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FIG. 5. Comparison of theoretical Mie calculations (dashed curve)
and direct measurements (solid curve) of the VSF of latex micro-
spheres with a diameter of 45.6 mm. FIG. 6. Spatial variation of the measured normalized VSF (similar

to phase function—see text) in surface waters off the New Jersey
coast. In order of decreasing backscatter, the curves represent a tran-
sect of four stations from inshore to offshore (from 398339N, 748259W
to 398219N, 748059W). The Petzold phase function (Mobley 1994) is
provided for reference. On ordinate, 1E 2 4 is 1 3 1024, etc.

Morel 1974) reflects the general inability to purge sea-
water of all small particles, particularly bubbles.
The VSF of natural surface water from a eutrophic

environment (Northwest Arm) was also measured (also
shown in Fig. 4). This moderately turbid water shows
elevated scattering of approximately one order of mag-
nitude more than the clean seawater and lacks much of
the angular scattering structure seen in the purer water.
The observations of the VSF of precisely defined

monodisperse spheres compared well to theoretical Mie
calculations (Fig. 5). For particles with a central di-
ameter of 45.6 mm, the theoretical Mie values (dashed
curve) and laboratory determination (solid curve) can
be seen in Fig. 5. Both the amplitude and much of the
angular structure were retrieved well; similar results
were obtained for particles of different diameters. For
this experiment, the departure of the integral over the
full angular range (the total scattering coefficient less
those values for angles less than 128 and greater than
1708) is 19%; for the integral over the backward direc-
tion, the error is 28%.
Based on these observations under controlled con-

ditions, we conclude that the performance of the in-
strument is sufficient for the accurate determination of
the VSF with angular resolution of 0.38 and over the
general scattering angle range from 128 to 1708.

b. Field observations

We made improvements to the instrument for the field
study that permitted the measurement of angles as small
as 0.68 and as large as 177.38. The variation observed
in the VSF, even over a restricted geographical range,
is high, particularly in the backward direction (Fig. 6).
For clarity, these curves have been normalized as in Eq.

(2), but with the integral taken only over the range 0.68–
177.38. To the extent that the near-forward (08–0.68) and
near-backward (177.38–1808) scattering contribute
strongly to the integral, these curves will depart from
the ‘‘true’’ phase function. Although this is likely a
small effect, given the sine u weighting, we have des-
ignated these as ‘‘normalized volume scattering func-
tions’’ to distinguish them from the true phase function.
Scattering by water has not been subtracted from these
curves.
The primary mode of variability observed is a tilting

around a region from 78 to 88 where little variance was
observed. Strong variations thus appeared in the near-
forward and near-backward directions. The relative
backscattering decreased with increasing distance off-
shore, with computed backscattering ratios (over the
defined angular range) from 1.2% to 0.3%. The Petzold
phase function, derived by Mobley (1994), is shown for
reference; only in the stations closest to shore was this
function approached in the backward hemisphere.
This is also evident in the vertical sections, where

variation in the VSF over the small-angle range was
most prevalent at a site where upwelling of deep water
fueled growth of phytoplankton, particularly large cells
that could potentially contribute strongly to the forward
scattering and that were in greatest abundance at a depth
of 4 m at this station (Fig. 7a). All depths showed back-
scattering probabilities less than the Petzold phase func-
tion, with the deeper stations showing the largest de-
parture (bb 5 0.53% at the sea surface and 0.39% at 4
m). A pronounced ‘‘glory’’ in the near-backward direc-
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• dashed: VSF from Mie calculations for 
latex spheres D=45.6µm

• solid: measured VSF of spheres

cp and POC sections and maps compiled from all
processed data have been generated and can be viewed
on our project web-site at http://oceanography.
tamu.edu /!pdgroup / SMP_prj /DataDir/SMP-data.
html (data locations shown in Fig. 1). cp data merged
with temperature, salinity and oxygen data and stored
in Ocean Data View (Schlitzer, 2003) software format
also can be downloaded.

3.4. Satellite data

3.4.1. SeaWiFS versus cp regression
To compare in-situ data with remotely sensed

optical parameters, values of cp were averaged from

vertical profiles down to one attenuation depth of
the ocean, assuming that is the maximum depth
from which a remotely sensed signal is radiated.
One attenuation depth was calculated based on
SeaWiFS-derived diffuse attenuation coefficient
(K490) data using the formula z ¼ 1/K490 (Gordon
and McCluney, 1975). This depth varied from 9 to
29m in the APFZ area, and from 1 to 30m in the
NEGOM and SAVE areas. The APFZ and NE-
GOM data have synchronous satellite and in-situ
data. The SAVE data in the Mishonov et al. (2003b)
paper uses satellite data from the same seasons, but
from later years since ocean-color satellites were not
operating during the SAVE program.

Data for K490, normalized water leaving radiance
at 555 nm LWN(555), chlorophyll concentration
(CHL) and integral chlorophyll (ICK ¼ CHL/K490),
i.e. chlorophyll integrated in one attenuation depth
(Campbell et al., 1995), were extracted from the
SeaWiFS data archives (http://daac.gsfc.nasa.gov/
data/datapool/SEAWIFS/index.html). To provide
better satellite data coverage in a cloudy area such
as the APFZ (and NEGOM in some seasons) we
used 8-day SeaWiFS composites (Level 3, 9# 9 km,
i.e. 1# 1 pixels, Reprocessing 4 data). The total
dataset (Table 2) consists of 580 data points: 140 for
APFZ and 440 for NEGOM. Calculations from the
330 data point from SAVE (Mishonov et al., 2003b)
also are listed.

3.4.2. APFZ area
For comparison with cp, satellite data were

averaged over the time-scale appropriate to each
cruise (one to three 8-day mosaics). Expedition
KIWI cruises 6 and 8 covered a small geographical
area due to ice coverage and a focus on the Polar
Front Zone. For KIWI-Process cruises (7 and 9)
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Fig. 3. Global POC—Beam cp regression calculated on all
available data collected in Indian (r), Atlantic (B) and Pacific
(+) oceans. See Table 1, ‘‘All data’’ for regression parameters.

Table 1
Parameters of the Model II linear regression for different regions of the World Ocean: beam attenuation due to particles (cp, 1/m) vs. POC
(mM) concentration

MOD II
params.

Regions

NABE CMO-96 NEGoM HOT
corr.

EqPac BATS
corr.

Ross Sea APFZ Arabian
Sea

All data
(no RS)a

Slope 25.3 32.2 27.6 46.6 46.0 35.8 52.6 33.5 39.3 31.7
Intercept 0.276 0.374 $0.457 0.381 0.420 0.494 1.902 3.064 $0.388 0.785
SD slope 0.610 2.399 0.737 1.439 0.975 0.709 0.592 0.609 0.707 0.275
SD intercept 0.178 0.943 0.218 0.042 0.078 0.032 0.304 0.125 0.078 0.048
n 165 88 440 305 224 855 994 659 726 3462
R2 0.904 0.513 0.685 0.710 0.899 0.664 0.874 0.781 0.766 0.739

aNo Ross Sea data used in global fit.

W.D. Gardner et al. / Deep-Sea Research II 53 (2006) 718–740 723

Gardner et al., 2006.  
doi:10.1016/j.dsr2.2006.01.0
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• y-axis: POC concentration 

from bottle samples, 
global JGOFS data set

• x-axis: beam attenuation 
coefficient from same 
casts  

Quick review:  
Which figure gives the best 
example of 
1) proxy
2) calibration
3) validation

driven by scaling, that is, small absolute errors result in large
relative errors when absorption is low. Alternatively, the devia-
tion could originate from residual temperature and salinity
effects if not fully corrected. The agreement had been signifi-
cantly improved by correcting data from both instruments for
detector issues, including nonlinearity, internal stray light,
and issues with spectral registration (data not shown). The cal-
ibration determining the reflectivity of the PSICAM’s cavity
walls uses LWCC data, and thus the interdetector variability
will not include those systematic errors. However, PSICAM cal-
ibration, using a highly concentrated colored solution in puri-
fied water, is not affected by scattering or salinity effects and

sensitivity issues are negligible. In addition, LWCC absorption
coefficients reported in this study take into account measure-
ments from two independent LWCC systems (with different
pathlength cells) reducing any potential covariance between
PSICAM and LWCC aCDOM due to errors in the true LWCC
pathlength. Furthermore, both measurements are affected by a
range of different independent factors, such as lamp stability,
sample to sample variation, salinity dependent refractive
index corrections, and detector sensitivity, so they may be
considered independent measurements.

