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• High-level overview of the composition of matter in the ocean
• The variety of particle types that may contribute to bulk IOP 

measurements
• Combining the advantages of optical methods with other particle 

characterization techniques



Discuss:  What are the important constituents of 
seawater?  (inclusive of all scientific perspectives)



to heat and mass fluxes (Beszczynska‐Möller et al., 2011; Dickson et al., 2008). Both inflows are substantially
modified on the shelves (Pacific: Bering/Chukchi; Atlantic: Barents/Siberia) through interactions with shelf
sediments, river runoff, sea ice formation, and melting processes before flowing into the basin interior
(Bauch et al., 2016; Bluhm et al., 2015; Cooper et al., 1997; Jones & Anderson, 1986; Karcher &
Oberhuber, 2002; Moore & Smith, 1986; Rudels et al., 2004; Yamamoto‐Kawai et al., 2005). The modified
Pacific water brings nutrient‐rich waters into the western Arctic Ocean and leads to the formation of the
upper halocline (Jones & Anderson, 1986). The upper halocline (UHL), or Pacific halocline, is mainly
confined to the Canadian Basin (Carmack et al., 1997; Jones et al., 1998; Shimada et al., 2005) and is
composed of near‐freezing, relatively salty (S ~ 33.1) Pacific Winter Water and warmer, relatively fresh
(31 < S < 33) Pacific Summer Water (Jones & Anderson, 1986; Steele et al., 2004). The lower halocline
(LHL), or Atlantic halocline, is Atlantic water derived, characterized by higher salinities (33.9 < S < 34.7)
and low nutrient concentrations (<14 μM silicate) in the western Arctic Ocean (Jones & Anderson, 1986;
Salmon & Mcroy, 1994). In our cruise, pronounced silicate concentrations within the halocline (>15 μM)
only appear in the Canada Basin and part of the Makarov Basin and are absent from the Amundsen Basin
(Cutter et al., 2019). Overlying the well‐defined halocline, the abundant presence of freshwater builds up
an extremely cold (θ near freezing), fresh (S < 32), and stratified Polar Mixed Layer (PML) in the upper
30–70 m in the western Arctic Ocean as a result of seasonal sea ice melting and river runoff (Jones &
Anderson, 1986; Lansard et al., 2012; Macdonald et al., 1989), whereas the PML in the Amundsen Basin is
relatively saltier (S < 33), owing to more influences from surface Atlantic water (Rudels et al., 1996;
Rudels et al., 2004). The warmer (θ > 0°C) so‐called Atlantic Layer is below the unique halocline structure,
dominating intermediate depths (down to ~800 m) and following a cyclonic circulation that is topographi-
cally steered around the Arctic in both the Eurasian and Canadian basins (Rudels et al., 1994). Below the
Atlantic Layer are the deep and bottom waters. Communication between the deep Eurasian and
Canadian Basins is achieved mostly via overflow through the gaps in the Lomonosov Ridge and partly via

Figure 1. Map and hydrography of the GN01 U.S. GEOTRACES cruise in the western Arctic (Cutter et al., 2019). (a) Station map showing GEOTRACES stations
in which in situ pumps were deployed (red circles; n ¼ 20) plotted on ocean bathymetry (color bar) with 1,000 m contour indicated as gray dotted line. Four
stations (30, 32, 38, and 43) locate within the fast‐flowing Transpolar Drift. Sea ice algae were collected at Stations 39, 42, and 43, marked with white stars
and station numbers. Marginal seas, major basins, and key topographic features are labeled in black, dark red, and dark blue, respectively. Bering Shelf: Stations 2
and 3; Bering Slope: Station 1; Chukchi Shelf: Stations 6, 61, and 66; Chukchi Slope: Stations 10 and 60; Makarov Basin (MB): Stations 26, 30, 38, and 43;
Amundsen Basin (AB): Station 32; Canada Basin (CB): Stations 46, 48, 52, 56, and 57; Chukchi Abyssal Plain (CAP): Stations 14 and 19; HS: Hanna Shoal; HC:
Herald Canyon; BC: Barrow Canyon; MAP: Mendeleev Abyssal Plain. (b) The section plot of potential temperature; (c) the section plot of salinity. In (b) and
(c), top panels are both the upper 600 m, and bottom panels are the whole water column. The North Pole (Station 32) is marked with the red dashed line. Different
water masses are labeled. PML: Polar Mixed Layer; UHL: Upper Halocline; LHL: Lower Halocline; AL: Atlantic Layer; CBDW: Canadian Basin Deep Water;
EBDW: Eurasian Basin Deep Water.
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this deep Fe(OH)3 plume at the North Pole is also sourced from the strong BNLs due to the deep
topography‐steered circulation.

Unlike all other major particle phases, MnO2 is the only particle phase that has lower concentrations on the
shelf than in the basin (Figures 2f and 3f). Interestingly, notably high concentrations of MnO2 appear in the
western Arctic halocline, especially for SSF, and can extend far into the basin interior (Figure 2f). High con-
centrations of MnO2 from the bottom nepheloid layers at various depths over the slope are also observed.

3.2. Distribution and Basin Variability of the Relative Particle Composition

Compositional fractions of particles in the SSF and LSF are calculated by normalizing each particle phase by
SPM concentrations. Nepheloid layers mostly consist of lithogenic material in the basin (Figure 5c), but have
both high opal and lithogenic fractions in the shelf and slope (Figures 5b and 5c). The dominance of minerals
in the composition of small particles near the seafloor over the Chukchi Sea shelf is also observed with opti-
cal backscattering (Reynolds et al., 2016). Relative concentrations of SSF Fe(OH)3 (fFe(OH)3) are usually
enhanced in nepheloid layers (Figure 5e). Surface samples in shelf/slope regions are mostly dominated by
POM with the median mass fraction (fPOM) of 72.0% (Figure 5a).

In the basin, POM dominates the SSF particle composition in the upper 1,000 m of the water column and
generally decreases with depth (Figures 5a and S3). The SSF opal is the next most important phase in the
upper water column, accounting for >35% of SSF SPM at several stations (Figures 5b and S3). Below
1,000 m, SSF particles are generally dominated by lithogenic materials, with a mean fraction of lithogenic

Figure 5. Section plots of relative particle composition (weight fraction of SPM that is the particle phase) for the major phases in the SSF in the whole water
column (g/g). (a) The fraction of particulate organic matter (fPOM); (b) the fraction of opal (fOpal); (c) the fraction of lithogenic particles (fLitho); (d) the
fraction of calcium carbonate (fCaCO3); (e) the fraction of Fe oxyhydroxides (fFe(OH)3); (f) the fraction of Mn oxides (fMnO2). White contour lines show locations
of BNLs, as defined in Figure 2. Panel arrangements, insets, and notations are as in Figure 2.
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Figures:  Xiang and Lam 2020. 10.1029/2020JC016144 

Particle composition during Arctic 
GEOTRACES cruise, 2015. 
• August-October 
• 1-51 µm particles collected with in 

situ pumps
• Composition estimated from major 

and trace element concentrations

Arctic Ocean
• Strong halocline ~100-300 m
• Red dashed line @~4000 kmàbrief 

crossing from Canadian to Eurasian 
basin

What fraction of particles are “organic”?



Figure: Cho and Azam, 1990. 10.3354/meps063253

Cho & Azam: Biomass of bacteria in the euphotic zone 255 

(not shown) was similar to that for marine samples in 
the Bird-Kalff plot. The data points for chl a below 0.5 
pg 1-' deviate completely however from the Bird-Kalff 
plot. The slope for data points between 0.03 and 0.5 pg 
chl a 1-' is not significantly different from zero. For chl 
a,  98 O/O of the data points in the range 0.03 to 1.0 pg 1-' 
fall within a relatively narrow range of bacterial abun- 
dance values (0.3 to 1.5 X 106 ml-l). Thus, a 33-fold 
decrease in the chl a level was accompanied by only a 
5-fold variation in bacterial abundance. 

