Cover image:

This true color image of the North Atlantic Ocean was created using data from the Visible Infrared Imaging Radiometer Suite (VIRS) onboard the Suomi National Polar-orbiting Partnership satellite collected on April 12, 2015. Notice the swiring phytoplankton eddles and different color coastal waters associated with runoff from the eastern United States.

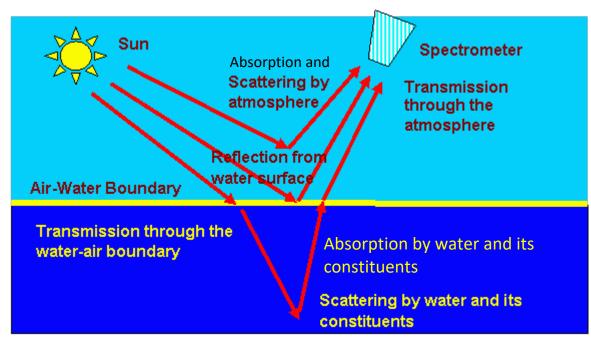
Credit NASA

For more information, visit: www.nasa.gov/earth

*10°PgC y1 (petagrams of carbon per year)

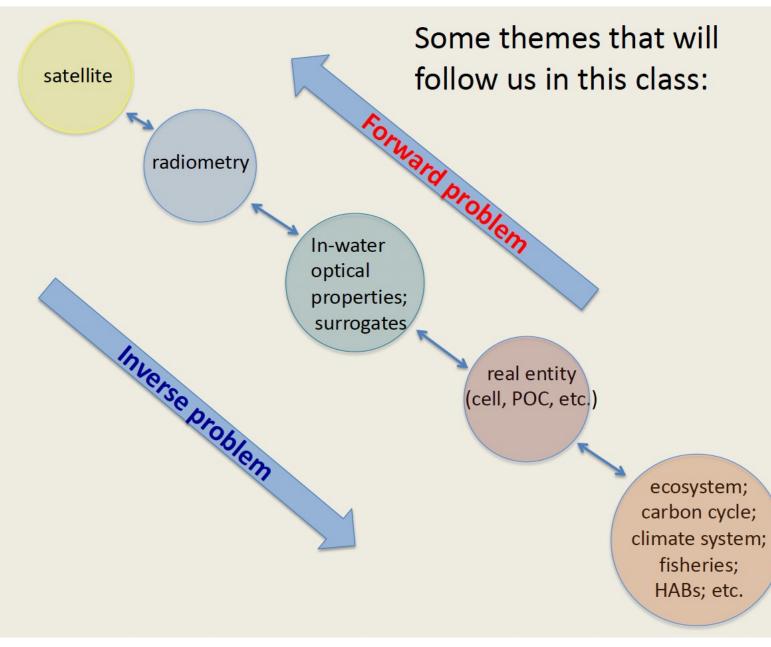
CZCS SerWITS MODIS VIRS (1978-1985) (1997-2010) (2002-)* (2011-)	PACE	PRODUCTS Absorbing serasah
NO MEASUREMENTS	PRODUCTS	Dissolved organics
_===	Total pigment or Chibrophyle-a	Functional groups
	T under	Particle sizes
	and the second	Physiology
	Atmospheric correction / MODIS chlorophysi foursectionce	Pigment Autoreacemce
===	Atmospheric get a connection get a	Atmospheric correction (clear ocean)
VECKE on here does not per provide adverse and a	23 6	Atmospheric correction (coasta) & Aerosol/cloud properties

The high spectral resolution of PACE will enable scientists to distinguish phytoplankton types, which will hopefully help to identify harmful algal blooms from space one day.


What Color is Ocean

Ocean Color

Some sunlight passes through the atmosphere, enters the ocean, gets scattered upwards, passes back up through the atmosphere and is detected by ocean color satellites.


By removing atmospheric effects and surface reflectance, you can isolate the light that interacted with the water column. The color of that light tells you about the constituents of within the water (e.g. plankton concentration, dissolved organics, sediments).