Measurements of aCDOM in a 10-cm cuvette with the dual-
beam spectrophotometer showed overall good agreement with

Fig 5. Nonwater absorption spectra, anw, measured using ICAM 1, PSICAM, AC-s, AC-9 1, and derived from measurements of the irradiance quartet
using Gershun’s law. No ICAM, AC-9, or AC-s data were collected at Sta. 3.
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• anw(l) from different 
instruments/techniques 
at the same stations
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FIG. 5. Comparison of theoretical Mie calculations (dashed curve)
and direct measurements (solid curve) of the VSF of latex micro-
spheres with a diameter of 45.6 mm. FIG. 6. Spatial variation of the measured normalized VSF (similar

to phase function—see text) in surface waters off the New Jersey
coast. In order of decreasing backscatter, the curves represent a tran-
sect of four stations from inshore to offshore (from 398339N, 748259W
to 398219N, 748059W). The Petzold phase function (Mobley 1994) is
provided for reference. On ordinate, 1E 2 4 is 1 3 1024, etc.

Morel 1974) reflects the general inability to purge sea-
water of all small particles, particularly bubbles.
The VSF of natural surface water from a eutrophic

environment (Northwest Arm) was also measured (also
shown in Fig. 4). This moderately turbid water shows
elevated scattering of approximately one order of mag-
nitude more than the clean seawater and lacks much of
the angular scattering structure seen in the purer water.
The observations of the VSF of precisely defined

monodisperse spheres compared well to theoretical Mie
calculations (Fig. 5). For particles with a central di-
ameter of 45.6 mm, the theoretical Mie values (dashed
curve) and laboratory determination (solid curve) can
be seen in Fig. 5. Both the amplitude and much of the
angular structure were retrieved well; similar results
were obtained for particles of different diameters. For
this experiment, the departure of the integral over the
full angular range (the total scattering coefficient less
those values for angles less than 128 and greater than
1708) is 19%; for the integral over the backward direc-
tion, the error is 28%.
Based on these observations under controlled con-

ditions, we conclude that the performance of the in-
strument is sufficient for the accurate determination of
the VSF with angular resolution of 0.38 and over the
general scattering angle range from 128 to 1708.

b. Field observations

We made improvements to the instrument for the field
study that permitted the measurement of angles as small
as 0.68 and as large as 177.38. The variation observed
in the VSF, even over a restricted geographical range,
is high, particularly in the backward direction (Fig. 6).
For clarity, these curves have been normalized as in Eq.

(2), but with the integral taken only over the range 0.68–
177.38. To the extent that the near-forward (08–0.68) and
near-backward (177.38–1808) scattering contribute
strongly to the integral, these curves will depart from
the ‘‘true’’ phase function. Although this is likely a
small effect, given the sine u weighting, we have des-
ignated these as ‘‘normalized volume scattering func-
tions’’ to distinguish them from the true phase function.
Scattering by water has not been subtracted from these
curves.
The primary mode of variability observed is a tilting

around a region from 78 to 88 where little variance was
observed. Strong variations thus appeared in the near-
forward and near-backward directions. The relative
backscattering decreased with increasing distance off-
shore, with computed backscattering ratios (over the
defined angular range) from 1.2% to 0.3%. The Petzold
phase function, derived by Mobley (1994), is shown for
reference; only in the stations closest to shore was this
function approached in the backward hemisphere.
This is also evident in the vertical sections, where

variation in the VSF over the small-angle range was
most prevalent at a site where upwelling of deep water
fueled growth of phytoplankton, particularly large cells
that could potentially contribute strongly to the forward
scattering and that were in greatest abundance at a depth
of 4 m at this station (Fig. 7a). All depths showed back-
scattering probabilities less than the Petzold phase func-
tion, with the deeper stations showing the largest de-
parture (bb 5 0.53% at the sea surface and 0.39% at 4
m). A pronounced ‘‘glory’’ in the near-backward direc-
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• dashed: VSF from Mie calculations for 
latex spheres D=45.6µm

• solid: measured VSF of spheres

cp and POC sections and maps compiled from all
processed data have been generated and can be viewed
on our project web-site at http://oceanography.
tamu.edu /!pdgroup / SMP_prj /DataDir/SMP-data.
html (data locations shown in Fig. 1). cp data merged
with temperature, salinity and oxygen data and stored
in Ocean Data View (Schlitzer, 2003) software format
also can be downloaded.

3.4. Satellite data

3.4.1. SeaWiFS versus cp regression
To compare in-situ data with remotely sensed

optical parameters, values of cp were averaged from

vertical profiles down to one attenuation depth of
the ocean, assuming that is the maximum depth
from which a remotely sensed signal is radiated.
One attenuation depth was calculated based on
SeaWiFS-derived diffuse attenuation coefficient
(K490) data using the formula z ¼ 1/K490 (Gordon
and McCluney, 1975). This depth varied from 9 to
29m in the APFZ area, and from 1 to 30m in the
NEGOM and SAVE areas. The APFZ and NE-
GOM data have synchronous satellite and in-situ
data. The SAVE data in the Mishonov et al. (2003b)
paper uses satellite data from the same seasons, but
from later years since ocean-color satellites were not
operating during the SAVE program.

Data for K490, normalized water leaving radiance
at 555 nm LWN(555), chlorophyll concentration
(CHL) and integral chlorophyll (ICK ¼ CHL/K490),
i.e. chlorophyll integrated in one attenuation depth
(Campbell et al., 1995), were extracted from the
SeaWiFS data archives (http://daac.gsfc.nasa.gov/
data/datapool/SEAWIFS/index.html). To provide
better satellite data coverage in a cloudy area such
as the APFZ (and NEGOM in some seasons) we
used 8-day SeaWiFS composites (Level 3, 9# 9 km,
i.e. 1# 1 pixels, Reprocessing 4 data). The total
dataset (Table 2) consists of 580 data points: 140 for
APFZ and 440 for NEGOM. Calculations from the
330 data point from SAVE (Mishonov et al., 2003b)
also are listed.

3.4.2. APFZ area
For comparison with cp, satellite data were

averaged over the time-scale appropriate to each
cruise (one to three 8-day mosaics). Expedition
KIWI cruises 6 and 8 covered a small geographical
area due to ice coverage and a focus on the Polar
Front Zone. For KIWI-Process cruises (7 and 9)
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Fig. 3. Global POC—Beam cp regression calculated on all
available data collected in Indian (r), Atlantic (B) and Pacific
(+) oceans. See Table 1, ‘‘All data’’ for regression parameters.

Table 1
Parameters of the Model II linear regression for different regions of the World Ocean: beam attenuation due to particles (cp, 1/m) vs. POC
(mM) concentration

MOD II
params.

Regions

NABE CMO-96 NEGoM HOT
corr.

EqPac BATS
corr.

Ross Sea APFZ Arabian
Sea

All data
(no RS)a

Slope 25.3 32.2 27.6 46.6 46.0 35.8 52.6 33.5 39.3 31.7
Intercept 0.276 0.374 $0.457 0.381 0.420 0.494 1.902 3.064 $0.388 0.785
SD slope 0.610 2.399 0.737 1.439 0.975 0.709 0.592 0.609 0.707 0.275
SD intercept 0.178 0.943 0.218 0.042 0.078 0.032 0.304 0.125 0.078 0.048
n 165 88 440 305 224 855 994 659 726 3462
R2 0.904 0.513 0.685 0.710 0.899 0.664 0.874 0.781 0.766 0.739

aNo Ross Sea data used in global fit.
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doi:10.1016/j.dsr2.2006.01.0
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from bottle samples, 
global JGOFS data set

• x-axis: beam attenuation 
coefficient from same 
casts  

In the context of this class:

Proxy = use of an empirical 
relationship between two 
measurements to estimate 
one from the other.

driven by scaling, that is, small absolute errors result in large
relative errors when absorption is low. Alternatively, the devia-
tion could originate from residual temperature and salinity
effects if not fully corrected. The agreement had been signifi-
cantly improved by correcting data from both instruments for
detector issues, including nonlinearity, internal stray light,
and issues with spectral registration (data not shown). The cal-
ibration determining the reflectivity of the PSICAM’s cavity
walls uses LWCC data, and thus the interdetector variability
will not include those systematic errors. However, PSICAM cal-
ibration, using a highly concentrated colored solution in puri-
fied water, is not affected by scattering or salinity effects and

sensitivity issues are negligible. In addition, LWCC absorption
coefficients reported in this study take into account measure-
ments from two independent LWCC systems (with different
pathlength cells) reducing any potential covariance between
PSICAM and LWCC aCDOM due to errors in the true LWCC
pathlength. Furthermore, both measurements are affected by a
range of different independent factors, such as lamp stability,
sample to sample variation, salinity dependent refractive
index corrections, and detector sensitivity, so they may be
considered independent measurements.