Relationship between bacterial carbon and 
phytoplankton carbon 

As would be expected from the relationship between 
chl a and bacterial abundance shown in Fig. 1, the 
derived parameter BOC/Cp increases dramatically in 
samples containing <0.2 yg chl a 1-' (Fig. 2). In this 

Chl o (pg I - ' )  

Fig. 2. Plot of bacterial carbon/phytoplankton carbon (BOC/ 
Cp) vs chlorophyll a for euphotic zone samples from: central 
North Pacific gyre (o), Southern California Bight (0: Cp was 
calculated as  POC x 0.158 + POC2 x 0.0007, o: Cp was 
calculated as chl a x 50; see text for details), and along a 
transact from San Pedro to San Diego ( A ;  Cp calculated as 

chl a X 50) 

range of chl a all but 3 values of BOC/Cp were >l, 
82 % were between 1 and 4, and in 2 cases BOC/Cp 
exceeded 8. The results in Fig. 2 also show that BOC 
exceeded Cp in 95 % of cases in waters with <0.2 pg 1-' 
chl a. The Cp values plotted in Fig. 2 were calculated in 
the majority of samples on the basis of chl a but in 17 
samples Cp was calculated on the basis of the relation- 
ship between Cp and POC (Eppley et al. 1977). It 
should be noted that both techniques yielded similar 
results. Using POC-based Cp, BOC in 11 out of 12 
samples containing <0.2 yg chl a 1-' exceeded Cp as 
was the case in samples where Cp was calculated as 
chl a X 50. It should also be noted that high BOC/Cp in 

Fig. 2 was not restricted to oligotrophic samples; about 
one-third of >0.5 yg chl a lp' samples also had BOC/Cp - 1 (but not much higher). 

Relationship between bacterial carbon and POC 

A plot of l/BOC versus 1/POC of all data for the 
basin and the gyre (Fig. 3a) shows a highly significant 
relationship: 1/BOC = 0.0205 + 2.0946/POC (r2 = 0.43; 
p < 0.01). The relationship between BOC and POC 
(Fig. 3b) is best described by a curvilinear, saturation- 
type plot. A plot of BOC/POC versus POC (Fig. 3c) 
showed that the data could be divided into 2 sets: In the 
POC range <59 pg C I-', most BOC/POC values clus- 
tered between 0.27 and 0.62 (i.e. when POC was <59 
yg 1-', 27 to 62 % of it was due to BOC, with an average 
of 40 + 16). At POC values >59 yg C 1-', however, 
there was a regular decline of BOC/POC with increas- 
ing POC, and BOC/POC values decreased to 0.14 at 
POC concentration of 190 pg 1-l. If we consider the 
entire range of POC values in Fig. 3c, then BOC/POC 
does not covary with POC due to the clustering of data 
points in the low POC range. However, in the entire 
data set in Fig. 3c covering a broad range of POC value 
BOC was never less than 14 % of POC. Fig. 3d shows 
that the sum of BOC and Cp was roughly 50 % of POC 
at all POC values from 20 to 200 pg 1-l. 

POC (pg I - ' )  POC ( p g  1 -11  

Fig. 3. (a) Reciprocal plot of bacter~al carbon (BOC) versus 
POC for all the data from the euphotic zones of all study areas 
(see text for locations). Data of BOC and POC were trans- 
formed to obtain linear regression: 1/BOC = 0.0205 + 2.0946/ 
POC, r2 = 0.43, p < 0.05. (b) Non-linear relationship between 
BOC and POC uslng the same data as in (a).  (c) Plot of BOC/ 
POC vs POC for the same data as in (a).  (d) Relationships of 

POC with BOC, (BOC+Cp), and Cp 

sum of phytoplankton and 

bacterial organic carbon

Phyto C

How much of particulate organic matter is “alive”?

Hatton et al., Sci. Adv. 7, eabh3732 (2021)     10 November 2021
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biomass within our uncertainty bounds (slope 95% CI = ±0.043; 
Fig. 2C, i, and figs. S11 and S12) (44). Slope estimates are also robust 
to different fitting methods (table S7) and binning schemes (fig. S11). 
Last, our data allow us to approximate size spectra over most 1° lat-lon 
regions of the ocean, and although we are less confident in these 
~33,000 slope estimates, given the patchiness in the data and lack of 
some important major groups, our data suggest that size spectra 
slopes may be similar across global environmental gradients (fig. S13).

 Our analysis also shows that the whole-ocean pattern is not 
immune to human impacts. Despite marine mammal and wild fish 
catches amounting to <3% of annual human food consumption (44), 
the previously reported cumulative impacts of industrial fishing and 
whaling (45–48) are notable when viewed within the context of the 
global size spectrum. Fish >10 g in size and marine mammals are likely 
to have been reduced in biomass by about 2 Gt (~60% reduction; 
Fig. 3A), and the largest size classes appear to have experienced a 
near 90% reduction in biomass since 1800 (Fig. 3B). We also esti-
mate potential climatic impacts that could occur over the next 
century. To do so, we use published impacts on major groups from 
high emission–projected changes in climate [representative con-
centration pathway (RCP) of 8.5; (49–51)] and assume that current 
fishing effort remains constant (Fig. 3B). These estimates suggest 
that fishing and whaling could have already had a considerably 
greater impact among large size classes than will climate change 
over the coming decades. Although there are considerable uncertain-
ties in these projections, it is clear that the direct impacts of fishing 
and whaling have markedly altered the ocean biomass spectrum. 
We find that the upper one-third of the biomass spectrum has 
been severely truncated and the whole-spectrum slope significantly 
altered (Fig. 3C).

DISCUSSION
Our estimated reconstructions of the pristine ocean biomass suggest 
a robust law-like property of marine systems that appears to hold 
across nearly all marine life. These estimates imply that biomass is 
nearly invariant across logarithmic size classes but diverges at the 
extremes with a relatively higher abundance of bacteria and lower 
abundance of whales. These divergences mark a departure from 
what might be considered a strong interpretation of the Sheldon 
hypothesis. Moreover, the cumulative impacts of historical fishing 
and whaling appear to have resulted in major alterations to the 
present-day size spectrum. We discuss the theoretical and applied 
implications of these findings.

Implications for theory
Much of the current size spectrum theory has focused on particular 
groups such as plankton or fish, typically using body mass allometries 
for those groups to estimate key variables of the theory. Although 
several size spectrum theories make predictions for the slope based 
only on a small number of variables, such as metabolic scaling and 
predator-prey body mass relations (16, 18, 19, 21, 25), these predic-
tions depend on the scaling exponents of the presumed underlying 
body mass allometries (16–18, 21, 27–29) or require that particular 
combinations of exponents sum to one for dimensional reasons 
(16, 17, 25). Since the size spectrum apparently holds over nearly all 
eukaryotes, the question may be raised as to whether the body mass 
allometries, which have been used to explain the size spectrum, 
show the same consistency over this vast size range. In contrast with 
what is widely assumed, predator-prey mass ratios are extremely 
variable, with up to six orders of magnitude residual variation in 
any given size class (fig. S14) (52–54), and metabolism does not scale 
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Fig. 2. The pristine ocean biomass spectrum. Total estimated historic ocean biomass in each order of magnitude size class is approximately 1 Gt (gigatonnes or 
petagrams = 1015 g), with exceptions at either extreme. Biomass is shown in the upper 200 m of the ocean (colored) and extending to the seafloor (hatched colors represent 
the group that dominates below the epipelagic; bacteria dominate <10−11 g, and mesopelagic fish dominate size classes 10−3 to 103 g). (A) Global ocean biomass is shown 
on a logarithmic scale with logarithmic 95% CIs on epipelagic biomass. Bin colors show the relative fraction of each group (no relation to y axis). (B) Biomass estimates in 
(A) are shown on a linear scale to highlight differences of bacteria and whales from the overall trend. (C) Frequency histograms of biomass spectrum slopes for (i) resampled 
data incorporating uncertainty in both biomass [shown in (A)] and the size distribution of each group (n = 10,000 simulations) and (ii) prior published slope values for 
n = 325 measured biomass spectra (from 47 separate studies; note the difference in x axis from C, i).
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• Sheldon et al., 1972 was not too far off!
• Rest of Hatton paper projects future human impacts on the 

biomass PSD... an interesting read.



How much of particulate backscattering is due to phytoplankton?
Is this fraction constant everywhere?