Scientists use a technique similar to spectrophotometry to quantify ocean color remotely. Satellite instruments (such as OCI) measure light reflected back to the satellite at different wavelengths and create emission spectra graphs (inset, top right). Differences in the shape of the spectra can be used to determine what is in the water, such as sediments (orange line), chlorophyll (green line), or clear water (blue line). Brighter objects (e.g., sediments) reflect more light of all wavelengths while darker objects absorb more, thus the values are higher across the spectrum for sediment.

Two possible fates of a photon: absorption and scattering.

Week 1 – we will start at the middle, IOPs, and move a bit down the chain.

Week 2 – we will go up the chain from IOPs (including some radiometric surrogates) and dive more deeply into radiometric measurements, remote sensing.

Week 3 – Dive into Remote Sensing reflectance inversion methods, making optical measurements at sea, data processing, atmospheric corrections, QA/QC, uncertainties.

Week 4 – Synthesis: Working up cruise data results, Monte Carlo modelling methods, final presentations and CELEBRATE and PARTY!

Pictogram by Collin Roesler

Some Basic Radiometric Terminology

Radiometry is the science of measuring electromagnetic radiation.

In Ocean Optics, Optical radiometry most often refers to UV, Visible, and Near Infrared regions of the spectrum

Note: many ocean color satellites measure in the ShortWave Infrared regions as well.

Name	Wavelength ranges
UV-C	100 nm to
	280 nm
UV-B	280 nm to
	315 nm
UV-A	315 nm to
	400 nm
VIS	360 nm to
	800 nm
NIR	800 nm to
	1400 nm
SWIR	1.4 µm to
	3 µm
MWIR	3 µm to
	5 µm

Electromagnetic Radiation

Wavelength c = speed of light $\lambda =$ wavelength n = index of refraction v = frequency

 $c = n\lambda v$

The wavelength is determined by the speed of light and measurements of the frequency by comparison to the atomic standards.

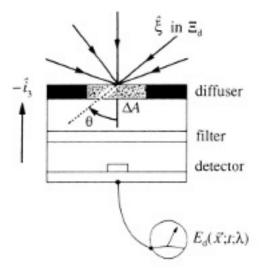
 $\leftarrow \lambda \rightarrow$

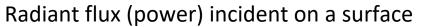
For example: $\lambda = 555$ nm, then $\nu = 540 \ge 10^{12}$ Hz.

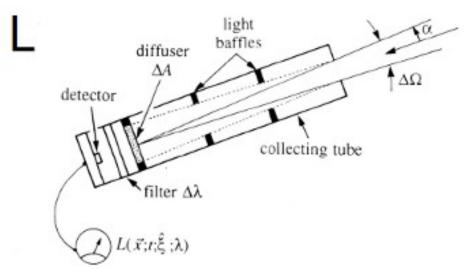
Calcon Tutorial 2013:Spectroradiometry

2013 - Basics: Page 7

<u>https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1001&cont</u> <u>ext=calcon</u>; Howard W. Yoon, NIST; 2013


Radiometric Quantities


Radiometry is the measurement of physical quantities like radiance and irradiance, performed through light-measuring instruments called radiometers.