Measurements of aCDOM in a 10-cm cuvette with the dual-
beam spectrophotometer showed overall good agreement with

Fig 5. Nonwater absorption spectra, anw, measured using ICAM 1, PSICAM, AC-s, AC-9 1, and derived from measurements of the irradiance quartet
using Gershun’s law. No ICAM, AC-9, or AC-s data were collected at Sta. 3.
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• anw(l) from different 
instruments/techniques 
at the same stations
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pathlength. Furthermore, both measurements are affected by a
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üReview of shared concepts across recent lectures
• Why create and use proxies? 
• Some issues and cases to highlight

• How many independent proxies can be extracted from observations?
• Uncertainties in biogeochemical measurements
• Restricted domain of the “training” dataset and extrapolation beyond it

• Missing examples?
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the model domain have spectra with similar exponents to the
spectra of physical quantities such as sea surface temperature22, so
the relaxation rate is set at a ¼ 0:25. At large relaxation times the
spectral exponent becomes close to 1, the value expected for the
spectrum of a passive non-reacting tracer in a two-dimensional
turbulent flow18. This suggests that the turbulent transfer of varia-
bility to smaller scales is adequately represented by the seeded-eddy
model.

With the inclusion of advection the continually changing carry-
ing capacity prevents the populations within each parcel from
reaching equilibrium. Despite the simplicity of the dynamics, a
complex spatial pattern emerges by the end of the model run
(Fig. 2). Because of the rapid phytoplankton growth rate, the
phytoplankton distribution (Fig. 2b) is similar to the distribution
of the carrying capacity (Fig. 2a). In contrast, the zooplankton
population (Fig. 2c) has marked fine scale structure. This is clearly
seen in a transect through the model domain (Fig. 3a), which
simulates the data that would be collected from a ship. There is no
coherence between the zooplankton and phytoplankton distribu-
tions at the larger length scales, and grazing causes the distributions
to be negatively correlated at distances of less than ,10 km. As a
consequence, the phytoplankton concentration has a spectrum that
is slightly flatter than that of the carrying capacity, but steeper than
the zooplankton spectrum (Fig. 3b). These results are in good
agreement with observations, which find similar spectra, and
which show a similar negative correlation between phytoplankton
and zooplankton populations at shorter length scales2,3,23.

An analysis of the populations obtained by integrating the model
with a range of parameter values, and using a simplified representa-
tion of the flow, confirms that the relative slopes of these spectra are
insensitive to both the precise values of the parameters and the
details of the stirring process (Fig. 4). An increasing zooplankton
maturation time leads to flatter zooplankton spectra, whereas a

Figure 2 Snapshots at the end of a high-resolution model run. The model follows
equations 1–3, with t=r ¼ 25d and d ¼ 2, corresponding to a high P and low Z

regime. a, Carrying capacity; b, phytoplankton, c, zooplankton. The strip at the left
shows the zonally varying distributions the populations would have in the
absence of advection while the bar on the right gives the values associated
with the different colours. The distortion due to turbulent stirring is clearly visible.
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Figure 3 A representative transect and the corresponding spectra. Graphs show
carrying capacity (blue), phytoplankton (green) and zooplankton (red). a, A
transect through the snapshots in Fig. 2 (at x ¼ 128 km). The simplicity of the
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Why create and use proxies?

• Aquatic processes have different scales 
of variability and we need to match our 
observations to those scales

• Others?

What assumptions do we make 
when creating a proxy?



Proxy relationships have a physical basis

• DOC – ag(440)
• POC – cp
• Phytoplankton biomass – geometric area (IFCB images)
• Bulk particle composition – Beer’s Law, components of ap(l)
• Phytoplankton composition – Beer’s Law, pigment contributions to ap(l)

To first order, IOPs scale with concentration.
If we want to know composition (size, etc), we need multiple, independently-varying wavelengths, angles, 
filtered/unfiltered, polarization, etc.
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not concentration dependent, has been found to covary with
chlorophyll [9]. On the other hand, different phytoplankton
taxonomic groups (e.g., diatoms, dinoflagellates, prymnesio-
phytes, cyanobacteria) have different assemblages of accessory
pigments in addition to chlorophyll a , which in turn results in
differing spectral signatures. Therefore, in principle, different
phytoplankton groups could be distinguished with hyperspec-
tral data (i.e., data with spectral resolution of 10 nm or less),
provided that information on the differential absorption and
scattering properties of phytoplankton groups is extractable
from spectral measurements.

The upcoming NASA Plankton, Aerosol, Cloud, and Ocean
Ecosystems (PACE) satellite will be the first to host a space-born
hyperspectral radiometer designed for global open ocean appli-
cations when it launches in 2022 [10,11].The PACE mission
is eagerly anticipated by the ocean optics community because
the hyperspectral information provided by the satellite’s Ocean
Color Instrument (OCI) is hypothesized to contain more infor-
mation on surface ocean ecology and biogeochemistry than is
presently available from multispectral satellite instruments. The
possibility of obtaining information on community structure
from space is extremely appealing, as it permits a much more
detailed understanding of communities’ ecological dynamics
and biogeochemical function and has been investigated previ-
ously [12–18]. Despite the appeal, inverting for community
structure is a fundamentally challenging problem because
the spectral signatures of the different phytoplankton groups
of interest may not always be spectrally distinct and thus the
problem may be ill-posed.

The number of degrees of freedom (DoF) in a hyperspectral
measurement is determined by the error characteristics of the

measurement and the similarity of the spectral shapes being
inverted for [19]. For instance, in a hypothetical limit case where
all of the wavebands were perfectly correlated among themselves
such that there was no variation in spectral shape in the whole
ocean (but only of intensity), the DoF of any measurement
would be one, regardless of the spectral resolution. Using such
data to infer more than one variable would then be fraught,
and would not be able to provide independent estimates of
the quantities being inverted for. The same is true if there is
variation in spectral shape but not enough relative to the error
of the measurement to be significant. Such errors are especially
important when inverting for quantities with relatively similar
spectral signatures, as the covariance of these spectral signatures
can significantly amplify errors.

Past approaches to address this issue include a study to deter-
mine the minimum number of wavelengths needed to capture
the information in Rrs. Lee et al. [20] determined empirically
that 15 bands should suffice to capture the variability in Rrs.
Vandermeulen et al. [21], on the other hand, based on derivative
analysis determined that to optimally resolve spectral variability
hyperspectral absorption and reflectance data with 5–7 nm res-
olutions are optimal. While relevant, the information content
(with respect to the concentration of various substances within
the water) was not addressed directly in the above studies. The
latter is the focus of our paper.

Here we investigate the DoF of hyperspectral ocean color
signals with an eye towards the construction of inversions that
are well-posed and meaningful, i.e., that do not attempt to
invert for more quantities than there are DoF in the signal and
therefore can provide independent estimates of each of the
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normalized such that they integrate to one.
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(Cael, Chase, and Boss, 2020. Appl Opt)

Absorption spectra have pretty 
similar shapes... 

“we are looking for small 
differences in noisy measurements 
to parse between covarying pieces 

of information.”

Figures: Cheng, C., 2022. https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d.  Accessed 6/25/2023.