Over the range of biomass samples in this dataset, Cphyto is linearly
related to the particulate backscattering coefficient (bbp) (R2¼0.69,
Fig. 3 solid line) where Cphyto¼12,128" bbpþ0.59 (Fig. 3). The relation-
ship between bbp and Cphyto differs strongly from that of Martinez‐
Vicente et al. (2013) (dashed line in Fig. 3), which was derived by
converting flow cytometry-based phytoplankton cell volumes to bio-
mass. Volume based phytoplankton biomass conversions rely upon the
assumed Cphyto:volume relationship(s) (Verity et al., 1992; Montagnes
et al., 1994; Menden-Deuer and Lessard, 2000). The range in published
values for this ratio can yield an order of magnitude variability in
resultant Cphyto estimates (Caron et al., 1995; Dall'Olmo et al., 2011).
Despite the quantitative difference between our results and those of
Martinez‐Vicente et al. (2013), a qualitative consistency between these
two studies is that bbp and Cphyto are significantly correlated. The results
of this field study yielded a slope for the bbp to Cphyto relationship (i.e.,
12,128 mg L$1 m$1) that is nearly identical to that in Behrenfeld et al.
(2005) of 13,000 mg L$1 m$1. This latter study was based entirely on
analyses of satellite data for bbp at 443 nm. While the wavelength
analyzed differs between this study and that of Behrenfeld et al. (2005),
this discrepancy would only result in a small percentage difference in
bbp values. An important deviation between the current results and
those of Behrenfeld et al. (2005) is the lower intercept for our bbp and
Cphyto relationship (0.59 vs. 4.55, compare solid and dot-dash lines in
Fig. 3). The differences in intercept and slope between these equations
would imply that Cphyto estimates in the earlier study were

overestimated, if only slightly. A slight bias (high) in satellite bbp
retrievals could be the basis for this difference in intercept. This
possibility emphasizes that, in terms of global biomass assessments, a
critical need still exists for increasing field validation data for both Cphyto
and bbp. Particulate organic carbon (PIC) also influences measurements
of bbp (Balch et al., 2010) and may lead to increased error around the
relationship or overestimations of Cphyto using the existing model.
Coccolithophores are a small background component of the phyto-
plankton community and are inherently included in the bbp vs. Cphyto
regressions (Fig. 1). When they are a small component of the commu-
nity they likely add to the error around the derived relationship.
However, locally significant increases in PIC or blooms of calcifying
organisms should be considered carefully in future evaluations and
applications of the bbp vs. Cphyto relationship.

Our regression of direct Cphyto measurements and Chl has a
positive y-intercept (Fig. 4A and Table 2). This positive intercept is
unlikely due to unaccounted for carbon contamination in the
samples. Rather, as the result of photoacclimation and nutrient
driven changes in intercellular pigmentation, one should expect a
non-zero intercept between Chl and biomass in a study spanning a
wide range of environmental parameters where an order of
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Fig. 4. Regression analyses of analytical measurements of (A) HPLC Chl a and Cphyto
and (B) POC and Cphyto. Both regressions resulted in an R2¼0.52.

Fig. 5. Regression analyses of (A) POC and bbp, (B) Cphyto and cp, and (C) POC and cp.

J.R. Graff et al. / Deep-Sea Research I 102 (2015) 16–25 21

4. Discussion

Here, we report direct measurements of Cphyto for the open
ocean. These data span an order of magnitude, with the highest

biomass samples collected from temperate South Atlantic waters,
followed by equatorial upwelling regions, and the lowest values
found in oligotrophic gyres. These direct measurements of Cphyto
allow evaluation of phytoplankton standing stocks relative to
environmental conditions and independent of changes in inter-
cellular chlorophyll or methodological inconsistencies (e.g. Cphyto:
volume ratio). For example, field values of Cphyto:Chl a ratios
exhibited high variability and ranged from 31 to 358 (Fig. 6A,
black circles). Future measurements at high latitudes and in
coastal upwelling regions may extend this range in Cphyto:Chl a.
For this dataset alone, applying a single conversion factor between
chlorophyll and phytoplankton carbon for this dataset would have
resulted in up to 3-fold under- or overestimates of Cphyto for large
parts of the ocean.
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Fig. 3. Regression analysis of analytically derived phytoplankton carbon (Cphyto)
with the particulate backscattering coefficient (bbp), R2¼0.69. Confidence intervals
of prediction of 68% (blue) and 95% (red) are shown for the regression. Previously
published relationships from Behrenfeld et al. (2005) (-.-. B, y¼13,000xþ4.55) and
Martinez‐Vicente et al. (2013) (- - M, y¼30,100x#22.9) are provided for
comparison.

Table 2
Regression analyses of direct measurements of phytoplankton carbon (Cphyto) with
proxy biomass measurements of HPLC Chl a, POC, and optical parameters. All
regressions were significant with p-values⪡0.05. Cphyto¼phytoplankton carbon,
bbp¼particulate backscattering coefficient, HPLC Chl a¼high-pressure liquid chro-
matography chlorophyll a, POC¼particulate organic carbon, cp¼beam attenuation
coefficient.

Proxy Measurement Regression analysis with Cphyto

Slope Intercept a R2 RMSE a

bbp 470 (m#1) 12,128 0.59 0.69 4.6
HPLC Chl a (lg L#1) 33.7 9.7 0.52 5.1
POC (lg L#1) 0.189 8.7 0.52 5.1
cp (m#1) 74.2 11 0.42 5.8

a Intercept and RMSE in units of mg C L#1.

J.R. Graff et al. / Deep-Sea Research I 102 (2015) 16–2520

Figures: Graff et al. 2015. 10.1016/j.dsr.2015.04.006
Map figures: Supplement to Bellacicco et al., 2020. 
10.3390/rs12213640

• bbp
k  is the intercept of the 

regression of bbp against Chl
 
• Map figures show January 

and July means of monthly 
determinations from 
merged satellite data

January

July



Balance of phytoplankton and detritus contributions to bbp can vary with scale 
(regional/local vs. global, coastal vs. open ocean)

Brewin et al., 2012

Chlorophyll [mg m-3]

Open ocean Coastal

Henderikx Freitas et al., 2016



Observing phytoplankton and detritus under dynamic conditions

Kramer et al., 2020

Example IFCB images collected using the scattering trigger during the Thomas Fire in the Santa Barbara 
Channel. Ash particles vary in composition, shape, and color but are in the same size range as phytoplankton! 
Ash ranged from 10-65% of the total particle volume.



What happens to phytoplankton as they turn 
into detritus?

Yilmaz & Golkim, 2016

Chlorophyll is converted into degradation 
pigments (phaeophytin, pheophorbide, 
chlorophyllide)

In a sediment trap gel: sinking phytoplankton 
cells, fecal pellets, zooplankton



What constitutes the boundary between a particle and the surrounding fluid? 

289U. Passow / Progress in Oceanography 55 (2002) 287–333

1. Introduction

In marine ecosystems, polysaccharides are an important component of the labile fraction of DOC
(Benner, Pakulski, McCarthy, Hedges, & Hatcher, 1992; Ogawa & Ogura, 1992; Kepkay, Niven, & Milli-
gan, 1993; Kepkay, 2000). Because of their high molecular weight they predominantly belong to the col-
loidal fraction of DOC. Many aquatic organisms, including phytoplankton and bacteria generate large
amounts of extracellular polysaccharides (e.g. Hoagland, Rosowski, Gretz, & Roemaer, 1993; Costerton,
1995; Myklestad, 1995). Diatoms are especially well known for excreting copious quantities of polysac-
charides during all phases of their growth (Watt, 1969; Allan, Lewin, & Johnson, 1972; Hellebust, 1974;
Hama & Handa, 1983; Sundh, 1989; Williams, 1990). Such exopolymeric substances, called EPS, range
in structure from being loose slimes to tight capsules surrounding the cells. One type of EPS, the transparent
exopolymer particles (Fig. 1), called TEP, has received increasing attention because the TEP exist as
individual particles rather than as cell coatings or dissolved slimes (Alldredge, Passow, & Logan, 1993).
The role of TEP in aquatic systems differs from other forms of EPS, because as individual particles not
only can they aggregate but also they can be collected by filtration; whereas dissolved substances can only
mix with the surrounding water. Although the role of EPS in marine environments has been outlined in

Fig. 1. (a) Transparent exopolymer particles (TEP) as commonly observed during growth of blooms dominated by Chaetoceros
spp.. TEP are made visible by staining with alcian blue. (b) Sheet like TEP with attached nano-sized particles. Scale bar is 0.1 mm.

TEP aggregate 
stained with Alcian 
Blue, scale = 0.1 
mm.  Passow and 
Alldredge 2002. doi: 
10.1016/S0079-
6611(02)00138-6  

rotary blade within the shipboard HEPA chamber.24 One of the
PES filter wedges was placed in an acid-washed Petri-slide for
bulk EXAFS analysis. Prior to leaving the anaerobic chamber, all
samples were sealed in mylar bags (IMPAK Corp, PAKDRY
7500, 7.5 mm) within an oxygen-free atmosphere. Sample packs
were then frozen at −20°C to slow oxidation rates.
2.2. Scanning Electron Microscopy. Scanning electron

microscopy (SEM) and energy dispersive spectroscopy (EDS)
were used to characterize marine particle size, morphology, and
elemental composition. Images were collected using the JEOL
6500 Scanning Electron Microscope and an Oxford Instrument
X-Max 80 running Aztec software at the University of
Minnesota-Twin Cities Characterization Facility. A small
subsample of the 0.8 μm PES filter wedges for Stations 18−30
were cut in a glovebag (Cole-Parmer Captair Pyramid Glove
Bag) under N2 - positive pressure and sealed in a cleaned plastic
case. In a laminar flow hood, filters were adhered to the SEM
sample holder with carbon tape. The samples were carbon
coated at a thickness of 50 Å. Images of the filter wedge were
taken at random points throughout the view screen to
investigate particle morphology. At each point of interest,
images were taken at low magnification (5000×) and high
magnifications (25 000−35 000×) without moving the toggle or
center point. After exploring the filters through SEM, EDS was
collected on representative particle(s) and background points to
qualitatively evaluate elemental composition of marine particles.
All images were uploaded to the WinSCP file management

software and then converted to JPEG or TIFF file formats. EDS
data was processed in Oxford XMax 80 and Aztec software.