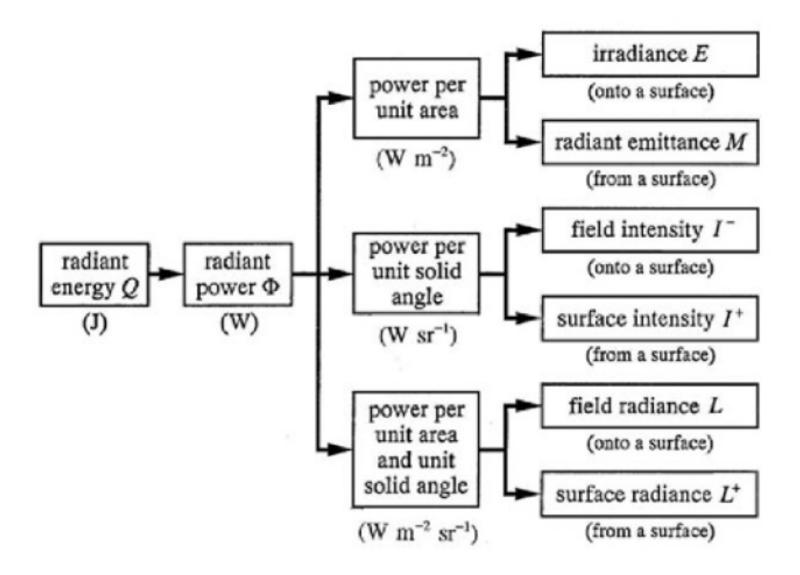

	Quantity	Symbol	Unit
	Radiant Energy	Q	Joule
	Radiant Flux	Φ	Watts (Joule/sec)
	Irradiance	E	Watts/m ²
A four	Radiance	L	Watts/(m ² sr)
A few Apparent	Irradiance Reflectanc	e E _u /E _d	-
Optical +	Remote Sensing Reflec	ct. L _u /E _d	sr-1
Properties	Q-factor	E.,/L.,	sr

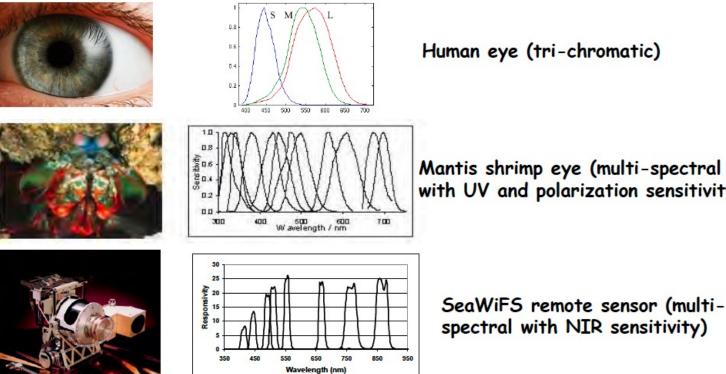
Courtesy of Giuseppe Zibordi, Joint Research Centre of European Commission

All of these quantities are measured over a spectral range, meaning that the units include a nm⁻¹

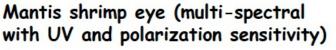
Radiant flux (power) per solid angle (steradian) per unit projected source area

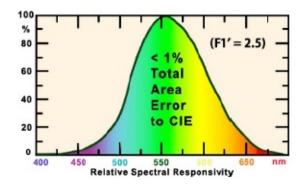
Drawings from C. Mobley, http://www.oceanopticsbook.info




Figure 1.15: The hierarchy of radiometric concepts.

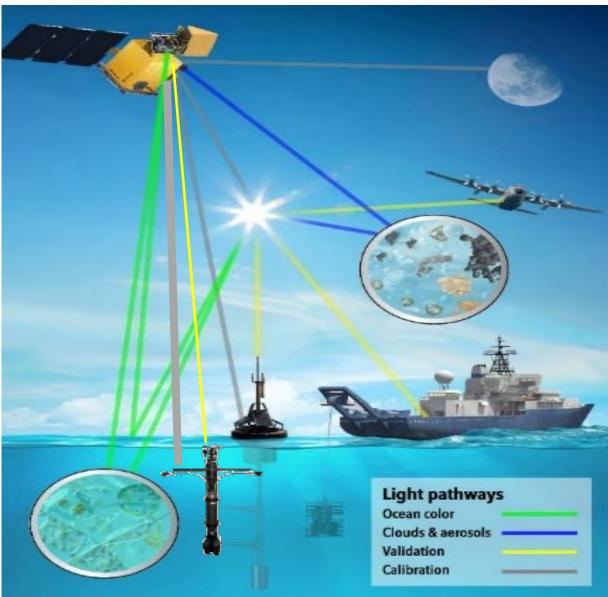
Mobley, C. D. (Editor), 2022. The Oceanic Optics Book, International Ocean Colour Coordinating Group (IOCCG), Dartmouth, NS, Canada, 924pp. DOI: 10.25607/OBP-1710

