The beam attenuation coefficient and its

spectra

(also known as beam-c or extinction coefficient).
Emmanuel Boss, U. of Maine

What I hope you learn:

* Why we measure the beam attenuation.
« How we measure the beam attenuation.
« How does it vary in the ocean (x, z, 1).

* Creative ways to use if.



Class context: Week 1 roadmap

Absorption part 1:
Theory, context,
overview

Absorption part 2:
Measurements and
practical considerations

Wednesday-Thursday:
Scattering, beam
attenuation, and particle
size

Friday: Phytoplankton
and fluorescence

Tuesday lab: absorption
measurements without
particles

Wednesday lab:
absorption measurements
with particles

Thursday lab: scattering
and beam attenuation
measurements

Friday lab: fluorescence
measurements



Why do we measure the beam attenuation?

Related to concentration of suspended particulate
and dissolved materials.

Longest IOP for which commercial instrumentation
exist.



What do we measure?

How much light makes it from source to detector.
Not absorbed nor scattered along the path.

Collimated beam - spreads minimally as it
propagates. Source can be polarized (laser).

Detector and source need to be aligned along the
beam.



Review: Theory
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Review: Theory
O;=0 exp(-c.) 2 ¢ = (-1/L) In(®,/D,)
d./D, - "transmission”

Additive with both concentration and
substances. ¢ =Xc~= c*x [concentration]

Assumptions: no interaction between
components or with light. Single scattering.
Monochromatic.



Measurement Reality
c = (-1/L) In(®:/D,)

We typically never measure @, (some instruments do
monitor changes in lamp intensity).

We measure a reference material:

Cref = (-1/L) In(q)’r,ref/q)o) Remember:
Csample = (=1/L) In(®Dy somple/ Po) InA-InB=In(A/B)

Csample'cref = ('I/L) In((D’r,sample / (D’r,ref)
Works as long as @, is stable or its stability monitored.



Review: Theory - a little more
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What about the windows? (I)t,w=q)0T2G-WeXp(' CWL)

(I)t,sam+w=q)0T2G-Wexp ('(Csam+cw)L)

() Dy =D exp(-c

t,sam+w samL) Issues: air, salts



How do we choose a pathlength?

We want to maximize sighal/noise.
We want to minimize multiple scattering.

Uncertainty in beam attenuation:
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Largest relative error when Tr=1or Tr-O
Minimal relative uncertainty is when Tr=1/e or when c=1/L.

With a 0.25m sensor, c=4m1. With a 0.1m sensor, c=10m-,




Measurement Reality

Roesler and Boss, 2008
c = (-1/L) In(d4/D,)
source

detector
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r
Detected flux (®,) To get a signal detector has finite
measurement must acceptance angle -> some forward

exclude scattered flux scattered light is collected.



Beam-c issues: acceptance angle.

Petzold, 1972: up to ~30% of scattering in first 1°.
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Measurement Reality
c:sample “Cref = ('I/L) ln((DT,sample / (D’r,ref)

Your reference material could be a deep water mass (e.g.
Gardner).

Another wrinkle: Many sensors report a signal even when
no light hits the detector (dark signal). For accurate
measurements this signhal needs to be removed:

Csample ~Cref = ('I/L) Iﬂ({q)‘r,scxmple' (Ddar'k} /
{(D’r,ref' (Ddar'k})



Beam vs. diffuse atfienuation




Beam attenuation measurement

Advantages:
Well defined optical quantity (for a given acceptance angle).

No need to correct for absorption or scattering along the
path (unlike the VSF and a).

Not dependent on polarization state.

First commercial inherent optical quantity measured
(O(1980)) < long historyl!



What is a typical distribution of the beam attenuation?

Why 660nm?

What do we learn from
measurements at a single
wavelength?

What are the particles
affecting C,(660) at
different parts of the
water column?

What are the processes
that may cause them to
be present?
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typical upper ocean distribution

ON THE NONCORRELATION OF THE VERTICAL STRUCTURE OF LIGHT SCATTERING AND Chl/ (To’ral volume):
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Theoretical beam Attenuation:

Like all TOP, ¢, is dependent on size and composition.
Many ways to showcase it (which is relevant? Units?):

C., = attenuation of a single partilce
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Theoretical beam A’rtenua’rion:

2 121 (\=660nm) ~ Gl
Particle specific beam-attenuation, = ' .
Beam-c/volume(mass) depends on: ¢
§ 0.8l n=1.1 |
g 3 121 (A=660nm)
'Slze. éj o4l n=1.05
2 An=1.02
‘Index of refraction. 04
: :0 n=1.05 |
*Absorption. |
202
To further 'compact’ the £ oo
presentation size is B [

0.01 0.1 1

no rmal i Zed by Wave l enQT h . . Particles sizlcoparamelle(r).onDM 1000

10000




Interestingly,

Empirical Beam attenuation/mass only changes by a
factor of 2 between organic and inorganic particles
(e.g. Babin et al., 2003).

How come?
Answer: most organic material are water filled ‘bags’

where the dry material (sugar, protein, lipids) are of
high index of refraction (Aas, 1996).



Single wavelength beam attenuation and
biogeochemistry:

Found to correlate well with:

*Total suspended mass

‘Particulate organic carbon

‘Particulate volume

‘Phytoplankton pigments in areas where light MLD is
stable and light relatively constant.



Good correlation with total particle volume, and particulate.organic.carbon.
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But, there is some variability in attenuation/mass between studies:

Q. How would you expect
¢,/ SPM to be if ¢, is
proportional To cross-
sectional area?

Lf c, is proportional to
volume (mass)?

Q. How would acceptance
angle affect particles we
capture?
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Hill et al., 2011
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Handling and aggregates:
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For particles with D»4:

When scattering centers are far enough, IOPs are additive.
Optical properties o« cross-sectional area.

Depends on aggregate packaging ( ‘fractal’ dimension).
Spectral dependence of scattering o«c A7



Diel cycles in beam-attenuation
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beam-attenuation and carbon flux
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¢, is sensitive to the wavelength of measurement:

A=420nm

n=1.05 |

o
o

<
i
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T

particle beam attenuation/volume

0

Particle diameter[u]

The instrumental ‘filter’ is size dependent:

Particle size where maximum c/volume occurs and its width
changes between blue to red wavelengths.



Beam-c and PSD relation:
Mie Theory (homogenous spheres):

Volz (1954): For non-absorbing particles of the same
nand a power-law distribution from D,;,=0 to
DmGX:OOl

N(D)=N.(D/D. )

cp(x):cp(xo)(ijy,gzyw

7\‘O
- expect a relation between attenuation
spectrum and PSD.



How does theory work?

Do we expect the

assumptions to be valid?

Measured spectral

exponent

Measured PSD

exponent

Boss et al., 2001
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Global stats of spectral shapes
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Global stats of spectral shapes
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Another application of spectral shape:

y
c;(l) =cp(A) — AI:532)\nmi| [m™!] e
1.2

Chlorophyll from beam-c vs. from a(i)
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Seasonality:

Particulate attenuation spectra
as a tool to study particle
composition and species
succession.

|IOP data fromz=3 m

Phytoplankton type al is
inferred to be high-light
adapted, a2, is low-light
adapted

Roesler and Boss, 2008 A2 Sepd2 Oct02  Nowd2 Decd2  JanO3



Summary:

*If T had to do a single optical measurement, it would be c(660)
‘Beam attenuation is a robust IOP (no need to correct).
‘Beam-attenuation has a long history as proxy for mass.
-Spectral beam attenuation has significant more information.

‘Remember caveat (acceptance angle, dark, blank etc’).



