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Machine Learning

ML algorithms perform a specific task without using explicit instructions, relying on
patterns and inference instead.



Why Machine Learning for Remote Sensing

Ridge et al 2020
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Why Machine Learning for Remote Sensing
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What does machine learning do?

At its most basic ML systems classify input data, cluster
data, recognize patterns, and regress data into models
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What does machine learning do?

At its most basic ML systems classify input data, cluster
data, recognize patterns, and regress data into models

This could mean:

face recognition
predicting home prices
modeling animal habitat
estimating chl-a

predict what you will buy
filling cloud gaps
predict netflix preferences
predicting PCC
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What does machine learning do?

At its most basic ML systems classify input data, cluster
data, recognize patterns, and regress data into models

This could mean:

face recognition
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Machine
Learning

Supervised Unsupervised
Learning Learning

Model training with labelled data

Model take actions in the environment then
/ \ \ received state updates and feedbacks
\ \
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Model training with unlabelled data
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100K, 1T GROUNG
UNCONTROLLABLY™

CURVE-FITTING METHODS

AND THE MESSAGES THEY SEND
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LIKE THOSE BUMBLING
POLYNOMIAL PEOPLE

‘ITM MAKING A
SCATTER PLOT BUT
I DONT WANT TO!

"I NEED To CNECT TESE
WO UINES, BUT MY FIRST IDEA
DIDNT HAVE ENOUGH MATH?

~ *T CLICKED ‘SMOOH
LINES IN EXCELY

"STEN, SCENCE IS HARD.
BUT IM A SERIOUS
PERSON DOING MY BEST*

“T HAD AN IDEA FOR HOU
TO CLEAN UP THE DATA.
WHAT DO YOU THINK?"

“T HAVE. A THEORY,
AND THIS IS THE ONLY
DATA T COULD FIND®

"PS YOU CAN SEE, THIS
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THE- WAIT MOND DONT
EXTEND IT ARARAA"

XKCD



Classify phytoplankton types
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Regress c
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“All models are wrong, some are useful”

e some ML models can be wrongly in wildly unpredictable ways
e must aggressively test and convince yourself it is robust

Classification

Regression

Overfitting Right Fit

Underfitting




Clustering

Finding spatial/spectral/temporal patterns, outliers, etc
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Interpolation
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Outlier Detection

Robust covariance One-Class SVM  One-Class SVM (SGD) Isolation Forest Local Outlier Factor
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The Simplest Neural Network




The Simplest Neural Network




So what is Deep Learning?




So what is Deep Learning?

Learning means finding a
combination of model parameters
that minimizes a loss function for
a given set of training data samples
and their corresponding targets.

Overfitting?




Play with it: http://playground.tensorflow.org/
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http://playground.tensorflow.org/
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So what is Deep Learning? =
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Convolutional neural networks...

e learn to recognize high-level structure in /
images by building hierarchical representations

e extract features via spatial convolutions with
filters

e learn filters via iterative minimization of a risk
function

e have shown capabilities beyond human
performance for image analysis

Layer 1

Figure Credits: DL with Python by Francois Chollet
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So what is Deep Learning?

Recurrent neural networks...

e learn to extract patterns in sequences /

e carries information from each time step to
every future timestep

e |earn weights via iterative minimization of a risk
function

e have shown capabilities beyond human
performance for image analysis
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Recap: Why Machine Learning in Remote Sensing?

It is useful for its ability to represent complex, nonlinear relationships across
spectral, temporal, and spatial dimensions.




Recap: Why Machine Learning in Remote Sensing?

It is useful for its ability to represent complex, nonlinear relationships across
spectral, temporal, and spatial dimensions.

Spectral relationships between bands (and relations between those relations)
Spatial relationships such as seascape context

Temporal relationships such as phenology or bloom cycles

Combining sensing modalities (e.g. Optical + SAR)
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Object Detection: patch Based
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Object Detection: Bounding Box

Green et al. 2023



Object Detection: semantic Segmentation
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Recap: Why Machine Learning in Remote Sensing?

It is useful for its ability to represent complex, nonlinear relationships across
spectral, temporal, and spatial dimensions.

But simplicity is beautiful if it is feasible.