Principal component analysis (PCA):  Linearly 
transform the data so that the greatest amount of  
variance lies along the first axis (first component), 
the next greatest amount along the second axis 
(second component), and so forth.

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
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not concentration dependent, has been found to covary with
chlorophyll [9]. On the other hand, different phytoplankton
taxonomic groups (e.g., diatoms, dinoflagellates, prymnesio-
phytes, cyanobacteria) have different assemblages of accessory
pigments in addition to chlorophyll a , which in turn results in
differing spectral signatures. Therefore, in principle, different
phytoplankton groups could be distinguished with hyperspec-
tral data (i.e., data with spectral resolution of 10 nm or less),
provided that information on the differential absorption and
scattering properties of phytoplankton groups is extractable
from spectral measurements.

The upcoming NASA Plankton, Aerosol, Cloud, and Ocean
Ecosystems (PACE) satellite will be the first to host a space-born
hyperspectral radiometer designed for global open ocean appli-
cations when it launches in 2022 [10,11].The PACE mission
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Principal component analysis (PCA):  What are 
the basis vectors that sequentially describe the 
greatest amount of variance in the data?
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Fig. 6. Map of locations at which absorption spectra and tempera-
ture and salinity data were collected during the Tara Oceans expedition,
2009–2012.

variance are wholly empirical, they require subsequent inter-
pretation. In the case of ap(�), one approach for this may be by
pigment decomposition, as shown below.

To illustrate how PCA can be used to identify DoF, we ana-
lyze the Tara Oceans hyperspectral particulate absorption data
obtained by subtracting spectra of adjacent measurements of
filtered water from those of non-filtered water (Slade et al.,
2010). This dataset comprises 303,022 1-min-binned spectra,
that have been acquired using a WETLabs AC-S deployed
underway over very diverse environments [42, Fig. 6]. The
spectra in this dataset have been “unsmoothed” to account for
filter factors applied automatically by the AC-S instrument
[24] and are available in NASA’s SeaBASS repository [43].
The spectra were collected from 2009–2012 across the globe
and by multiple personnel and several different instruments,
thus removing potential specific user and instrument biases.
Associated uncertainties are described in Table 1. We analyze
these spectra three ways: (1) “raw,” i.e., considering both their
amplitude and shape, (2) normalized, i.e., considering only their
spectral shape, and (3) subtracting the spectral shape associated
with chlorophyll alone and thereby considering only the residual
difference between the measurement and the chlorophyll-based
prediction. In all cases, we perform a weighted PCA, where
individual wavelengths are weighted inversely to the variance
in absorption of that wavelength, such that all wavelengths
contribute equally to determining the resulting spectra [n.b.,
in all cases, unweighted PCA yielded steeper dropoffs in frac-
tion of variance (FVA) accounted for with mode number].

Note that standard PCA assumes a uniform uncertainty across
all measurements, but that factoring different wavelengths’
uncertainties, or those of individual samples, or even that of
individual sample–wavelength pairs (i.e., individual measure-
ments), is possible, though how best to do this is an active area
of research [41,–48]. Also note that when applying PCA to
normalized spectra as we have done here, one must calculate
weights for the PCA after normalizing, and when measurement
uncertainties are incorporated into said PCA, the uncertainty
will also have to be rescaled by the normalizing factor.

Figure 7(a) shows the spectral shapes and the associated
FVAs accounted for, resulting from a weighted PCA of the
total dataset. The first mode explains almost all (>94%) of the
variance in the data, consistent with Fig. 1, showing that spectral
shapes tend to be quite similar and therefore that variation in
these data is driven largely by amplitude. The next several modes
appear mostly to be combinations of a NAP-absorption-like
spectrum and a modulation of the Chl-peak in the absorption
spectrum, indicating that the remaining variability is likely due
mostly to changes in the ratio of Chl and NAP concentrations or
slight variations in packaging, NAP spectral slope, and accessory
pigments.

DoF can be assessed from PCA in various ways, but arguably
the best method in terms of balancing simplicity of calculation
with accurate evaluation of dimensionality is the “broken stick”
method [49], which compares modes’ FVAs with a random
division of variance into N parts. In other words, a dataset has
d DoF if the d th mode of the PCA explains more variance than
would be expected if the variance was uniformly distributed,
given by (1/N)

PN
i=d (1/i) (n.b., other methods such as the

Kaiser–Guttman criterion yielded ±1 DoF for the data we
considered). This method indicates only one DoF in the raw
spectra, as the second mode accounts for only ⇠3% of the
variance (the cutoff is 5.10%).

In Fig. 7, we observe that as the amplitudes of absorption in
each spectral band are highly correlated, it seems that more DoF
may be realized by considering the spectral shape, i.e., using
normalized spectra. Figure 7(b) shows the same as Fig. 7(a) but
for a PCA applied to spectra normalized so that their average
absorption across all wavelengths is 1 m�1. As expected, the vari-
ance is spread out across the modes more evenly, with the first

Fig. 7. (a) Spectra resulting from weighted PCA of raw spectra, with associated FVA given in legend. (b) Same for normalized spectra. (c) FVA ver-
sus mode number for all spectra from Fig. 7(b); note the different dropoffs in FVA with mode number between modes 1–5 and those >5. Solid black
line indicates the cutoff point for the broken stick method.
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mode accounting for nearly half the variance of that of the un-
normalized case. This suggests that there is more information to
be gained when considering the spectral shape and amplitude
separately. This is not entirely surprising, given the relatively
large dynamic range of Chl concentrations found in surface
ocean waters (e.g., concentrations spanning several orders of
magnitude) versus the relative variation in pigmentation per
carbon or cell (a factor of six or so). The broken stick method
identifies four DoF for these data. Arguably there are at most
five DoF by a more relaxed criterion; the change in gradient in
Fig. 7(c) suggests five DoF in these data if one uses a scree-type
method of comparing cumulative variance explained versus
mode number [50]. Furthermore, modes �5 are noisy spectral
shapes that appear much more random than informative or
interpretable.

As one of the foci here is to determine how much informa-
tion can be obtained from hyperspectral data relative to what
can be determined from a chlorophyll-based prediction, it is
informative to ask: how many DoF remain after one has made
a prediction for spectral shape of particulate absorption based
on chlorophyll alone? To this end we used an existing power-
law-based parameterization of the spectral shape as a function of
chlorophyll to predict ap(�) [51], subtract this prediction, and
determine the DoF in the remaining residual. This is a means of
addressing how well the chlorophyll concentration reflects the
spectral shape of the data and how much information remains.
Chlorophyll concentration [mg m�3] is estimated from a line
height algorithm:

ChlALH =
1

a⇤

LH

✓
a(676) �

✓
a(715) � a(650)

715 � 650

⇥ (676 � 650) + a(650)

◆◆
, (4)

where 650, 676, and 715 all have units of nanometers, and a⇤

LH is
the chlorophyll-specific absorption line height. From this, ap(�)
is estimated according to

ap(�) = A(�)ChlB(�)
ALH, (5)

where (A, B) are functions taken from Ref. [51], updated from
Ref. [52]. Note that the nonlinearity of this equation may be the
reason we get fewer DoF in the difference and with shapes that
are easier to interpret. First, the amplitudes of the residuals indi-
cate that this chlorophyll-based model predicts 74.3% of the
variance of the data. Second, the first mode of the PCA, which
accounts for most (>91%) of the remaining variance, has a
shape similar to a typical NAP absorption spectrum [Figs. 8 and
9(a)]. Together these suggest, as above, that chlorophyll is a very
strong predictor of overall pigment composition, and that most
of the deviation from a chlorophyll-based estimation of ap(�) is
due to NAP absorption. The broken stick method indicates two
DoF in the residuals, as the third mode accounts for 1.90% of
the residuals’ variance (as compared to a cutoff of 4.45%); this is
consistent with the DoF in Fig. 7(c), as the functions for (A, B)
above use two DoF and the residuals retain two DoF.

