Biogeochemical proxies
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Quick review:

Which figure gives the best

example of
1) proxy
2) calibration
3) validation
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FIG. 5. Comparison of theoretical Mie calculations (dashed curve)
and direct measurements (solid curve) of the VSF of latex micro-
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Fig 5. Nonwater absorption spectra, an,, measured using ICAM 1, PSICAM, AC-s, AC-9 1, and derived from measurements of the irradiance quartet
using Gershun'’s law. No ICAM, AC-9, or AC-s data were collected at Sta. 3.

Lee and Lewis, 2003. doi:10.1175/1520-
0426(2003)20<563:ANMFTM>2.0.CO;2
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Fig. 3. Global POC—Beam ¢, regression calculated on all
available data collected in Indian (V), Atlantic (<) and Pacific

(+) oceans. See Table 1, “All data” for regression parameters.
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In the context of this class:

Proxy = use of an empirical
relationship between two
measurements to estimate
one from the other.
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Fig. 3. Global POC—Beam ¢, regression calculated on all
available data collected in Indian (V), Atlantic (<) and Pacific
(+) oceans. See Table 1, “All data” for regression parameters.
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Overview

v'Review of shared concepts across recent lectures

 Why create and use proxies?

* Some issues and cases to highlight
* How many independent proxies can be extracted from observations?
* Uncertainties in biogeochemical measurements
» Restricted domain of the “training” dataset and extrapolation beyond it

* Missing examples?



Why create and use proxies?

e Aquatic processes have different scales
of variability and we need to match our
observations to those scales

e  Others?

What assumptions do we make
when creating a proxy?

Carrying
capacity
(F(nutrients,
light))

Phytoplankton

Zooplankton

X (km)

Figure: Abraham
et al., 1998.
Nature 391(6667):
577-580.



Proxy relationships have a physical basis

* DOC - a,(440)

* POC-gc,

* Phytoplankton biomass — geometric area (IFCB images)

* Bulk particle composition — Beer’s Law, components of a,(4)

* Phytoplankton composition — Beer’s Law, pigment contributions to a,(4)

To first order, IOPs scale with concentration.
If we want to know composition (size, etc), we need multiple, independently-varying wavelengths, angles,
filtered/unfiltered, polarization, etc.
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How many independent constituents can be extracted from an absorption spectrum?

(Cael, Chase, and Boss, 2020. App! Opt)

Principal component analysis (PCA): Linearly
transform the data so that the greatest amount of
variance lies along the first axis (first component),
the next greatest amount along the second axis
(second component), and so forth.
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Principal component analysis (PCA): What are to parse between covarying pieces
the basis vectors that sequentially describe the of information.” -
greatest amount of variance in the data? e

wavelength [nm)]

Use a,y to remove chl first, then
PCA... now mode 1 looks like NAP Take homes:

eigenvectors: raw spectra eigenvectors: residual spectra

1

PCA on ay(A) from Tara Oceans...

* There are 4-5 degrees of freedom
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Overview

* Review of shared concepts across recent lectures

 Why create and use proxies?

* Some issues and cases to highlight
* How many independent proxies can be extracted from observations?
* Uncertainties in biogeochemical measurements
» Restricted domain of the “training” dataset and extrapolation beyond it

* Missing examples?



Uncertainties in the “sea-truth” measurements used to build the proxy
SURFACE CONCENTRAT/ION ug/Iiter

Example: Particulate organic carbon

* “Dregs” in Niskin bottles

* Protection of sample from air
contamination, handling
contamination at all steps

* Low vacuum pressure

* Dissolved organic carbon blanks

DOC “adsorption sites” on
GF/F filters

Adsorption is not
instantaneous nor is it
always linear with volume
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Particulate Organic Carbon

Beam
attenuation (c, )

Figures: Cetini¢ et al., 2012, JGR. 10.1029/2011JC007771

Slide from I. Cetini¢

350

300

m-3

L r%=0.83

° NABO8, n=296

''''' Gardner et al., 2006, NABE
-—— —— Bishop et al., 2008, 1999
Marra et al., 1995




Particulate Organic Carbon

B0 6 NABOS, n=321 o e
L ”
300 |- r=0.84
—— — Stramski et al., 2008
250 — —- Balch et al., 2010

———— Stramski et al., 1999

Particulate
backscattering (by,)

E, 200
E
O 150
0 _.
o
100
50
0. 1 1 J
0 1 2 3 4 5 6 7 8
bpp (700) (x10-3 m™T)
350
300
Beam 7 20
£
. o 200
attenuation (c, ) £
Q 150
0
o
100
50
Figures: Cetini¢ et al., 2012, JGR. 10.1029/2011JC007771 0

Slide from I. Cetini¢

NABO8, n=296

r%=0.83

Gardner et al., 2006, NABE

-—— —— Bishop et al., 2008, 1999

Marra et al., 1995




POC/c, slope comparison (mg C m™)
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Domain of training data: Dissolved Organic Carbon

CDOM can approximate DOC in the coastal ocean
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* Every coastal region is different

Better relationships when there is one strong source (e.g. river plume) and one major loss process (e.g.
dilution into ocean)

* Photochemical loss (“bleaching”) changes the DOC:CDOM relationship! 15



Domain of training data: Dissolved Organic Carbon

training evaluation
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Domain of training data: Dissolved Organic Carbon Perhaps unsurprisingly, CDOOM #
DOC in the open ocean
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Discussion in poster working groups from last week:

* For your sensor, pick one of the proxies you listed
e Discuss (~15 min):
* What type of samples should you collect to develop your proxy?
* Where and when will you collect them?
* How will you validate your proxy?
* Unlike last week’s exercise, you have a (finite, yet unspecified) budget... what are your biggest priorities?
* Goal: Think through the process of proxy development considering the issues highlighted in this lecture so far. We
don’t expect you to have read all the literature on your specific example proxy.
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Proxies that have been mentioned in class so far...

* POC (c,, by, sometimes) * CDOM composition (S¢pom)
* SPM (c,, by, turbidity) * Particle size distribution (y,, Yppp)
* Chl (F,, decomposition of a¢(K), * Particulate inorganic carbon (acid-
ay, C, anomalous dispersion) labile by,,, polarized c,)
 Large Chl or POC (high-freq.
spikes in Fe, or by,) e Others?
* Other pigments (decomposition
of a¢(k))

* DOC (acpom(blue or UV A))