2.3. X-ray Absorption Spectroscopy.Microfocused X-ray
fluorescencemapping (μXRF) and Fe 1smicro X-ray absorption
near edge structure (μXANES) spectroscopy at beamline 10.3.2,
Advanced Light Source, Lawrence Berkeley National Labo-
ratory, were used to investigate Fe speciation of marine particles
from Stations 21−36 using established methods.24−29 Micro-
XANES for Stations 18−20 were discussed in a recent
publication.13 Additionally, μEXAFS spectroscopy was used to
analyze particles at Stations 18−30. All particles were analyzed
on 25 mm 0.2 μm PES filters, and all sample preparation was
conducted within positive pressure (N2 or Ar) glove bags. The
final step in sample preparation included application of a layer of
sulfur-free Mylar film (Premier Lab Supply TF-125−255) to
limit exposure of the sample to ambient oxygen during
analysis.30 The monochromator was calibrated using an Fe foil
XANES scan with the inflection point set to 7110.75 eV.31

Micro-XRF, μXANES, and μEXAFS data were collected using a
Canberra 7-element Ge solid-state fluorescence detector.Micro-
XANES data were collected from 7012 to 7417 eV in quick-
XANESmode with a single sweep of the monochromator lasting
30 s. Micro-EXAFS data were collected from 7000 to 8000 eV in
quick-EXAFS mode. Data collection for each filter included: (1)
a large μXRF “survey”mapwith an area of approximately 1000×
3000 μm2, pixels of 6 × 6 μm2, and incident energy of 10 keV to
measure the distribution of particles and elements on the filter;

Figure 2. Scanning electron microscopy (SEM) images for midplume particles from the Southern East Pacific Rise hydrothermal plume collected on
PES filters. Particles were analyzed at the following stations: (a) blank PES filter; (b) Station 18, ridge axis; (c) Station 20, 80 km from ridge axis; (d)
Station 21, 200 km from ridge axis; (e) Station 23, 800 km from ridge axis; (f) Station 25, 1350 km from ridge; (g) Station 26, 1700 km from ridge axis;
(h) Station 28, 2000 km from ridge axis; and (i) Station 30, 2700 km from ridge axis. Nanoparticle aggregates are observed into the far-field plume.
Particle aggregates were found to mostly comprise smaller spheres that became increasingly altered as they traveled off-axis through the midplume. All
scale bars are 1 μm.
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What are the advantages of optics/remote sensing 
methods?
• Synoptic (“see it all at once”), large scale sampling
• High depth resolution
• Ability to directly or synthetically sample large volumes and rare 

particles/events
• Combine the extent and resolution of optical methods with the less 

ambiguous/more detailed analyses available for discrete samples.



Use changes in things you can sense with optical methods (phytoplankton) 
to estimate the magnitude of processes you can’t sense directly

Zooplankton grazing mortality of small (top) and large 
(bottom) phytoplankton
Figure:  Siegel et al. (2014). 10.1002/2013GB004743

Siegel et al. EXPORTS Science Plan

FIGURE 4 | The EXPORTS wiring diagram illustrating the C flows from the euphotic zone (EZ) into the twilight zone (TZ) in the biological pump. The

flow of C through the biological pump is comprised of (A) sinking particles, (B) the advective mixing of DOC and suspended C stocks, and (C) active transport via

migrating zooplankton.

Stemmann and Boss, 2012; Guidi et al., 2015). Further, physical
oceanographic observations are needed to estimate vertical
carbon transport from submesoscale physical motions and ocean
optical measurements are required to link to satellite remote
sensing products (e.g., water-leaving reflectance spectra, inherent
optical properties, etc.). Last, sampling of biogeochemical
property profiles (O2, NO3, DIC, etc.) over long enough
time scales (many months to years) so that changes in the
integrated biogeochemical stocks can be compared with the
summed pathway fluxes is also required. These long-term stock
measurements can be made from autonomous profiling floats
or from periodic discrete water profiles taken from ships of
opportunities (e.g., Emerson et al., 1991; Riser and Johnson,
2008).

The proposed experimental approach is dependent upon the
assessment of an ECC state. There are several constraints for

defining an ECC state. For example, the length of time of
samplingmust be long enough to allow that all the measurements
required are collected. Further, the sampling duration should
be long enough so the particles collected in traps at depth
are sampled in the surface ocean. This corresponds to a time
scale of roughly 10 days assuming a trap at 500m is sampling
slowly sinking particles (50m d−1). Recent work by Estapa
et al. (2015) provides additional clues for the duration of an
ECC state sampling period. These authors made simultaneous
determinations of POC export (via 234Th disequilibrium) and
net community production (NCP; via O2/Ar gas tracers) on ∼2
km spatial scales over eight 30–40 km transects. Over long
temporal and large spatial scales, determinations of export and
NCP should balance. However, on a point-by-point basis, Estapa
and colleagues found little statistical correspondence between the
two determinations. However, when averaged over each transect,

Frontiers in Marine Science | www.frontiersin.org 6 March 2016 | Volume 3 | Article 22

5.2. Grazing Rate Estimates From Satellite Observations

Knowledge of zooplankton abundances and grazing rates on regional to global scales remains poorly known
compared with pelagic phytoplankton stocks and rates [e.g., Buitenhuis et al., 2006, 2013; Stock and Dunne,
2010;Moriarty et al., 2013]. There are many reasons for this: inherently patchy distributions in space and time,
difficulties in collecting vertically resolved profiles, tedious sample analyses, uncertainties in rate estimation
protocols, vertical migration behaviors, complex and long-lived life cycles, etc. It seems unlikely that a satellite
remote-sensing tool could be developed that would uniquely determine zooplankton abundances and rates.
Hence, we are left to infer their influence by addressing phytoplankton dynamics.

The present modeling retrieves estimates of grazing mortality rates for large and small phytoplankton
abundances, GM and GS, respectively. Annual mean distributions for GM and GS are shown in Figure 9. Mean
values of GM vary by more than 4 orders of magnitude over global scales while mean GS values vary by less
than 2 orders of magnitude. Interestingly, mean values of GM and GS are of comparable magnitude when
values of GM are at their highest (Figure 9). These regions coincide with the most productive oceanic regions
(Figure 2e). Otherwise estimates of GM are much smaller than GS, especially in the oligotrophic ocean where
these differences are greater by 2 orders of magnitude.

The results of the size-fractionated phytoplankton biomass budgeting (Figure 4) suggest that the grazing
estimates on size-fractionated phytoplankton may have a semblance to reality. The dominant balance found
in the surface layer biomass budget (equation (4)) was between the size-fractionated NPP and zooplankton
grazing while the other terms were generally smaller by a factor of more than 5 (Figures 4 and S2). Hence, the
magnitudes of the grazing rate estimates on size-fractionated phytoplankton are set largely by the observed
NPP determinations and the assumptions used to partition microphytoplankton from smaller phytoplankton.
The fidelity of both of these remote determinations was described previously and again stresses the
importance of making improvements for these two satellite data products.

Last, it is important to recognize that the present approach quantifies the grazingmortality ofmicrophytoplankton
and small phytoplankton and not the grazing rates for mesozooplankton andmicrozooplankton. The simple food
web (Figure 1) illustrates that mesozooplankton graze on both microphytoplankton and microzooplankton, while
small zooplankton graze only on smaller phytoplankton. Even with this proviso, the upper-ocean biomass
budgeting approach will likely provide a useful and unique tool for assessing modeled food webs in
interdisciplinary ocean system models [e.g., Buitenhuis et al., 2006; Stock and Dunne, 2010; Sailley et al., 2013].