A tradeoff associated with PCA is that it identifies spectral
shapes that account for the most variance in the data, but that
these are wholly empirical and require additional information

Fig. 8. Same as Fig. 7(a) but for residuals from Chl-based
approximation.

to be interpreted. An analysis of these modes that provides bio-
geochemical information is pigment decomposition, whereby a
given ap(�) spectrum is inverted to determine a set of functions
that represents absorption by individual pigments or pigment
groups, and NAP. One explanation of this is that phytoplankton
accessory pigments covary less than phytoplankton species or
representative spectra for phytoplankton taxonomic groups,
meaning they can be inverted for with higher signal-to-noise
ratios/more DoF. We apply the pigment decomposition algo-
rithm from [24] to the modes identified by PCA above, with
the modification that pigment concentrations are allowed to
be negative, because a particular mode may represent relative
deficiency of a given pigment. This analysis replaces the specu-
lations above with quantification. For instance, the first mode
of the raw spectra’s PCA [Fig. 9(a)] is dominated by the signal
of Chl a absorption, with relatively equal contributions of all
accessory pigments and NAP in addition. Mode 2 shows pos-
itive accessory pigments (i.e., all pigments excluding Chl a )
[Fig. 9(b)]. Mode 3 [Fig. 9(c)] again shows a strong influence of
Chl a , possibly indicating the influence of pigment packaging,
which results in different ratios of pigment absorption in the
blue and red wavelengths. Five modes of the normalized spec-
tra’s PCA [Figs. 9(d)–9(h)] are represented by variable positive
and negative accessory pigment absorption, and NAP in the
case of modes 3–5. Figure 9(i) shows that the first mode from
the residuals’ PCA (Fig. 8) is best modeled as a strong contribu-
tion from NAP as well as positive pigments, and similar for the
third mode [Fig. 9(k)] except that the contribution of pigments
is negative. The second mode of the residuals’ PCA is most
strongly influenced by carotenoid and biliprotein pigments
[Fig. 9(j)]. In other words, most of the variability in ap(�) that
is not explained by chlorophyll concentration is explained by
the relative contribution of NAP versus pigments to particulate
absorption.

Altogether these analyses demonstrate several important
points:

• Hyperspectral particulate absorption spectra, despite hav-
ing >80 independent spectral measurements per sample in our

Use aLH to remove chl first, then 
PCA... now mode 1 looks like NAP Take homes:  

• There are 4-5 degrees of freedom 
(independently-covarying 
components) in hyperspectral ap(l) 
observed in situ

• Overall amplitude/chlorophyll and 
NAP explain most of the variance

• To get more, you need really low 
uncertainty or other sources of 
information
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Fig. 1. Profile of concentration of particulate 
matter in water above spigots ( l ) compared with 
concentration of same samples with dregs from 
below spigots included ( 0 ) . 

tom and surface bottles were analyzed for 
size distribution and volumetric concentra- 
tion with the Coulter counter. The dregs 
from each bottle were then filtered onto 0.6 
pm Nuclepore filters. All filters were 
washed 10 times with distilled, deionized 
water, individually sealed in petri dishes, 
and returned to the laboratory, where they 
were weighed to the nearest 0.01 mg. 
Blank filters were similarly processed to 
correct for any changes in filter weight. 
Errors involved in the procedure were esti- 
mated to be <5%. 

The large particles lost during routine 
sampling were identified by light and scan- 
ning electron microscopy. The material fil- 
tered from above the spigots was compared 
with that below the spigots by looking at 
sections of the filters from 27, 415, and 
1,615 m above the bottom (water depth = 
2,623 m) and from the surface filter. 

The concentration of the dregs was from 
2.6-27 times that of the water above the 
spigots (Table 1). When this was inte- 
grated with the rest of the water filtered, 
the calculated concentration was increased 
by a factor of 1.1-1.7 (Fig. 1). The bottom 
half of the surface Niskin bottle was rapidly 
drained through 7Zo open spigots while 
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Fig. 2. Surface sample: Comparison of con- 
centration and size distribution of particles in initial 
sample and dregs, measured by Coulter counter. 

the ship was rolling 20”-30”, so some large 
particles may have been lost, but the dregs 
were still nearly 20 times as concentrated as 
the water above the spigots. 

Additional samples have been analyzed 
at 13 stations in the western North Atlantic 
since the data in Table 1 were obtained. 
Compilation of all the data indicates that 
the percent of mass accumulated in the 
dregs is greater in water of low concentra- 
tions than bigb concentrations, so the cor- 
rection factor is inversely proportional to 
concentration. Dividing the water column 
into surface ( <200 m), midwater ( >200 m 
deep and >200 m above bottom), and bot- 
tom water (<200 mab) results in mean 
correction factors for 30-liter Niskin bottles 
of 1.2 (1 sample), 1.57 (o = 0.19; 9 sam- 
ples) and 1.44 ( u = 0.38; 14 samples ) . The 
correction factor for all 30-liter samples (37) 
taken ranged from 1.06-2.59 with a mean of 
1.50 (u= 0.39). All dregs samples have 
caused an increase in particulate concentra- 
tion. 

The volumetric concentration of particles 
was measured in the initial sample and in 
the dregs for the surface and near-bottom 
samples. The Coulter counter measures the 
volume of each particle, which is equated 
to the diameter of a sphere with the same 
volume. Thus the calculated diameter may 
differ from the dimensions of particles mea- 
sured optically or by Stokesian settling. 
The size range of particles measured in the 
surface sample was 2.Ei-64 pm and in the 
near-bottom sample 1.0-26 pm. Many par- 
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• “Dregs” in Niskin bottles
• Protection of sample from air 

contamination, handling 
contamination at all steps

• Low vacuum pressure
• Dissolved organic carbon blanks

• DOC “adsorption sites” on 
GF/F filters

• Adsorption is not 
instantaneous nor is it 
always linear with volume 
filtered

Testing the global model
The performance statistics from the two evaluated models

proved a significant outperformance of the exponential fit.
However, evaluating the performance of these corrections on
the retrieval of POC is a difficult task. Here, we assessed the
impact of modeled DOC corrections on the final estimates of
the POC via three different independent case studies. First,
using the CLIVAR P16S dataset, we assessed the variability in
chlorophyll a concentration (Chl a) to POC relationship as a
function of the modeled DOC; second, we evaluated how
efficiently modeled DOC retention replicated the variability
observed in field-based DOC retention measurements col-
lected during a CLiVEC cruise in February 2013; and third,
we compared the models with two DOC retention experi-
ments conducted during a KORUS-OC cruise (East Sea and
Yellow Sea), at two locations characterized by distinct DOM
properties.

In the first approach, the regression of POC concentra-
tions with concurrent Chl a concentrations from CLIVAR
P16S data was explored (Fig. 4). POC concentration was cal-
culated by applying the following DOC retention correc-
tions; (1) global linear mode (GL, Fig. 4A), (2) global
exponential model (GE, Fig. 4A), (3) constant DOC correc-
tion of 14.64 lg C, representing the average value of all 1 L
DOC filter blanks collected during the CLIVAR campaign
(Avg 1 L, Fig. 4A), (4) average DOC blank, sensu Cetinić

et al. (2012), of 19.1 lg C (Avg DOC, Fig. 4A), and (5) no
correction (essentially total organic carbon, no corr in Fig.
4A). The impact of chosen DOC correction proved to be sig-
nificant in the oligotrophic environment of the southern
Pacific Ocean (Fig. 4A). In this case, the global linear model
performed the poorest, yielding a negative offset on the y-
axis, and generating several negative POC concentrations for
samples collected within lower Chl a waters (< 0.1 mg m23).
Regardless of the correction, the relationship of the Chl a
and derived POC was best described with the linear model
(all r2>0.76), suggesting that the Chl a : POC relationship
should not be used as a tool to estimate the validity of the
DOC correction (n.b. nature of this relationship can be
highly variable for other reasons, see Behrenfeld and Milligan
2012; Cetinić et al. 2015 and references therein).

For the second evaluation of the DOC global model per-
formance, data collected at several stations along the mid-
Atlantic bight were used, where DOC retention filters were
collected in triplicates parallel to the POC measurements
while using different filtration volumes. A comparison of the
in situ DOC retention measurements with both global mod-
els demonstrates the outperformance of the global exponen-
tial model over the linear model, with an average absolute
residual of an exponential model ! 2.5 times smaller than
the one found for the linear model (2.78 lg C and 5.43 lg C
per filter, respectively).