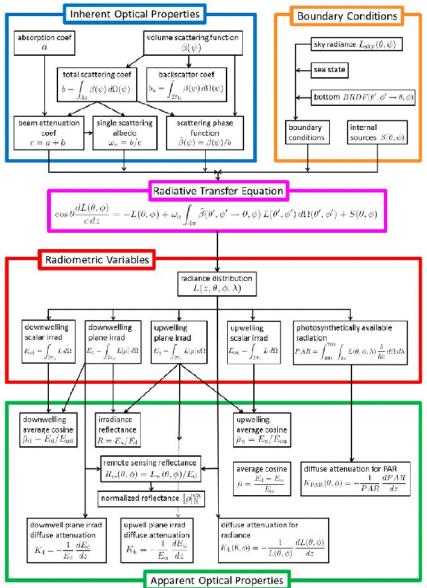

Optical Sensing Systems


Of all the techniques used in remote sensing, the observation of the Earth from optical sensors is perhaps the most easily understood in concept, because it is the most similar to our own personal remote sensing device - the human eye. Ian Robinson (2004)

Human eye (tri-chromatic)

Photometry is special subset of radiometry weighted for the human eye




Example of a typical photometer

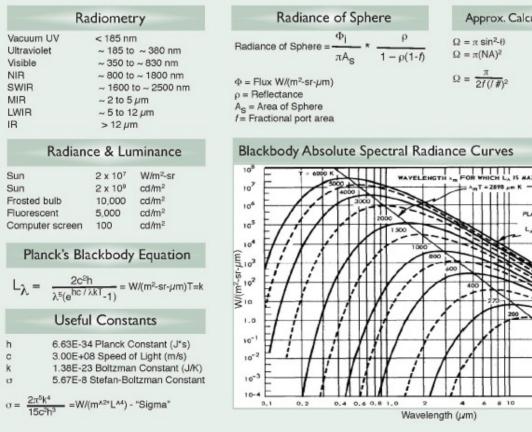
Courtesy of Giuseppe Zibordi, Joint Research Centre of European Commission

Light pathways to Satellites

and Radiative Transfer

https://ioccg.org/wp-content/uploads/2022/01/mobleyoceanicopticsbook.pdf.

Credit: NASA PACE Program.


Radiometric Terms and Units

1.667E-02

2.778E-04

57.2958

5.730E-02

1 Minute (')

1 Second (")

1 Radian (rad)

1 mRadian (mrad)

Radiar	ice of Sphere	Approx. Ca	Iculation of Solid Angle	Conversion Factors		
Radiance of Sphe	$re = \frac{\Phi_i}{\pi A_s} * \frac{\rho}{1 - \rho(1)}$	$\Omega = \pi \sin^2 \theta$ $\Omega = \pi (NA)^2$	(sr) FOV (θ= half angle) (sr) NA of Fiber	ILLUMINATION Multiply # > To obtain #	Footcandles	Lux
$\Phi = Flux W/(m^2-sr)$ $\rho = Reflectance$	-μm)	$\Omega = \frac{\pi}{2f(/\#)^2}$	(sr) F-Number	Footcandles Lux	1 10.76	0.0929 1
A _S = Area of Sphe f = Fractional port				1 footlambert	= 1 footcandle at s	sphere exit port
	bsolute Spectral	Radiance Curves		LUMINANCE Multiply # > To obtain#	Footlamberts	cd/m ²
10 ⁸	5000 K		MAXIMUM GIVEN BY	Footlamberts cd/m ²	1 3.426	0.2919 1
104			PLANCK EQUATION $L_{\lambda} = \frac{2e^{2}h}{\sqrt{(e^{he/AkT}-1)}}$	Sky II	umination C	onditions
10t Hit	1 11-		(e ^{m/xki-1})	Co	ondition	Approx. Lux
		800		Clear, Pe	ak Irradiance	1000W/m2
. F! / !!					Peak Lux	100,000
10 11	11111	400			in Shade	10,000
10 11	VIIII	A 1 1 273			ast, Light	1,000
1.0 F/ /		200.			ast, Heavy	100
E/ /		11/11			ast, Sunset	10
10-1		YAM			hr after Sunset	1
10-2	11 11 11/	1 / 1			nr after Sunset	0.1000
				and the second s	Full Moon	0.0100
						0.0010
10-3				Clear	No Moon	0.0010

1.667E-02

3437.75

3.43775

......

A handy summary of radiometric Terms and Units.

This is taken from www.labsphere.com

If you go on there website, you can request this as a laminated version!

