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Week 4 roadmap

Monday: Monte Carlo techniques 
(lecture/interactive demonstration)

Tuesday: Calibrating bb sensors

Wednesday:  Remote sensing of 
zooplankton

Wednesday:  Phytoplankton 
community and particle size 
inversion from remote sensing

All week: continue working on 
projects 

Friday: Final presentations of projects

Tuesday late afternoon discussion: 
Scientific ethics and being part of a 
community

Wednesday after dinner discussion: 
Career panel with instructors

Mon:  Arduino lab



Overarching research goal: How are phytoplankton communities distributed in space and time? At 
various scales, what changes are occurring in these communities and their distributions?

à use optical measurements to estimate parameters related to phytoplankton
à application to remote sensing data for broad scale ocean ecosystem studies

Who am I?



Responses from the 2023 Ocean Optics Class students



Responses from the 2022 IOCCG Summer Lecture Series students



MODIS February 23, 2020
NASA Earth Observatory
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∼500 ROIs/ml ∼700 ROIs/ml

March 25, 2022 March 27, 2022



What motivates our interest in phytoplankton community composition 
(PCC)?

Dierssen et al. 2021= PCC plays a role

Guidi et al. 2016

Variability in carbon flux & food web dynamics

Finkel et al. 2010



How is Phytoplankton Community Composition defined?

PSC = Phytoplankton Size Classes (note: PSC also = Photosynthetic Carotenoids…)
- pico, nano, and micro (what should the size cutoffs be?)

PG = Phytoplankton Groups
- a catch-all terms for species and size classes?

PFT = Phytoplankton Functional Types
- biogeochemical function? 

Buyer Beware: The meanings of all these terms may change based on 
the user

Bottom line: we want to define the phytoplankton present in the water by some 
metric that differs from/moves beyond total biomass (most commonly 
approximated via estimates of chlorophyll a concentration)



- Microscopy
- Pigments
- Flow cytometry 
- Automated imagery
- Merged size spectra
- Optical signatures
- Molecular methods

à see lecture by Sasha Kramer from week 1 for a very nice detailed overview: 
https://misclab.umeoce.maine.edu/OceanOpticsClass2023/assets/pdfs/SJK_phytoplankton_OO23.pdf

How is Phytoplankton Community Composition measured?



And what about units???

Absolute
- Concentrations (cells/L)
- Biovolume (mg/m3)
- Biomass, carbon (mg/m3)
- Chl a (micrograms/L, mg/m3)

Relative
- Fraction (%) of total Chl a
- Fraction (%) of total biovolume
- Fraction of some subset of the total community (e.g., % of all microplankton)
- “Dominant” group (in what units?)

Probability of occurrence (at some threshold?)



How can we scale up to regional and global views?

Discrete 
samples

Ship-board continuous 
measurements

Satellite remote 
sensing

North Atlantic 
Ocean

Direct measurement of 
cells & processes

Spatial & temporal 
resolution*
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Gray et al., 2022 L&O Methods



Adapted from M. J. Perry

marine food web & 
fisheries, carbon & 

nutrient cycles, 
HABs

satellite

The motivatio
n

The inverse challenge

Optics: a tool to link what we can measure to what we want to know

at-sea data 
collection

actual entity: 
phytoplankton 
cells, particles, 

dissolved 
matter

optical proxies 
& algorithms

absorption, 
scattering,
radiometry

at-sea data 
collection

drone
aircraft



Previously developed algorithms: two main categories 

Abundance-based Spectral-based

Reflectance Reflectance

PCC    PCC    

IOPsChl a



Abundance-based - PSCs

Chl a concentrations are related to fractions of pico-, nano-, and microplankton as defined by pigments
Brewin et al., 2010

Pico

Pico+
Nano

Nano

Micro

x-axes = [Chl a]



Chase et al., 2020

Chl a concentrations vs. fraction of pico-, nano-, and microplankton from cytometry



Xi et al., 2021Chl a concentrations related to phytoplankton groups as defined by pigments

Abundance-based – taxonomic groups



Ciotti et al., 2002 Bricaud et al., 2012

Spectral-based - PSCs



Spectral-based – taxonomic groups

Phytoplankton taxonomic groups as defined 
by pigments estimated from normalized 
water-leaving radiance

Alvain et al., 2008



Picophytoplankton estimated from Rrs

Spectral-based – taxonomic groups

Lange et al., 2020



Inputs ≠ Outputs is a fundamental algorithm limitation 
Mouw et al., 2017



Cetinić et al., in prep



What are the advantages and limitations of defining PCC via phytoplankton 
pigments during algorithm development?