Fig. 4. Evaluation of the global models. Relationship between Chl a and POC during CLIVAR cruise differs for different DOC corrections applied
(panel A, see text for explanation of the sample groups). Difference between the modeled (GL: global linear model and GE: global exponential model)
and actual DOC retention on filters over the different volumes filtered in the mid-Atlantic Bight (Panel B). Comparison of the DOC retention experi-
ment performed on KORUS-OC samples from two optically diverse stations (Panel C, East Cell—red star, Yellow Sea—blue sea).
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Uncertainties in the “sea-truth” measurements used to build the proxy
Example: Particulate organic carbon

Chaves et al. 2021. 10.25607/OBP-1646
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Domain of training data: Dissolved Organic Carbon

CDOM can approximate DOC in the coastal ocean

Del Vecchio and Blough, 2004

15

blooms; (3) to aph (>60%) for offshore out-of-plume waters.
Considering that absorption due to CDOM and detrital
material contributed together over 80% of the total absorp-
tion at 440 nm along Transect A, the chlorophyll concen-
tration estimated by band ratio algorithms that uses the

443 nm could be overestimated by as much as !500% in
the region of Transect A if the total absorption is entirely
attributed to chl a. Similarly, we can predict an overestimate
of !250 and 150% for Region B and Region A, respec-
tively, during the high flow period. Comparisons of satel-

Figure 7. CDOM absorption coefficient at 355 nm [aCDOM(355)] (m"1) to salinity dependence for
waters in the WTNA. Numbers refer to stations. Lines represent linear regressions with parameters
reported in figure and statistics in Table 1.
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Del Vecchio and Subramaniam, 2004

• Every coastal region is different
• Better relationships when there is one strong source (e.g. river plume) and one major loss process (e.g. 

dilution into ocean)
• Photochemical loss (“bleaching”) changes the DOC:CDOM relationship!



elevated DOC, with concentrations >10 mg/L, in the upper bay waters
adjacent to the BNWRmarshes and a gradual decrease along the salinity
gradient, with DOC concentrations declining by almost a factor of two to
5–6 mg/L in the mid-bay at a distance of approx. 5 km from the creek
draining the marsh. Statistical regression of OLI- and MSI- retrieved
DOC across the full spatial domain of our study region (Fig. 7 (c))
showed a high correlation between the two datasets (slope=0.94, cor-
relation coefficient r of 0.87, and RMSE of 0.69mg/L, p< 0.001) demon-
strating very good agreement between the two sensors, similar to those
reported in previous studies (Li et al., 2019; Pahlevan et al., 2019; Chen
et al., 2020a, 2020b), despite the one day time difference in satellite
image acquisition.

Resampling the 10 m Sentinel-2 imagery to 30 m resolution for di-
rect comparison with Landsat-8 did not have a significant impact on
MSI retrieved DOC gradients (Fig. 8; example for imagery collected at
low tide on January 2, 2016). No discernable differences were found be-
tween MSI-derived DOC distribution at its nominal 10m spatial resolu-
tion and that aggregated to a 30 m grid (Fig. 8 (a) and (b)), with the
density scatter plot showing a strong and significant correlation be-
tween DOC distributions at the two different resolutions (slope =
0.78, r of 0.79, RMSE of 0.7 mg/L, p < 0.001) (Fig. 8 (c)).

3.5. Long term DOC dynamics at the marsh–estuary interface

The consistency in DOC retrievals between OLI and MSI (Fig. 7)
allowed us to merge long-term time series of DOC concentrations

derived by the constellation of Landsat-8 and Sentinel-2A/B satellites,
affording an improved temporal coverage over thismarsh–estuarine in-
terface. Time series of Landsat-8, Sentinel-2A, and Sentinel-2B DOC
products over the location of monitoring station EE 3.1 (see map in
Fig. 1(b)) demonstrated large temporal variability, with the lowest
DOC of 1.5 mg/L observed on January 6, 2018 (extreme low tide with
water level of – 0.61m, and strong NWwinds with 10m/s), and amax-
imum in DOC of 6.4 mg/L observed on September 13, 2016 (high tide
withwater level of 0.54m) (Fig. 9 (a)). Overall, seasonal processes dom-
inated over tidal exchanges or other environmental factors (e.g., winds)
at EE 3.1. A clear seasonal cycle was apparent in the satellite time series
(Fig. 9 (a)), with elevated DOC concentrations (5–6.5 mg/L) in summer
(June throughout early September) and relatively low DOC values
(1.5–4 mg/L) in early winter–spring across the 6-year period
(2013–2019) covered by the three satellites. Located at a distance of
>15 km from the BNWR wetland and beyond the mouth of the Fishing
Bay estuary, Stn. EE 3.1 is more strongly affected by estuarine processes
as well as freshwater inputs from the Nanticoke River that are also ex-
pected to show strong seasonal variability. Thus marsh–estuarine DOC
exchanges at tidal timescales are expected to play a relatively smaller
role at this location especially during thewinterwhenmarsh outwelling
is less pronounced (Fig. 4 (g)).

Consistent with the satellite retrievals, monthly (or bi-weekly in
summer) water quality monitoring at EE 3.1 also showed a strong sea-
sonal cycle in DOC, with measured concentrations ranging from
1.32mg/L to 6.45mg/L (black squares in Fig. 9 (a)). Fieldmeasurements

Fig. 7.DOC data consistency between (a) Landsat-8/OLI and (b) Sentinel-2/MSI in the BNWR-Fishing Baymarsh-estuary system. (c)Density scatterplot of Sentinel-2 versus Landsat-8 DOC
retrievals. The regression fit and 1:1 line are shown as gray and blue lines, respectively.

Fig. 8. Impact of sensor resolution on satellite DOC retrievals, with DOC maps generated with Sentinel (a) 10 m spatial resolution and (b) aggregated into 30 m resolution for the
northwestern upper Fishing Bay. (c) Density scatterplot of Sentinel-2 derived DOC with 30 m versus 10 m resolution. Blue line represents the 1:1 line.
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To assess potential interference of absorption by otherwater constit-
uents in our DOC retrievals, we examined the correlation between the
satellite-retrieved product and coincident in situ measurements of
chl-a and TSS concentrations. Both chl-a and TSSwere available atmon-
itoring station EE 3.1 through the CBP Water Quality Database and
showed considerable variability, ranging from 2.9 to 21.8 μg/L, and
from 2.4 to 14.5 mg/L, respectively (N = 20). We found that neither
chl-a nor TSS concentration in this system was correlated with
satellite-retrieved DOC (correlation coefficient r = 0.25 (p = 0.3) and
r = − 0.01 (p = 0.97) between retrieved DOC and measured chl-a
and TSS, respectively). Consistent with these results, we did not find
any strong correlation between the error in the DOC retrieval (satel-
lite-retrieved minus measured DOC) and TSS amount (r = − 0.07,
p=0.75, N=20). Although non-algal suspended particles have a sim-
ilar absorption signature to CDOM, their impact on Rrs is different due to
their backscattering properties and impact on longer (i.e., red)
wavelengths (e.g., Reynolds et al., 2001). Because of the incorporation
of the full Rrs spectral shape in our MLR DOC algorithm, the retrieval is
not as sensitive to variability in suspended particles (Cao et al., 2018).

Satellite-retrieved DOC during our three field surveys in 2017–2018
showed very good agreement with field measurements in Fishing Bay
and captured observed variability with season and tidal stage (Fig. 3).