5.3. Quantifying the Ocean’s Biological Pump From Satellite Observations

The present global estimates of TotEZ quantify the energy flows through phytoplankton into an aggregate and fecal
sinking particle flux using an idealized food-web model. The present approach is unique in that it enables
interannual changes in particle export and its efficiency to be assessed from remote-sensing data. However, export
via sinking particles is one of several pathways where organic carbon is exported from the surface ocean. For
example, the advection of dissolved organic carbon (DOC) from the surface ocean is not included. Recent estimates
of the global DOC flux are ~2 Pg C yr!1 [Hansell et al., 2009]. This global DOC flux combined with the present
estimate of the sinking carbon export flux of ~6 PgC yr!1 results in a total carbon export of ~8 PgC yr!1. A complete
assessment of carbon export from the surface ocean must account for this and other additional pathways.

The model does account, at least partially, for the export of carbon from the surface ocean by migrating
zooplankton [e.g., Steinberg et al., 2000]. The upper layer biomass budgeting (equation (4)) accounts for the

Figure 9. Global distributions of the annual mean grazing mortality for (a) small phytoplankton, GS, and for (b) microphytoplankton, GM. The values are log10-transformed and the same
color scale is used for both plots.
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compared with pelagic phytoplankton stocks and rates [e.g., Buitenhuis et al., 2006, 2013; Stock and Dunne,
2010;Moriarty et al., 2013]. There are many reasons for this: inherently patchy distributions in space and time,
difficulties in collecting vertically resolved profiles, tedious sample analyses, uncertainties in rate estimation
protocols, vertical migration behaviors, complex and long-lived life cycles, etc. It seems unlikely that a satellite
remote-sensing tool could be developed that would uniquely determine zooplankton abundances and rates.
Hence, we are left to infer their influence by addressing phytoplankton dynamics.

The present modeling retrieves estimates of grazing mortality rates for large and small phytoplankton
abundances, GM and GS, respectively. Annual mean distributions for GM and GS are shown in Figure 9. Mean
values of GM vary by more than 4 orders of magnitude over global scales while mean GS values vary by less
than 2 orders of magnitude. Interestingly, mean values of GM and GS are of comparable magnitude when
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(Figure 2e). Otherwise estimates of GM are much smaller than GS, especially in the oligotrophic ocean where
these differences are greater by 2 orders of magnitude.
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magnitudes of the grazing rate estimates on size-fractionated phytoplankton are set largely by the observed
NPP determinations and the assumptions used to partition microphytoplankton from smaller phytoplankton.
The fidelity of both of these remote determinations was described previously and again stresses the
importance of making improvements for these two satellite data products.

Last, it is important to recognize that the present approach quantifies the grazingmortality ofmicrophytoplankton
and small phytoplankton and not the grazing rates for mesozooplankton andmicrozooplankton. The simple food
web (Figure 1) illustrates that mesozooplankton graze on both microphytoplankton and microzooplankton, while
small zooplankton graze only on smaller phytoplankton. Even with this proviso, the upper-ocean biomass
budgeting approach will likely provide a useful and unique tool for assessing modeled food webs in
interdisciplinary ocean system models [e.g., Buitenhuis et al., 2006; Stock and Dunne, 2010; Sailley et al., 2013].

5.3. Quantifying the Ocean’s Biological Pump From Satellite Observations

The present global estimates of TotEZ quantify the energy flows through phytoplankton into an aggregate and fecal
sinking particle flux using an idealized food-web model. The present approach is unique in that it enables
interannual changes in particle export and its efficiency to be assessed from remote-sensing data. However, export
via sinking particles is one of several pathways where organic carbon is exported from the surface ocean. For
example, the advection of dissolved organic carbon (DOC) from the surface ocean is not included. Recent estimates
of the global DOC flux are ~2 Pg C yr!1 [Hansell et al., 2009]. This global DOC flux combined with the present
estimate of the sinking carbon export flux of ~6 PgC yr!1 results in a total carbon export of ~8 PgC yr!1. A complete
assessment of carbon export from the surface ocean must account for this and other additional pathways.

The model does account, at least partially, for the export of carbon from the surface ocean by migrating
zooplankton [e.g., Steinberg et al., 2000]. The upper layer biomass budgeting (equation (4)) accounts for the
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color scale is used for both plots.
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Knowledge of zooplankton abundances and grazing rates on regional to global scales remains poorly known
compared with pelagic phytoplankton stocks and rates [e.g., Buitenhuis et al., 2006, 2013; Stock and Dunne,
2010;Moriarty et al., 2013]. There are many reasons for this: inherently patchy distributions in space and time,
difficulties in collecting vertically resolved profiles, tedious sample analyses, uncertainties in rate estimation
protocols, vertical migration behaviors, complex and long-lived life cycles, etc. It seems unlikely that a satellite
remote-sensing tool could be developed that would uniquely determine zooplankton abundances and rates.
Hence, we are left to infer their influence by addressing phytoplankton dynamics.

The present modeling retrieves estimates of grazing mortality rates for large and small phytoplankton
abundances, GM and GS, respectively. Annual mean distributions for GM and GS are shown in Figure 9. Mean
values of GM vary by more than 4 orders of magnitude over global scales while mean GS values vary by less
than 2 orders of magnitude. Interestingly, mean values of GM and GS are of comparable magnitude when
values of GM are at their highest (Figure 9). These regions coincide with the most productive oceanic regions
(Figure 2e). Otherwise estimates of GM are much smaller than GS, especially in the oligotrophic ocean where
these differences are greater by 2 orders of magnitude.

The results of the size-fractionated phytoplankton biomass budgeting (Figure 4) suggest that the grazing
estimates on size-fractionated phytoplankton may have a semblance to reality. The dominant balance found
in the surface layer biomass budget (equation (4)) was between the size-fractionated NPP and zooplankton
grazing while the other terms were generally smaller by a factor of more than 5 (Figures 4 and S2). Hence, the
magnitudes of the grazing rate estimates on size-fractionated phytoplankton are set largely by the observed
NPP determinations and the assumptions used to partition microphytoplankton from smaller phytoplankton.
The fidelity of both of these remote determinations was described previously and again stresses the
importance of making improvements for these two satellite data products.

Last, it is important to recognize that the present approach quantifies the grazingmortality ofmicrophytoplankton
and small phytoplankton and not the grazing rates for mesozooplankton andmicrozooplankton. The simple food
web (Figure 1) illustrates that mesozooplankton graze on both microphytoplankton and microzooplankton, while
small zooplankton graze only on smaller phytoplankton. Even with this proviso, the upper-ocean biomass
budgeting approach will likely provide a useful and unique tool for assessing modeled food webs in
interdisciplinary ocean system models [e.g., Buitenhuis et al., 2006; Stock and Dunne, 2010; Sailley et al., 2013].

5.3. Quantifying the Ocean’s Biological Pump From Satellite Observations

The present global estimates of TotEZ quantify the energy flows through phytoplankton into an aggregate and fecal
sinking particle flux using an idealized food-web model. The present approach is unique in that it enables
interannual changes in particle export and its efficiency to be assessed from remote-sensing data. However, export
via sinking particles is one of several pathways where organic carbon is exported from the surface ocean. For
example, the advection of dissolved organic carbon (DOC) from the surface ocean is not included. Recent estimates
of the global DOC flux are ~2 Pg C yr!1 [Hansell et al., 2009]. This global DOC flux combined with the present
estimate of the sinking carbon export flux of ~6 PgC yr!1 results in a total carbon export of ~8 PgC yr!1. A complete
assessment of carbon export from the surface ocean must account for this and other additional pathways.

The model does account, at least partially, for the export of carbon from the surface ocean by migrating
zooplankton [e.g., Steinberg et al., 2000]. The upper layer biomass budgeting (equation (4)) accounts for the
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Schematic diagram of food web and biological carbon 
export from EXPORTS Science Plan
Figure:  Siegel et al. (2016). 10.3389/fmars.2016.00022



Remote sensing of larger, rare non-living things

van Sebille et al., 2015 Biermann et al., 2020

Anthropogenic marine debris is widespread...can we develop an optical index to separate plastic from other 
surface ocean constituents?