• Pigments are ubiquitously measured (global coverage)
• Standardized laboratory protocols (and intercalibrations possible)
• Absorption by pigments is directly related to optical properties of 

the water

• Pigments ≠ cellular carbon/biomass, and this relationship varies 
widely 

• Taxonomic resolution is limited (and phycobiliproteins are excluded)
• Discrete samples have lower sampling resolution relative to 

continuously operated instruments



Gap 1: Information mismatch between satellite-derived phytoplankton composition 
products and user group target variables

Gap 2: Lack of traceability of uncertainties in phytoplankton group algorithms

Gap 3: Missing capabilities of current ocean color satellite measurements

Gap 4: Lack of regional capability of phytoplankton group algorithms

https://www.frontiersin.org/articles/10.3389/fmars.2017.00055/full

PC: SJK lecture



“The New Age of Hyperspectral Oceanography” Chang et al., 2004 Oceanography

Hyperspectral measurements can capture features missed by multi-spectral



Dierssen et al., 2021



Approach Input measurements Result/product Target/validation data Reference

Direct use of optical 
measurements:
Similarity Index, EOF,
and/or clustering analysis

aφ(λ) & 4th derivative of 
spectra % contribution of G. breve G. breve field and culture data Millie et al. 1997

2nd derivative of aφ(λ) Diatom contribution to Chl a CHEMTAX diatom Chl a Isada et al. 2015

ap(λ) Cell counts and Chl a fraction of G. breve G. breve field and culture data Kirkpatrick et al. 2000

2nd derivative of Rrs(λ) Detection of Phaeocystis blooms Microscopic identification of 
phytoplankton Lubac et al. 2008

4th derivative of aφ(λ) 
and Rrs(λ)

Differentiation of phytoplankton groups; cyanobacteria 
dominance in inland waters

Cultures, Hydrolight simulations, field 
Rrs(λ) measurements Xi et al. 2015; 2017

Derivatives of ap(λ)
or aφ(λ)

Pigment
assemblages or concentrations

HPLC pigments or
Chl a concentration from fluorescence

Catlett and Siegel 2018;
Shaju et al. 2015; Torrecilla et al. 2011

Rrs(λ) Pigment concentrations HPLC pigments Bracher et al. 2015; Kramer et al. 2022

aφ(λ) and Rrs(λ), and 
derivatives Bio-optical water categories HPLC pigments Uitz et al. 2015 

Lu(λ) Relative phycoerythrin concentrations PE concentration Taylor et al. 2013
aφ(λ) and Rrs(λ), and 
aφ(λ) derivatives K. brevis relative bloom strength K. brevis absorption spectrum Craig et al. 2006

Rrs(λ) Apparent Visible Wavelength Vandermuelen et al. 2020; Dierssen et 
al. 2022

Methods of spectral inversion: 
Spectral inversion and Gaussian 
decomposition ap(λ) or aφ(λ) Pigment concentrations or absorption HPLC pigments

Aguirre-Gomez et al. 2001; Chase et al. 
2013;
Hoepffner and Sathyendranath 1991, 
1993; Liu et al. 2019;
Lohrenz et al. 2003;
Ye et al. 2019

Rrs(λ) Contribution of phytoplankton groups to absorption Microscopic cell counts Roesler et al. 2004

Rrs(λ) Pigment concentrations HPLC pigments Chase et al. 2017; Wang et al. 2016

Rrs(λ) aφ(λ) and Chl a concentrations In situ Rrs(λ) Pahlevan et al., 2020; Pahlevan et al., 
2021

Approaches to extract information from hyperspectral data



Retrieval Algorithms
- Spectra as descriptors: optical indices, cluster analyses

Vandermuelen et al., 2020



Applying Mixture Density Networks (MDN) to hyperspectral Rrs

Pahlevan et al., 2021



Applying Mixture Density Networks (MDN) to hyperspectral Rrs

Pahlevan et al., 2020



Phytoplankton pigments drive spectral absorption features

data from Bidigare et al. 1990

Chlorophyll b

Photoprotective
Carotenoids (PPC)

Chlorophyll c



Cael et al. 2020

But does the inversion problem become ill-posed?