In October 2017, at high tide conditions (water level = 0.56 m), both
field measurements and satellite imagery captured a strong gradient
in DOC in the first 4 km from the Blackwater River mouth, with concen-
trations>10mg/Lnear the rivermouth decreasing to 5mg/L in themid-
dle of the bay. Beyond 4 km distance from themarsh, DOC showed little
spatial variability (4.2–5 mg/L, Fig. 3 (a)–(c)). These results highlight
that DOC-rich waters may persist adjacent to the marsh system, even
at high tide/flooding conditions, during the marsh vegetation senescing
stage (i.e., mid-fall season in temperate systems) when significant
leaching and decomposition of marsh plant biomass typically occurs
(Jager et al., 2009; Broder et al., 2017; Santos et al., 2019; Bogard et al.,
2020). At high-tide conditions in April 2018, however, whenmarsh bio-
mass was still low, DOC concentrations in the waters adjacent to the
marsh were considerably lower and remained low (~5.5 mg/L) across
the salinity gradient (salinity increasing from 9.7 at the Blackwater
River mouth to 14.1 at the mouth of the Bay) (Fig. 3 (d)–(e)). In agree-
ment with in situ measurements, satellite derived DOC concentrations
remained relatively low (4–5.5 mg/L) within a distance of up to 8 km
from the marsh (Fig. 3 (e)). In summer, when marsh plant biomass
peaks, the marsh influence on estuarine DOC dynamics is expected to
become more prominent, particularly during low/ebbing tides
(Tzortziou et al., 2008). Indeed, in situ measurements and satellite

Table 1
Statistical results of the fitting functions formulated betweenmeasured DOC concentrations and satellite-retrieved Rrs using the training dataset (N=54). In each equation, X represents
the Rrs band combination and Y represents DOC concentration.

X variable Equation APD
(mean ± std., %)

RMSE
(mg/L)

Bias
(%)

1
2
3
4

Rrs(B3)/Rrs(B4) Y = −6.574 × X + 15.56
Y = 41.62 × exp(−1.514 × X)
Y = exp(−0.935 × X + 3.038)
Y = 15.94 × exp(−0.766 × X)
+8.068 × 106 × exp(−16.69 × X)

35 ± 32
32 ± 28
27 ± 25
24 ± 24

3.1
2.8
3.0
2.5

0.068
-1.389
-6.855
‐0.139

5
6

Rrs(B1)/Rrs(B3) Y = 14.3 × X - 0.713
Y = exp(1.959 × X + 0.767)

40 ± 29
34 ± 23

3.3
3.3

0.004
-7.684

7
8

Rrs(B1)/Rrs(B4) Y = −1.73 × X + 8.717
Y = exp(−0.221 × X + 2.049)

50 ± 41
42 ± 33

3.9
4.0

0.002
-11.371

9 Rrs(B1),Rrs(B2),Rrs(B3),Rrs(B4) Y = exp(0.544 × log(Rrs((B1)) -0.571
× log(Rrs(B2)) -2.181 × log(Rrs(B3))
+ 1.398 × log(Rrs(B4)) -1.406)

17 ± 13 1.7 -2.471
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Fig. 2. Comparison between satellite-retrieved and in situ DOC concentrations (mg/L) for the dataset used to (a) develop and (b) evaluate the satellite DOC algorithm. Symbols in red and
blue indicate Landsat-8/OLI and Sentinel-2/MSI data, respectively. The 1:1 line is shown as solid line for comparison.
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The developed algorithmwas used to examine spatiotemporal vari-
ability in DOC concentrations associated with tidal biogeochemical ex-
changes in the BNWR–Fishing Bay marsh–estuarine system, as well as
seasonal cycles and episodic events over the past 6 years from 2013 to
2019. To assess spatial and temporal variability in DOC driven by tidal
marsh–estuarine exchanges, we applied the DOC algorithm to 16 satel-
lite Rrs(λ) images, eight from Landsat-8/OLI and eight from Sentinel-2/
MSI, collected across different seasons and contrasting satellite over-
passes at high-tide and low-tide conditions (see Section 3.2). To exam-
ine DOC variability over longer timescales, the algorithmwas applied to
all Landsat-8/OLI (N = 43) and Sentinel-2/MSI (N = 35) images avail-
able from November 2013 to April 2019. A satellite-retrieved DOC
time-series record was obtained at Stn. EE 3.1 and compared to in situ
DOC measurements (see Section 3.5).

To facilitate the discussion below, we labelled four discrete pins on
the satellite images (Stns. A at 76°0′36″ W, 38°21′36″ N; B at 76°0′36″
W, 38°19′48″ N; C at 76°0′36.7″ W, 38°17′24″ N; and D at 76° W,
38°15′ N, respectively, Fig. 1 (b)) along a transect from the Blackwater
River mouth to the mouth of the Fishing Bay. The distances from Stn.
A to Stns. B, C, andD are 3.45 km, 8 km, and 12 km, respectively. Average
DOC concentrations in the area between Stns. A and B in the upper Fish-
ing Baywere also estimated using satellite data, to further assess the in-
fluence of the marsh on estuarine DOC distributions.

2.6. Assessment of Landsat-8/Sentinel-2 DOC product consistency

To build a reliable, continuous time series of surface DOC record by
combiningmulti-source satellite data, it is necessary to first ensure con-
sistency across sensors. The image acquisition time of Landsat-8 and
Sentinel-2 over BNWR at around 15:40 and 15:55 ± 10 min UTC, and
the revisit times of ~16 days and 5 days, respectively, allowed us to com-
pare images from the twomissions at a similar tidal stage and height oc-
casionally within two successive days. Satellite DOC derived from OLI
and MSI were compared using cloud-free satellite images acquired on
November 3, 2017 and November 2, 2017 for Landsat-8 and Sentinel-
2A, respectively. Both images correspond to similar flooding tide condi-
tions (tidal height ~ 0.55 m). To generate a uniform grid and data di-
mension, Sentinel-2 pixels at 10 m spatial resolution were first
aggregated to 30 m resolution.

To examine how the difference in spatial resolutions between OLI
(30 m) and MSI (10 m) impacts the retrieval of DOC gradients from
the two satellite sensors, we used a 10 m resolution Sentinel-2/MSI
image acquired at ebbing tide on January 2, 2016, and resampled to
the coarser OLI (30 m) spatial resolution using the default nearest
neighbor method. The DOC algorithm was applied to both images.
DOC retrievals were compared in the northwestern Fishing Bay area
(defined by 76°4′12″–75°57′ W Lon and 38°16′12″ –38°16′48″ N Lat)
that is influenced the most by tidal marsh outwelling and is character-
ized by strong biogeochemical gradients.

2.7. Ancillary data

Tide and wind data at the Bishops Headmonitoring station inMary-
land (NOAA station No: 8571421; 76°2′17″ W, 38°13′12″ N) were ob-
tained from the NOAA Tides and Currents website (https://
tidesandcurrents.noaa.gov). Tidal amplitude (in m) was recorded as
mean sea level (MSL). Water discharge data (m3/s) was retrieved
from the USGS National Water Information System (https://nwis.
waterdata.usgs.gov/nwis) recorded at the Chicamacomico River near
Salem, Maryland (USGS station No: 01490000; 75°48′01″ W, 38°30′
36″ N), a streamflow within the Chesapeake Bay drainage, located
approx. 21 km upstream from the confluence with the Transquaking
River. We also used water discharge data recorded at the Conowingo
Dam, Maryland (USGS station No: 01578310; 76°10′12″ W, 39°39′36″
N, data recorded every 15-min), in the lower Susquehanna River, the
largest tributary to the Chesapeake Bay.

3. Results and discussion

3.1. Landsat-8/Sentinel-2 DOC algorithm development and performance

Many previous studies focusing on satellite retrievals of DOC in
coastal environments have been based on first retrieving the absorption
coefficient of the colored component of DOM (i.e., aCDOM) and then esti-
mating DOC concentrations either by using seasonally and regionally
specific relationships between aCDOM and DOC (e.g., Mannino et al.,
2008; Joshi et al., 2017; Chen et al., 2020a, 2020b) or, alternatively,
linking the DOC-specific CDOM absorption to its spectral shape to ac-
count for variability in DOC quality in nearshore environments
(e.g., Fichot and Benner, 2012; Cao et al., 2018). Other published studies,
particularly in inland and estuarine waters, have successfully linked
DOC concentrations directly to water reflectance (e.g., Hirtle and
Rencz, 2003; Tehrani et al., 2013; Huang et al., 2017). Here, due to the
absence of CDOM absorption data in the CBP Water Quality Database -
similar to most ongoing estuarine water quality monitoring programs
- DOC retrievals were based on a relationship directly linking satellite
derived Rrs(λ) spectra to DOC concentrations. This approach allows to
use an existing, rich, and long term field dataset, representative of a
wide range of environmental and ecological conditions, in satellite algo-
rithm development and evaluation. OLI has similar spectral bands to
MSI (Drusch et al., 2012), which enables to develop one algorithmappli-
cable to data from both instruments for consistent retrievals across
missions.