aggregates; Fl represents a subset of bbl, which
additionally includes fecal and detrital matter
(21). BetweenMay 2013 and February 2018, we
identified 34 pulses of bbl and/or Fl in the
mesopelagic that were associated with surface
phytoplankton blooms and were clearly dis-
tinguishable from prebloom background con-
centrations. Bulk large-particle sinking velocity
was estimated for each large-particle pulse (fig.
S2) from the timing of peak concentration
versus depth (24). Mean sinking velocities
(and 95%confidence intervals) across all pulses
were 74 (58 to 100) m per day for large back-
scattering particles and 98 (79 to 129)mper day
for large fluorescing particles.
We observed close coupling between large-

and small-particle concentrations during these
flux pulses (Fig. 2). Small-particle concentra-
tions increased rapidly during periods of peak
large-particle concentration (Fig. 2; solid black
lines) at all depths below200m, peaking slightly
later (e.g., Fig. 2, left column: peakFs lags behind

peak Fl by ~2 days, regardless of depth). This
coupling provides strong evidence that large-
particle fragmentation drives the observed
accumulation of small particles in the meso-
pelagic, both for large particles in general
(bbl) and phytoplankton aggregates in particu-
lar (Fl).
We quantified specific fragmentation rates

during each sinking pulse by tracking these
changes in the concentrations of large and
small particles as a function of depth and time.
Full computations, assumptions, and uncer-
tainty budgets (24) are shown in figs. S3 to
S11 along with alternative calculations support-
ing key methodological assumptions (figs. S11
to S13).Mean fragmentation rate profiles across
all pulses varied with depth and particle type
from 0.03 to 0.27 per day (Fig. 3). Although
wide uncertainty bounds prevent firm conclu-
sions, the patterns in these rates offer prelim-
inary indications of possible fragmentation
mechanisms. First, live phytoplankton aggre-

gates (Fl) fragmented at higher rates than
large sinking particles in general (bbl) at all
depths in the mesopelagic zone (Fig. 3). Fresh
phytoplankton aggregates therefore appear
either more fragile than other large sinking
particles and/or are subject to higher local shear.
The latter might result from selective feed-
ing on fresh material by zooplankton. Second,
specific fragmentation rates decreased with
depth (Fig. 3). This depth dependency could
result from passive breakup of more fragile
particles closer to the surface. It might also re-
sult from higher zooplankton activity closer to
the surface, where we expect food to be more
abundant and more nutritious. On average,
fragmentation accounted for close to 50% of
the observed loss rates of large particles in gen-
eral and 30 to 60% of the loss of large fluoresc-
ing particles (Fig. 3) at all depths between 250
and 950 m.
We also found regional differences in spe-

cific fragmentation rates. When calculated
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Fig. 2. Fragmentation of large particles
generates small particles at depth. Large-
and small-particle measurements from
example large-particle pulses from the
North Atlantic (left panels) and the
Southern Ocean (right panels) are shown.
Large-particle fluorescence Fl (green
circles) and large-particle backscattering
bbl (red circles) are shown above the
corresponding log10 small-particle
fluorescence Fs (green) and backscattering
bbs (red). Large-particle measurements
are plotted individually with higher values
(darker colors) covering lower values.
Thin black lines along the top edges
of the panels show mixed-layer depth;
thick, diagonal solid lines show linear
least-squares fits of maximum large-particle
concentration with depth; and dashed
lines show the ±15 day windows used
for fragmentation calculations. Similar
visualizations for all 34 plumes in this
study can be found at seanoe.org
(26). Chl, chorophyll.
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inter-calibration with an additional C-Star on the Lagrangian float
as described below.

A series of cross-calibration casts with nearly simultaneous
ship CTD and glider profiles were carried out during the cruises,
with at least two calibration profiles per glider over the entire
field program. The first set of calibration profiles was made during
the deployment cruise, the second during the May cruise, and the
third during the recovery cruise at the end of the experiment (for
the two remaining gliders) for a total of ten cross-calibration
exercises. The typical procedure was to put a Seaglider into a
shallow dive sequence and then hold it at the surface while the
ship was brought alongside (o50 m). When the glider began to
dive, a profile with the ship’s CTD was begun. One additional data
set was collected by chance during the May cruise when a ship’s
CTD profile was taken within 2 km of a diving glider, yielding a
total of 11 independent intercalibrations between Seaglider and
ship optical sensors.

Both glider and ship profiles were smoothed by sequentially
applying a 5-point running median filter and a 7-point mean
filter. The ship’s CTD downcast was interpolated in density space
to match the glider profile. If the r2 value for the linear regression
between the resulting Seaglider and ship optical data was o0.7,
the matchup was rejected as a poor fit. Nine out of the 11 ship
profiles were retained and combined into a single type-II linear
regression to line up glider BB2F bbp and chlorophyll fluorescence
with the ship FLNTU values, e.g., bbp(700) in Fig. 3. Twelve similar
calibration profiles and analyses were performed for the float and
ship; these intercalibrations were used to align values for the
ship’s two C-Stars. Triplet chlorophyll fluorescence was aligned
with BB2F chlorophyll fluorescence for each glider by linear
regression (r2Z0.99 for each regression).

2.3. Spike analysis

Spikes were observed in all optical measurements as rapid,
transient, and often large increases in optical signals (Fig. 4a).
Spike heights were calculated by subtracting a moving ‘‘baseline’’
(7-point running minimum filter followed by 7-point running
maximum filter) from the total profile. The resulting spike signal
contained both occasional large spikes and more uniform, low-
level instrument noise (as seen below 400 m in Fig. 4b). A
maximum noise threshold for each instrument was chosen as
twice the 90th percentile value of all of the filtered spike values
taken prior to 5 May (YD 126) and below 300 m, when large
spikes were rare (black dashed line in Fig. 4b). All spike values
below this threshold were considered indistinguishable from
instrument noise and set to zero.

Baseline and spike signals were each averaged into 2-day,
50 m bins, facilitating inter-platform comparisons by reducing the
impact of sub-mesoscale variability encountered by ships and
gliders. Data from all four gliders were then combined to increase
sample size and spatial coverage. Spike bin averages included
zero values (where no spike was present), hence these bin
averages depend on both spike height and spike frequency. Spike
bins with fewer than 200 data points (zeros included) were
eliminated from further analysis because of high uncertainty
due to the randomness of spike occurrence. Data below 600 m
after 21 May (YD 142) were omitted because gliders encountered
suspended sediments over the Reykjanes Ridge (Fig. 1).

3. Results

3.1. Evolution of the bloom

When the autonomous platforms were deployed on 4 April
(YD 94), chlorophyll fluorescence and bbp measurements in the
upper 200 m were low (Fig. 5a, c); shipboard measured chlor-
ophyll concentrations were o0.5 mg l!1. Chlorophyll fluores-
cence remained low until 19 April (YD 110) and then increased
exponentially between 19–28 April (YD 110–119) at a rate of
0.28 doublings d!1. We refer to this period as the ‘‘early bloom’’,
following the convention of Alkire et al. (submitted for
publication). The early bloom was interrupted by a storm-induced
mixing event that reduced chlorophyll fluorescence between 28
April and 2 May (YD 119–123). After the storm, chlorophyll
fluorescence again increased in the upper 50 m and remained
high from 7 to 15 May (YD 127–136), during which maximum
chlorophyll concentrations of 5 mg l!1 were observed (shipboard
measurements), and the phytoplankton community was domi-
nated by chain-forming diatoms, primarily of the genus Chaetoceros,
but also including Thalassionema and Leptocylindrus (Sieracki and
Rynearson, personal communication). We refer to this period as the
‘‘May bloom’’. At the end of the May bloom, chlorophyll fluorescence
decreased rapidly and remained low through 8 June (YD 160); we
refer to this period as ‘‘post-bloom’’. Shipboard phytoplankton
samples taken early in the post-bloom period were dominated by
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Fig. 3. Cross-calibration of glider and ship particulate backscatter (bbp) at 700 nm
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Fig. 4. Backscattering spikes (bbp, 700 nm) from a ship’s FLNTU profile on 9 May
(YD 130). (a) The total signal (gray line) contains large, high-frequency fluctua-
tions (‘‘spikes’’) above 400 m and smaller fluctuations (instrument noise) below
400 m. The ‘‘baseline’’ signal (black line) is established with a 7-point running
minimum filter followed by a 7-point running maximum filter. (b) The spike signal
(gray) is derived by difference; below a minimum threshold (black line), the spike
signal is indistinguishable from instrument noise.
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Use of high frequency fluctuations in optical signals to quantify large particle stocks and 
observe their fragmentation rates



What are the advantages of optics/remote 
sensing methods?
• Synoptic (“see it all at once”), large scale sampling
• High depth resolution
• Ability to directly or synthetically sample large volumes and rare 

particles/events
• Combine the extent and resolution of optical methods with the less 

ambiguous/more detailed analyses available for discrete samples.
• Examples here are distinct from “proxy building” – to which we will return 

later this afternoon
• They represent what could be thought of as the earliest stage of proxy 

development



Example:  linking DOM fluorescence with high-resolution molecular 
spectroscopy

Graphical abstract and lower left figure are from Stubbins et al., 2014. 10.1021/es502086e
Upper left method figure is from Murphy et al., 2013. 10.1039/c3ay41160e

represent the aggregated molecules that en masse have
previously been classified as humic substances. The presence
of such aggregates could also enhance the dissolution of some
of the component compounds, such as black carbon, which
might otherwise be expected to have a relatively low
solubility.52 Thus, molecular trends for P1 are consistent with
reports that humic Peak A represents an aggregation of highly
diverse, relatively high MW (still below 1000 Da), carbon-rich,
nitrogen-poor, terrigenous molecules.9,12,33,51