Phytoplankton pigments estimated using Gaussian decomposition

Hoepffner and 
Sathyendranath, 1993



Chl c
Chl b

Chl a

ac-s

Phytoplankton pigments estimated from ac-s absorption spectra

Chase et al., 2013



Chlorophyll a estimated from hyperspectral ap measurements

ac-s



Phytoplankton accessory pigments estimated from hyperspectral ap

North Atlantic

North Pacific

Accessory 
pigment 
absolute 
concentrations:

Accessory 
pigment ratios:



Diatoms DinoflagellatesChlorophytes, Euglenoids Silicoflagellates
Prymnesiophytes
Cryptophytes

Chlorophylls b & c

Phytoplankton pigments attributed to different groups
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Pigments from discrete water samples

Chlorophyll b Chlorophyll c



Incorporating Gaussian functions into Rrs(λ) inversion

Rrs(λ) measured in situ

Lee et al. 2002

u = umeas
g1 = 0.0949 and g2 = 0.0794 

(Gordon et al. 1988)

60 wavelengths 
between 400-600 nm 

Chase et al. 2017
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Pigments estimated from Rrs(λ) spectra measured in situ







Chase et al., 2017

Kramer et al., 2019

But most pigments are correlated with Chl a… 



Considerations of error, & “going beyond Chl a”

From Cael et al. (2020):

- Error is the difference between having four to five DoF rather than >60, and the difference between 
being able to meaningfully invert for four spectra versus 44

- Some errors such as random electronic noise can be reduced by averaging many measurements in time 
or space. Others, such a bias in calibration, cannot.

- While all optical variation in the water cannot be said to fall along a single axis, it does appear that much 
of the variation in the surface covaries with [Chl]. Thus, the interest in going “beyond chlorophyll” can 
be considered an interest in deviations from this axis. 

- Polarization will help better separate oceanic and atmospheric contributions to the total signal, and UV 
will help better separate CDOM, NAP, and phytoplankton contributions to the oceanic signal. These 
deviations are by definition second order—though we note emphatically that this does not make them 
unimportant or uninteresting!

- Take home: Judicious use of available DoF; use basis vectors that are specific to your needs in the case of 
a regional or tuned algorithm



Take-home messages re: hyperspectral measurements:

The question is not as simple as “how much information can we 
extract from hyperspectral measurements?”, but rather, 

“which approaches and methods that take advantage of the added 
information in hyperspectral measurements are relevant to my 
research question(s)?”

With limited degrees of freedom in hyperspectral measurements 
alone, consider the incorporation of other types of optical and/or 
environmental data during algorithm development and application, 
as well as spatial and temporal resolution requirements.



Recent work, new approaches, and expanding 
data types & tools



à New method to estimate phytoplankton groups from pigments



Slide credit: S. Kramer



Slide credit: S. Kramer



Lombard et al., 2019



Imaging FlowCytobot (IFCB)

Plankton imagery used to determine community composition of 
cells ~8-150 μm



à Note that deep learning networks do not necessarily require a separate feature extraction step

https://github.com/ifcb-utopia - Tools for processing IFCB images including a 
CNN demo w/a “toy” dataset  

https://github.com/ifcb-utopia


Variability in diatom carbon across chlorophyll a concentrations

Chase et al., 2022



Variability in diatom carbon, phytoplankton carbon, and POC across chl a



Haëntjens et al., 2022

Merged cytometry-based phytoplankton size distributions



PSDs and optical size proxies

Haëntjens et al., 2022



Complementary machine learning workflows

Database of classified plankton 
imagery

Train ML networks to estimate 
diatom biomass from 
environmental/optical data

Prepare phytoplankton 
imagery data and train CNNs

Apply trained network to 
unlabeled phytoplankton 
images

Prepare in situ datasets of 
environmental measurements 
& optical properties

Assess how well data represent 
global conditions



Averaging & merging all input data to a 1-km along-track “grid”

Example when the ship is focusing on one location 
or feature in the ocean

• Mean and standard deviation are stored during 
averaging for subsequent error propagation and 
uncertainty analysis

• Various types of datasets can be easily compared 
based on grid indices

Above: example underway data 1-min binned data 
Below: 1-min binned (open blue) & 1-km grid (black)



NASA MODIS Aqua 2020 annual mean

Dots show locations with both plankton imagery data & model input variables

How well do our model training data represent global conditions?