Statistical evaluation of various algorithms tested here (Table 1)
demonstrated that the Multiple Linear Regression (MLR) approach, re-
lating DOC directly to the spectral shape of Rrs retrieved from OLI or
MSI, provided the optimal retrieval of DOC concentrations in our study
area. This approach yielded the best performance with an MAPD
(± std) of 17% ± 13%, an RMSE of 1.7 mg/L, and a bias of – 2.5%
(N = 54) (Fig. 2 (a)). Higher MAPD and RMSE values, by more than a
factor of three in some cases (Table 1), were derived using the single-
band ratio (blue:green, blue:red, or green:red) approach applied in previ-
ous aCDOMandDOC remote sensing studies (e.g., Brezonik et al., 2005; Zhu
et al., 2014; Kutser et al., 2016; Joshi et al., 2017; Liu et al., 2019). For ex-
ample, MAPD values of 24–35% and RMSE of 2.5–3.1 mg/L were derived
using the green:red (Rrs(B3)/Rrs(B4)) band ratio (Table 1). The MLR
algorithm links Rrs to DOC through the following function (Eq. (4)):

DOC ¼ exp ð0:544# log Rrs B1ð Þð Þ−0:571# log Rrs B2ð Þð Þ−2:181
# log Rrs B3ð Þð Þ þ 1:398# log Rrs B4ð Þð Þ−1:406Þ

ð4Þ

where B1 to B4 are spectral bands centered at 443, 482, 561, and 655 nm
for Landsat-8/OLI; and spectral bands centered at 443, 492, 560, and
665 nm for Sentinel-2/MSI, respectively. As discussed in Zhu et al.
(2014), including the red spectral band significantly improved DOC re-
trievals in this nearshore environment (Table 1).

Evaluation of the DOC algorithm using the independent validation
dataset showed good agreement between satellite retrieved and in
situ measured DOC, with an MAPD of 23% ± 19%, an RMSE of
1.9 mg/L, and a bias of – 7% (N=20) (Fig. 2 (b)). These results are com-
parable to those previously reported for satellite retrievals using a sim-
ilar MLR approach in less optically complex waters (Mannino et al.,
2016; Cao et al., 2018). DOC samples in our training/validation datasets
were collected over a broad range of conditions, in terms of both tidal
stages and seasons, with concentrations ranging from 2.32 to
19.9 mg/L. Thus, spatiotemporal variability in DOC quality and relative
contribution of other water constituents (e.g., phytoplankton and non-
algal particles) to Rrs spectral shape have already been implicitly taken
into account in the algorithm. As a result, the algorithm showed
similarly good performance at both low and high DOC concentra-
tions, with an MAPD of 21% and 17% for low (< 5 mg/L) and high
(> 15 mg/L) DOC concentrations, respectively.
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• Cao and Tzortziou (2020) – marsh system in 
Chesapeake Bay

• Missing in situ ag so created empirical DOC 
algorithm straight from high res Rrs(l)

training evaluationDomain of training data: Dissolved Organic Carbon



Perhaps unsurprisingly, CDOM ≠ 
DOC in the open ocean 

Nelson and Siegel 2013

17

Eg. - global DOC from space – Aurin et al., 2018.  
Empirical regression against 4 wavebands (440-555 nm) + salinity required, 
RMSE still 27-29 µmol L-1

482 10. THE OPTICAL PROPERTIES OF DOM IN THE OCEAN  

found that a fraction of CDOM also exhibited a 
blue fluorescence (Duursma, 1965; Kalle, 1966), 
referred to here as fluorescent DOM (FDOM). 
The linkages between DOM, CDOM, and FDOM 
are depicted in Figure 10.1. The absorbance and 
fluorescence properties of DOM are “optical 
markers” comparable to traditional biomarkers 
used in geochemistry (e.g., lignin). However, 
while biomarkers represent specific chemi-
cal compounds that can be linked to a specific 
source (synthesis process), optical signatures of 
DOM are supposedly the product of a complex 
mixture of compounds. The word “supposedly” 
is used here as little is currently known about the 
responsible chromophores and fluorophores.

Several fields of marine research have fueled 
the study of CDOM during the last 50 years. On 
the whole, these can be grouped into three cate-
gories: hydrography, optics, and biogeochemistry. 
Due to the leaching of organic matter from soils, 
rivers often have high concentrations of CDOM, 
such that estuarine and coastal mixing can be 
traced by combining CDOM and salinity mea-
surements (Laane and Kramer, 1990). This use is 
particularly valuable when there is more than one 
source of freshwater but with differing CDOM 
concentrations. If the end members are adequately 
constrained, mixing equations can be solved and 
water samples fractionated into the respective 
contributions from each source (Granskog et al., 
2007; Højerslev et al., 1996; Stedmon et al., 2010). 

These approaches are also applicable to the hy-
drography of the Arctic Ocean, which receives 
considerable amounts of terrestrial CDOM from 
rivers (Granskog et al., 2012; see Chapter 14).

In estuarine and coastal waters in particular, 
high concentrations of CDOM have a consider-
able influence on water color, light penetration, 
and spectral quality. Even in the open ocean, 
CDOM can dominate the absorption spectra in 
the blue and ultraviolet wavebands (Figure 10.2), 

FIGURE 10.1 Schematic of the dissolved organic matter 
(DOM) pool and how it is primarily composed of carbon, ox-
ygen, hydrogen, nitrogen, phosphorus, and sulfur. The boxes 
represent different subsets of compounds (numbered 1-4) 
that together make up DOM. Some compounds present are 
chromophores (i.e., absorb light, CDOM, 2) and a fraction of 
these fluoresce (3). Examples of types of organic compounds 
that may exist in each of the subsets are listed on the right.

FIGURE 10.2 The dynamic range of absorption spectra 
in the ocean from a section along 32° S in the Pacific Ocean. 
(a) Surface (5 m) CDOM absorption spectrum from the 
coastal upwelling zone off Chile (green) contrasted with a 
surface (8 m) spectrum from the subtropical gyre (red) and a 
deep-ocean (5200 m) sample from the central South Pacific. 
(b) The same spectra, in a semi-logarithmic plot. Horizontal 
gray lines show parts of the spectral range used to compute 
slope parameters and the slope ratio, SR. Also shown for 
comparison are surface particulate absorption spectra (thin 
black and thin purple lines) from the gyre and upwelling 
stations and the absorption spectrum of pure water (from 
Smith and Baker, 1981; Pope and Fry, 1997) (thin blue line).

Figure: Stedmon and Nelson, 2015, Biogeochemistry of Marine 
Dissolved Organic Matter, 2nd ed.

Domain of training data: Dissolved Organic Carbon

https://www.mdpi.com/2076-3417/8/12/2687/pdf


Overview

• Review of shared concepts across recent lectures
• Why create and use proxies? 
• Some issues and cases to highlight

• How many independent proxies can be extracted from observations?
• Uncertainties in biogeochemical measurements
• Restricted domain of the “training” dataset and extrapolation beyond it

• Missing examples?



Discussion in poster working groups from last week:

• For your sensor, pick one of the proxies you listed
• Discuss (~15 min):

• What type of samples should you collect to develop your proxy?
• Where and when will you collect them?
• How will you validate your proxy?
• Unlike last week’s exercise, you have a (finite, yet unspecified) budget... what are your biggest priorities? 

• Goal:  Think through the process of proxy development considering the issues highlighted in this lecture so far.  We 
don’t expect you to have read all the literature on your specific example proxy.



Proxies that have been mentioned in class so far... 

• POC (cp, bbp sometimes)
• SPM (cp, bbp, turbidity)
• Chl (FChl, decomposition of af(l), 

aLH, cp anomalous dispersion)
• Large Chl or POC (high-freq. 

spikes in FChl or bbp)
• Other pigments (decomposition 

of af(l))
• DOC (aCDOM(blue or UV l))

• CDOM composition (SCDOM)
• Particle size distribution (gcp, gbbp)
• Particulate inorganic carbon (acid-

labile bbp, polarized cp)

• Others?