Useful Conversion Calculations

Conversion Calculation of Spectral Radia (W/m²-sr-µm) to Photons/Second

W/m2-sr-µm * (wavelength/(h*c)) = (photons/s)/m2-sr-µm

Conversion of Photons to Rayleighs

1 Rayleigh = 7.96E-08 photons/s*m2*sr

n2

2.909E-04

4.848E-06

1

1.00E-03

60

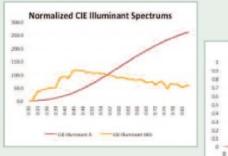
1

2.06E+05

206.265

www.labsphere.com

0.29089


4.85E-03

1000

1

Radiometric Terms and Units

	Radiometric	Spectroradiometric	Photopic		
Flux	Power	Power/wavelength interval	Luminous Flux		
	Watts	Watts/nm	Lumens		
	Irradiance	Spectral Irradiance	Illuminance		
Flux/area					
	Watts/m ²	Watts/m² nm	Lumens/m ² = Lux		
Flux/solid angle	(Radiant) Intensity	Spectral Intensity	(Luminous) Intensity		
	Watts/sr	Watts/sr nm	Lumens/sr = candela		
	Radiance	Spectral Radiance	Luminance		
Flux/area solid angle			Candela/m ² = nit		
	Watts/m² sr	Watts/m² sr nm	Lumens/m ² sr = nit		

COURTESY OF

Labsphere, Inc. 231 Shaker Street North Sutton, NH 03260 Tel:603.927.4266 * Fax: 603-927.4694

www.labsphere.com

Normalized Human Eye Responses

191

Number of → multiplied by table factor equals number of ↓	₩/m²-sr-µm	W/m2-sr-nm	тw/m²-sr.µm	тм/т ² -sr-пт	µW/m²-sr-µm	µW/m²-эг-ол	W/cm²-sr-µm	W/cm²-sr-nm	тW/ст²-sr-µт	mW/cm ² -sr·nm	µW/ст²sr-µт	µW/cm²-sr-nm
W/m²sr·µm	1	103	10'3	1	10.4	10 ⁻⁸	10 ⁴	10'	10	104	10-2	10
W/m²sr•nm	10-3	1	10-6	10-3	10-9	10 ⁻⁶	10	104	10-2	10	10-5	10
mW/m²·sr·µm	103	10 ⁶	1	10 ³	10 ³	1	10'	10 ³⁰	10 ⁴	10'	10	104
mW/m ² ·sr·nm	1	10 ³	10 ⁻³	1	10-6	10-3	10 ⁴	107	10	10 ⁴	10-2	10
µW/m²·sr·µm	10 ⁶	10 ⁹	10 ³	10 ⁶	1	10 ³	10 ¹⁰	10 ¹⁸	10'	10 ¹⁰	104	10'
µW/m²sr•nm	103	10 ⁶	1	103	103	1	10'	10 ¹⁰	104	10'	10	104
W/cm²·sr·µm	10-4	0.1	10 ⁻⁷	10-4	10 ⁻³⁰	10-7	1	10 ³	103	1	10 ⁻⁶	104
W/cm ² ·sr·nm	10''	104	10.30	10''	10 ⁻¹³	10 ⁻³⁰	10'5	1	104	103	10 ^{.9}	104
mW/cm²-sr•µm	0.1	10 ²	10-4	0.1	10'	104	103	10 ⁶	1	10 ³	10-5	1
mW/cm²-sr•nm	10 ⁻⁴	0.1	10''	10 ⁻⁴	10 ⁻³⁰	107	1	10 ³	10 ³	1	10 ^{.6}	103
µW/cm²∙sr∙µm	102	10 ⁵	0.1	10 ²	104	0.1	10 ⁶	10 ⁹	10 ³	10 ⁶	1	103
µW/cm²·sr·nm	0.1	10 ²	10-4	0.1	10'	10 ⁴	10 ³	10 ⁶	1	10 ³	10-5	1

With all what I just went over on terminology and standard units.....

Well sometimes a conversion chart is really handy, as you may sometimes find a variety of units in the literature, manufacturers of radiometers, etc...

PB-13065-000

Enjoy those photons!!