3.5. Molecular Signature of P2 (Unknown Humic-
Like). Only 1% percent of formulas correlated with P2 (Table
2). A large fraction of P2 formulas were shared with P3 (39%),
the latter defined as humic-like Peak C (Table 3). As for humic-
like P1 and P3, P2 was enriched in high MW, high aromaticity
and low N molecular formulas (Figure 2; Table 2). Of the
formulas assigned to P2, none contained N, 2% were black
carbon, 21% aromatics, and 59% highly unsaturated (SI Figure
S3B; Table 2). In common with P1, P2 formulas covered a
large range in MWs and modified aromaticity index values
(Figure 3). In contrast to P1, no aliphatic compounds were
associated with P2. Based upon its long wavelength shifted
fluorescence, high MW, low N content, and high aromatic
content, P2 appears indicative of a form of terrigenous humic-
like DOM.
3.6. Molecular Signature of P3 (Primary Maximum

Classical Peak C). The 5% of formulas that correlated with P3
(Table 2) tended to be high MW, high aromaticity and low N
molecular formulas (Figure 2). The average (445 Da) MW of
P3 formulas was less than for P1 formulas, but greater than the
average across all formulas (Table 2). The intensity-weighted
average MW for P3 formulas (424 Da) was the highest among
all families (Table 2). Similarly, P3 formulas were depleted in N
compared to all formulas, but enriched in N compared to P1
and P2 molecular families (Table 2; Figure 1B, SI S3C). The
tighter mass and aromaticity index distribution of P3 molecules
(Figure 3), as well as their tight clustering in van Krevelen
space (Figure 1B, SI S3C), indicate a more homogeneous
mixture of compounds than associated with P1. The area of van
Krevelen space occupied by P3 formulas is consistent with
lignin-like compounds, the structural biopolymer widely used as
a biomarker for vascular land plants.37 Lignin-derived phenols
are highly photolabile,53 as was P3.19 Thus, although depleted
in aromatic (4%) and black carbon (<1%; Table 2), P3
molecular traits were consistent with a family of predominantly
terrigenous molecules of lower conjugation, lower diversity, and

higher N than P1 formulas. Such traits suggest a pool of plant-
derived organics that have undergone less reworking in soils
and natural waters since production, and are less involved in
aggregate formation than P1 formulas.

3.7. Molecular Signature of P4 (Between Peak C and
M). The 333 (8%) molecular formulas tracking P4 (Table 2)
were enriched in high N, lower MW and lower aromaticity
molecules (Figure 2). Aromatics accounted for 25%, black
carbon 2%, highly unsaturated compounds 67%, and aliphatics
5% of P4 formulas (Table 2), and P4 formulas were enriched in
N (78%) compared to all other PARAFAC components (Table
2). P4 formulas had an average MW of 316 Da and an intensity-
weighted average MW of 329 Da (Table 2). P4 formulas were
tightly grouped in van Krevelen space (SI Figure S3D), and
covered a narrow range of MW and aromaticity index values
(Figure 3). In the EEM plot (SI Figure S3D), P4 falls near the
classically defined terrigenous Peak C, extending toward marine
Peak M. The molecular signatures of P4 formulas suggest a
pool of N-enriched, low MW DOM, with modest hetero-
geneity. This description more closely matches that of
classically defined Peak M, than Peak C,12,31,32 suggesting
that P4 is more closely related to Peak M, than Peak C. Peak M
is most often associated with marine and other waters where
autochthonous or microbial DOM is abundant,10 but P4
determined here, has been shown to increase during photo-
degradation of boreal DOM.19

3.8. Molecular Signature of P5 (Between Peak M and
N). The 14% of molecular formulas associated with P5 (Table
2) constituted 28% of mass spectral intensity, indicating a large
number of abundant molecules track P5 (Table 2). The 224
formulas shared with P4 equated to 67% of all P4 formulas
(333) or 39% of P5 formulas (572; Table 3). As a result, P4
and P5 fall close to one another in the canonical centroid plot,
which shows both molecular families to be enriched in N-
containing, low aromaticity, low MW formulas (Figure 2).
Average (369 Da) and intensity-weighted average (378 Da)
MWs of P5 formulas were lower than the overall average (450
Da; 379 Da), but higher than for P4 (316 Da; 329 Da; Table
2). P5 formulas were depleted in aromatics (13%), contained
few condensed aromatics (1%), and were enriched in N (69%)
compared to all other PARAFAC components bar P4 (Table
2). As for P4, the distributions of P5 formulas with mass and
aromatic index (Figure 3), as well as in van Krevelen space (SI
Figure S3E), indicate a pool of chemically related molecules. In
summary, the P5 molecular family indicates a pool of N-

Figure 3. Molecular weight (Panel A) and modified aromaticity index (Panel B) distributions of elemental formulas within each molecular family
associated with PARAFAC components 1− 6.
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Using in situ optical sensors (beam attenuation and turbidity/side-
scattering) to detect tiny iron hydroxide particles from 
hydrothermal vent plumes

particle size distribution (PSD) slopes (smallest n) also had the lowest cp(k) magnitudes (Figures 1a and 1b)
and exhibited a poorer fit to the power-law model at wavelengths above 650 nm (data not shown). Com-
puted n values did not strongly depend on inclusion or exclusion of these red wavelengths from the least-
squares minimization. In these CTD samples, n generally increased slowly with increasing height within the
buoyant plume, albeit with a local excursion to a lower value at 4855 m (Figure 1b). Boss et al. [2001a] found
that for light-absorbing particles with refractive indices (n) of 1.2, the c-inversion model overestimated n by
approximately 0.1 for n 5 4.6. While we do not know the refractive index of particles in the Beebe plume, if
they are minerals originating in precipitating vent fluids it is likely they have n of 1.2, or even higher.

The in situ ratio of scaled LSS output to cp(650) (LSS:cp) exhibited strong variability over narrow depth layers,
approximately 10 m thick, throughout the lower segment of the rising plume that was sampled via CTD
(Figure 1c). These narrow layers were more prevalent on the downcast than on the upcast. The local depth-
minimum in n, derived independently from bottle sample ac9 measurements at 4855 m, coincided with a
minimum in upcast LSS:cp at that depth, but not all minima in the LSS:cp profiles coincided with minima in
n (Figures 1b and 1c).

LISST particle size spectra were obtained from a suite of Nereus-SUPR bottle samples collected within
approximately 50 m of the vent mouth (Figure 2). Values of n were computed for the subset of samples (0.5
to 3.5 and 36.5 m above the vent) that had well-resolved particle number concentrations within the LISST’s
2.5–500 lm size range. Particle counts in size bins larger than 30 lm were only rarely larger than zero. The
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Figure 1. Profiles of optical proxies for concentration and size in the rising plume, measured in separate deployments from CTD and ROV
platforms. (a) In situ cp(650), a proxy for particle mass concentration, measured with the C-Star on the CTD during the upcast (black line)
and downcast (gray line), cp(650) from CTD bottle samples measured on the ac9 (white circles), and cp(650) from SUPR-ROV bottle samples
measured on the LISST (gray triangles). (b) PSD slopes (n) of bottle samples (larger values correspond to smaller particles), inverted from c
measured using the ac9 on CTD bottle samples (white circles) and using the LISST on SUPR bottle samples (gray triangles). Low signal-to-
noise in some LISST samples prevented estimation of n (see text). (c) In situ ratio of scaled LSS to cp(650) on the upcast (black) and down-
cast (gray), computed from C-Star cp(650) and scaled side-scattering data as described in the text. Vertical dashed line marks a ratio of one.
Paired black (upcast) and gray (downcast) lines show upper and lower uncertainty bounds propagated from sensor signal:noise. Where
both lines fall to the left or right of the dashed line, the LSS:cp(650) ratio is significantly different than one. Higher ratios may correspond
to smaller particles but likely also include some compositional effects (see Discussion).
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estimates of optical sensitivity to each phase or within each region.
There are many ways to conduct these analyses, including considera-
tion of size-fractionation (SSF and LSF vs. TOT), allowing models to
categorically compensate for sample region (e.g. surface, subsurface,
ODZ, plume, etc.), and allowing/disallowing interaction effects be-
tween particulate phases (which should not be expected to be fully
independent of one another). Consideration of size-fractionation of
phases and their poorly understood interaction terms can quickly
swamp the models and complicate their interpretation (not shown). We
focus instead on results from multiple linear regressions from two types
of transect-wide models: those that consider TOT phase abundances 1)
without consideration of categorical sample regions and 2) with con-
sideration of categorical sample regions (Table 2). Regressions were
performed in the software package JMP, and statistical significance of
each coefficient (whether significantly different from zero at the
p < 0.05 level) were determined using a two-sided Student's t-test.
Only coefficients where p < 0.05 are shown.