Specifically for Remote Sensing Inversions

you can’t extrapolate beyond train/test data

the simpler the better and comparing to a simple baseline is critical
assessment needs to be spatially and temporally independent

if we improve 1-2% over a polynomial regression of a band ratio (to predict
chla) with a complex NN is this beneficial?

sometimes what we care about in the ocean in the context of climate change
is anomalies and things different from expectations

think about encodings - you might be interested in the encoding of a light

attenuation profile into a single Kd - or you might be interested in the
encoding of a spatial pattern into some more semantically meaningful vector.
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Python and Machine Learning Resources

Building a strong but basic python foundation (e-textbook):
o https://www.pythonlikeyoumeanit.com/
Become python proficient (textbook):
o https://www.amazon.com/dp/0134034287/
Open Geospatial Tutorials using Python for Geospatial and Remote Sensing Analysis
o https://qithub.com/patrickcgray/open-geo-tutorial/
ML Crash Course (online class from Google):
o hitps://developers.google.com/machine-learning/crash-course/
Python and Deep Learning with Keras (textbook):
o hitps://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438
Neural Networks Video Series (highly recommend)
o hitps://www.youtube.com/watch?v=aircAruvnKk
Papers:
o Ma et al. Deep learning in remote sensing applications: A meta-analysis and review
o Zhang et al. Deep learning for remote sensing data: A technical tutorial on the state of the art
o Lecun et al. Deep Learning



https://www.pythonlikeyoumeanit.com/
https://www.amazon.com/dp/0134034287/
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Quick Exploration

https://qithub.com/patrickcaray/oceanoptics2021/blob/main/oci ml 0023.ipynb



https://github.com/patrickcgray/oceanoptics2021/blob/main/oci_ml_oo23.ipynb

Deep Learning Technical Overview
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Surpassing Human Performance

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

DL is now beating humans at many tasks:
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Driving
Language Translation
Voice Recognition Y 9
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So what is Deep Learning?

First 36 images in MNIST

0 20

0 20

0
0
20

0 20

0
10
20

0 20

0
10
20

0
0
20

0 20
0 20

0
0
20

0 20
0 20

0
0
0

ﬂ | 8
o °

0
10
20

0
10
20

0
10
20

0
10
20

0
10
20

0

0
0

0
10
20

Ej

0
0
20
0
0
0

0
0
20
0
0
0
0
10
20

0 20

0
0
20
0

0 20

0
0
0

0 20

0
10
20

0

0

0







So what is Deep Learning?
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So what is Deep Learning?
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So what is Deep Learning?

784x16+16x16 + 16x 10

weights

16 +16 + 10
biases

13,002

Finding the right

Learning — = . :
& weights and biases




So what is Deep Learning?
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So what is Deep Learning?
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So what is Deep Learning?
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So what is Deep Learning? - Questions???
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So what is Deep Learning?
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So what is Deep Learning?

A
Loss —— Step, also called learning rate
value ,
Starting
- point (t=0)

Parameter Figure 2.11 SGD down a 1D loss
value curve (one learnable parameter)



So what is Deep Learning?
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Figure 2.12 Gradient descent
down a 2D loss surface (two
Final point learnable parameters)




So what is Deep Learning?

Figure 2.12 Gradient descent
down a 2D loss surface (two
learnable parameters)
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So what is Deep Learning?

Learning means finding a combination of model
parameters that minimizes a loss function for a
given set of training data samples and their
corresponding targets.

Loss is the quantity you'll attempt to minimize during
training — so it should represent a measure of
success for the task you're trying to solve.

The optimizer specifies the exact way in which the
gradient of the loss will be used to update
parameters in your model.
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So what is Deep Learning?

Learning means finding a combination of model

parameters that minimizes a loss function for a '"pi’t i
given set of training data samples and their
: . _ Layer
corresponding targets. Weights ™ eaifensomraion
. _ Layer
Navigate to: We:f;hts " | (data transformation)
http://playground.tensorflow.org/ Weight Predictions True targets
update Y Y
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So what is Deep Learning?

Learning means finding a combination of model
parameters that minimizes a loss function for a
given set of training data samples and their
corresponding targets.

Overfitting?

Navigate to:

http://playground.tensorflow.org/




Let's build a Neural Network!

super simple

Navigate to:

https://github.com/patrickcgray/deep_learning_ecology

= python Keras
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So what is Deep Learning?
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Figure 1.5 A deep neural
network for digit classification



Train your own Multi-layer Perceptron!

Navigate to:

https://github.com/patrickcgray/deep_learning_ecology

MLP Classifier l:> “2”







So what is Deep Learning?
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So what is Deep Learning?
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So what is Deep Learning?
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So what is Deep Learning?
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Figure 1.6 Deep representations learned by a digit-classification model



So what is Deep Learning?
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Train your own Convolutional Neural Network!

Navigate to:

https://github.com/patrickcgray/deep_learning_ecology

(final output)
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Figure 1.6 Deep representations learned by a digit-classification model



So what is Deep Learning?

Layer 1 Filters, Neuron Receptive Fields,
Convolutional Neural Network Macaque Visual Cortex
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So what is Deep Learning? g
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Convolutional neural networks...

e learn to recognize high-level structure in /

. T . . . Convolution
images by building hierarchical representations . Layer
. . . . V
e extract features via spatial convolutions with o) ////
filters T ) 3
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e have shown capabilities beyond human
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Train your own CNN for Real .. Images!

Navigate to:

https://github.com/patrickcgray/deep_learning_ecology