Distributions of global (gray) 
and algorithm training (green) 
chlorophyll a



How well do our model training data represent large-scale 
variability?

• Black dots at right represent cruises with 
both input data and plankton imagery and 
thus can be used for network training

• Some portions of the TS/Chl space are 
underrepresented



Addition of ancillary environmental data

Chase et al. 2022

• Diatom carbon and environmental variables are correlated but with high variability 
• Chl a, temperature, and salinity are all available from satellite

Daily MODIS Aqua Chl a Daily MUR SST product Monthly SMAP SSS

ρ = 0.71 ρ = -0.16ρ = -0.42



Environmental data + plankton imagery + machine learning 

Chase et al. 2022

Western North 
Atlantic

• Different spatial patterns are observed compared to estimates of diatoms solely from Chl a
• Full error propagation: uncertainty in diatom carbon = 65%

Cdiat_Pigments (Eq. 2,5)

Cdiat (Eq. 6)

3-parameter neural network

Previous Chl a-
based method 
(Hirata et al. 
2011)

Updated Chl a-
based method

Neural network-based method

Chase et al. 2022



Uncertainty calculations are necessary!

Diatom ID accuracy
Cell biovolume 
estimate

Statistical counting 
error

Chl a uncertainty

Neural network 
uncertainty

Uncdata

At low estimated diatom carbon values, the absolute error dominates 
over the relative error, and thus UncNN= max(1.05 mg m-3, 65%) 

Is it good enough???



https://eos.org/opinions/overcoming-the-challenges-of-ocean-data-uncertainty



(near) real-time use of optics to locate features of interest



https://seaflow.netlify.app/

Open-source data repository of picoplankton in the open ocean



https://simonscmap.com/



https://www.nature.com/articles/s41597-023-01973-y

https://www.nature.com/articles/s41597-023-01973-y


How can we navigate the push-pull of the untapped potential in 
PCC algorithms and the inherent challenges?

Different questions will have different data needs. Consider when a 
given data product is applicable, and when it is not. What do you 
want to know, and why? 

àConsider scales of spatial and temporal variability
àRemember that uncertainties “complete the data”



What are the major challenges in PCC algorithm work? 

- Sensitivity of methods to the uncertainties in measured products and/or 
intermediate derived products

- Target variables (PCC groups) are often defined by proxy, ultimately limiting 
algorithm refinement

- Sufficient datasets for model development and testing are not trivial to collect

- Linking products to what is needed by end users (e.g., climate & ecosystem 
modelers, water quality management & HAB detection)



What are the exciting opportunities in PCC algorithm work? 

- Advancements in data collection technology for assessing in situ PCC 

- Hyperspectral satellite remote sensing & UAV data

- Increased application of machine learning and computing power 
advancements

- Incorporation of additional/ancillary data, both in situ and via combing data 
from multiple satellite platforms

- Improved models and data collection that in turn provide insights into finer 
spatial and temporal scale properties of ocean dynamics



Ocean Optics Summer Course, 2011
Darling Marine Center, UMaine



Thank you!



A few favorite resources for GitHub, python, and machine learning

Git – the simple guide:
https://rogerdudler.github.io/git-guide/

Data Analysis in python for oceanographers:
https://currents.soest.hawaii.edu/ocn_data_analysis/index.html

Recommendation from Patrick:
https://www.pythonlikeyoumeanit.com/

Tools for satellite data analysis designed by Patrick:
https://github.com/patrickcgray/open-geo-tutorial

Set of four videos that explain neural networks and deep/shallow learning:
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

This website lets you play around with number of layers and neurons in a neural network and visualize the effects:
https://playground.tensorflow.org

General resource for clear explanations of math terms and concepts:
https://betterexplained.com/

https://rogerdudler.github.io/git-guide/
https://currents.soest.hawaii.edu/ocn_data_analysis/index.html
https://www.pythonlikeyoumeanit.com/
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://playground.tensorflow.org/
https://betterexplained.com/
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