Multiple linear regression analyses that consider all measured
phases show consistent cP sensitivity to POM as well as significant cP
sensitivity to CaCO3 and lithogenic phases (Table 2). Allowing regres-
sion models to categorically consider sample region, which allows for
different means in optical responses across regions and can help com-
pensate for unquantified variability in particle character (e.g. size) that
affect optical sensitivity, improves the fits and slightly increases the
coefficients of non-POM phases relative to POM. Opal exhibits a

Fig. 12. Upper panels: samples sorted by increasing (A) MCLd beam cP/ SPM; (B) GTCd Turbidity / SPM; and (C) GTCd Turbidity/cP ratio. A small amount of jitter is added in the y-axis of
upper panels to visually separate data symbols. Lower panels: corresponding fractional major particle composition of the sorted samples, after Hayes et al. (2015).

Table 1
Mean Turbidity/cP ratios± 1 S.D. in sampled BNLs. The highest Turbidity/cP ratios are
observed at (bold) trench station 1 and shelf stations (2–5) and (italics) at at stations
immediately west of the ridge axis beneath the most intense portion of the plume (stations
20, 21, and 23). At the ridge-axis itself (station 18), any BNL was indistinguishable from
the intense plume.

Station BNL Turbidity/cP ratio (mean±SD) n

36 1.00 ± 0.14 5
32 1.84 ± 0.48 5
15 2.04 ± 0.25 8
9 2.51 ± 0.27 7
7 2.64 ± 0.30 11
17 2.70 ± 0.40 9
30 2.83 ± 0.46 3
11 3.07 ± 0.46 6
13 3.19 ± 0.76 9
28 3.88 ± 0.97 4
26 4.03 ± 1.11 4
25 4.05 ± 0.35 2
1 4.33 ± 0.51 7
20 4.38 ± 0.46 4
4 4.87 ± 0.93 3
5 4.93 ± 0.91 8
21 5.17 ± 0.71 3
23 5.70 ± 0.24 7
2 6.70 ± 0.57 2
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as well as to scavenging or sequestration of POM by various mineral
surfaces. Surface-sequestration of POM by hard minerals could make
less POM surface area available for beam attenuation but not prevent
POM from being measured during analytical digestion. Though POM
sequestration is by no means a new hypothesis (Armstrong et al., 2002;
Keil et al., 1994; Mayer, 1994; Ransom et al., 1998), it may provide a
conceptual analog to phase-specific scavenging known to be important
for a many elements and isotopes (Hayes et al., 2015).

Sorted turbidity/SPM responses highlight the turbidity sensor's
elevated sensitivity at high Fe-fractional abundances in many plume,
deep BNL, and ODZ samples, and a general increase in sensitivity as
fractional CaCO3 content increases (Fig. 12b; see also Fig S2b). Sorting
the turbidity/cP ratio further demonstrates this metric's previously de-
scribed ability to discriminate high Fe-samples over the individual

sensors alone, with Fe- (and Mn-) enriched BNLs and ODZ samples
observed having high turbidity/cP ratios towards the right (Fig. 12c).
Many lithogenic-rich, but POM-poor BNLs (e.g. Stns 7, 9, 15, 32, 36)
sort towards the low-end of this ratio (Table 1, Fig. 11).

4.6. Quantitative modeling of optical responses: the turbidity/cP ratio as a
broad optical particulate Fe-sensor

To quantitatively examine the relationships between optical re-
sponses and particle composition, we conducted modeling of optical
parameters against the measured abundances of particulate phases
using both single and multiple linear regressions (SLR; MLR). The seven
general regions sampled expressed a wide variety of particulate char-
acter, and regression analysis can potentially provide statistical

Particulate Fe > 0.45 µm (GTC) [nM]; contours: O2 Sat. [%]

Fig. 11. A) the Turbidity/cP ratio (GTC) uses the differential particle responses of two optical instruments to visualize broad changes in particle composition, especially Fe(OH)3
abundances. Contours of O2 saturation [%] are provided in the upper 800 m to show oxycline structure and the approximate extent of the ODZ (< 5%, solid contour). Color scaling
changes below 800 m to properly show gradients associated with the HT plume. Labels: higher Turb./cP ratios are seen in regions of elevated lithogenic and authigenic phase abundances:
in the upper ODZ (Fe(OH)3); near the Marquesas plateau, S. Am boundary, and deep trench station (lithogenics); in the HT plume, and in many BNLs (Fe(OH)3, MnO2, and lithogenic
material). B) Particulate Fe from the GTC system bottle particle dataset (Ohnemus et al., 2017; Fitzsimmons et al., 2017).
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estimates of optical sensitivity to each phase or within each region.
There are many ways to conduct these analyses, including considera-
tion of size-fractionation (SSF and LSF vs. TOT), allowing models to
categorically compensate for sample region (e.g. surface, subsurface,
ODZ, plume, etc.), and allowing/disallowing interaction effects be-
tween particulate phases (which should not be expected to be fully
independent of one another). Consideration of size-fractionation of
phases and their poorly understood interaction terms can quickly
swamp the models and complicate their interpretation (not shown). We
focus instead on results from multiple linear regressions from two types
of transect-wide models: those that consider TOT phase abundances 1)
without consideration of categorical sample regions and 2) with con-
sideration of categorical sample regions (Table 2). Regressions were
performed in the software package JMP, and statistical significance of
each coefficient (whether significantly different from zero at the
p < 0.05 level) were determined using a two-sided Student's t-test.
Only coefficients where p < 0.05 are shown.

Multiple linear regression analyses that consider all measured
phases show consistent cP sensitivity to POM as well as significant cP
sensitivity to CaCO3 and lithogenic phases (Table 2). Allowing regres-
sion models to categorically consider sample region, which allows for
different means in optical responses across regions and can help com-
pensate for unquantified variability in particle character (e.g. size) that
affect optical sensitivity, improves the fits and slightly increases the
coefficients of non-POM phases relative to POM. Opal exhibits a

Fig. 12. Upper panels: samples sorted by increasing (A) MCLd beam cP/ SPM; (B) GTCd Turbidity / SPM; and (C) GTCd Turbidity/cP ratio. A small amount of jitter is added in the y-axis of
upper panels to visually separate data symbols. Lower panels: corresponding fractional major particle composition of the sorted samples, after Hayes et al. (2015).

Table 1
Mean Turbidity/cP ratios± 1 S.D. in sampled BNLs. The highest Turbidity/cP ratios are
observed at (bold) trench station 1 and shelf stations (2–5) and (italics) at at stations
immediately west of the ridge axis beneath the most intense portion of the plume (stations
20, 21, and 23). At the ridge-axis itself (station 18), any BNL was indistinguishable from
the intense plume.

Station BNL Turbidity/cP ratio (mean±SD) n

36 1.00 ± 0.14 5
32 1.84 ± 0.48 5
15 2.04 ± 0.25 8
9 2.51 ± 0.27 7
7 2.64 ± 0.30 11
17 2.70 ± 0.40 9
30 2.83 ± 0.46 3
11 3.07 ± 0.46 6
13 3.19 ± 0.76 9
28 3.88 ± 0.97 4
26 4.03 ± 1.11 4
25 4.05 ± 0.35 2
1 4.33 ± 0.51 7
20 4.38 ± 0.46 4
4 4.87 ± 0.93 3
5 4.93 ± 0.91 8
21 5.17 ± 0.71 3
23 5.70 ± 0.24 7
2 6.70 ± 0.57 2
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Figures:  above: Estapa et al. (2015) 10.1002/2015GC005831
right:  Ohnemus et al. (2016) 10.1016/j.marchem.2017.09.004



Using IFCB imagery to confirm the results of pigment-based phytoplankton 
characterization

Comparing carbon from diatoms measured with the IFCB to carbon from diatom pigments, then comparing the 
performance of chlorophyll-based remote sensing models for retrieving diatom carbon.



Outline

• High-level overview of the composition of matter in the ocean
• The variety of particle types that may contribute to bulk IOP 

measurements
• Combining the advantages of optical methods with other particle 

characterization techniques

Tour of particles in the ocean
IOPs and particle characteristics, and the physical 
theory describing how they are linked.

Lab: Mie theory and modeling IOPs from 
particle characteristics.

Group exercise:  Designing an optical sampling plan 
to observe processes/properties of interest

From particles to IOPs and back


