Lecture 8 — Scattering Part 2

Scattering Measurement and Instrumentation
Scattering Measurement Examples and Models

Wayne Slade (Sequoia Scientific, Bellevue WA)
Ocean Optics Summer Class 2023
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Measuring the VSF
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Near-forward VSF measurement with LISST

Laser In-Situ Scattering and Transmissometry Near-forward scattering depends

on size of particles in sample.
S Measuring scattering at multiple

2, angles allows estimation of
@/. . . . . .
43,-?9 particle size distribution
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sample
S, volume

Q@ ‘ %%4» ?Q( O-Oé . .
- G e, = LISST near-forward scattering uses a Fourier lens to
direct scattering from sample volume at a given angle
Transmissometer: laser source with reference to a given radius on a focal plane detector (r = fsin6)

detector and transmitted power detector (very
small acceptance angle)



MASCOQOT scattering sensor
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LISST-VSF scattering and polarization instrument

ball Commercially available in situ, high-resolution, wide-angle range
eyeba VSF instrument, includes polarization (DoLP) measurement

Eyeball scans VSF from approx. 10 to 160°, LISST-type near-
forward scattering optics measures VSF from approx. 0.1 to 15°,
and the two are merged during processing
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Slade et al. (2013)



Shape of backwards scattering

0.25
Sullivan and Twardowski (2009)
’ >7000 1-m averaged measurements
Maybe we don’t always = o2} compared with Fournier-Forand
need the full VSF? 5,
What if we just wanted to fg
estimate by, (1)? o)
«w 0.15}F
Look at the shape of the
backwards VSF relative to by,
°17g0 100 110 [ 120 130 140 150 160 170
angle (°)
Low variability here suggests that we could
use a measurement of VSF at a single bbp = Zﬂﬁp (lp)Xp (Y)

angle, ﬁp(~115°), to estimate by,
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Shape of backwards scattering
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Estimating bbp from “single angle” VSF measurement

Light Emitting
jode .
. %EE \(4 \\;, Emitted beam, FOV of detector
Reference 1

Photodiode

Sampling result in a range of scattering angles

- Yolume

making it back to the detector

e
— S
e -
-

Photodiode

Lens
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Spectral Filter

We measure an “average” VSF

T
™ Instrument Face L) = f B)W ()dy over some range of angles,
0

nominal Y

Weighting function W (y) can be determined two ways:

Experimentally by moving a well-characterized reflective surface
away from instrument face to measure response of instrument —
this is an absolute calibration (Maffione and Dana 1997)

Numerically by simulating a “virtual plaque” (Sullivan et al 2013,
Zhang et al. 2021)

HydroScat optics (D Dana / HOBI Labs)
ECO-VSF Sullivan et al. (2013) 11



Estimating by, from “single angle” VSF measurement

“virtual plaque” approach (Sullivan et al 2013, Zhang et al. 2021)
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Experimental approach with reflectance plaque measures the actual instrument response between
light source and detector through the sample volume
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For the virtual plaque, after calculating the weighting function the instrument magnitude response

still must be calibrated with a suspension where we know the VSF (i.e., traceable microspheres)
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Scattering constituents in the ocean

Sea water — pure water plus salts Dissolved materials — colloids are considered

Bubbles dissolved and could contribute to scattering
based on theoretical models, however, no

Turbulence observational evidence; see Stramski and

Wozniak (2005), Dall'Olmo et al. (2009).

Phytoplankton

Aggregates — contribution to angular scattering
is poorly understood

Non-algal particles — non-phyto organic
particles and inorganic/mineral particles




Scattering by seawater (molecular and salts)

Based on Smoluchowski-Einstein Fluctuation Theory

random thermal motion of molecules in a liquid causes fluctuation in the
number of molecules in a given volume element

microscopic fluctuation in number of molecules leads to microscopic
fluctuation in density and consequently index of refraction

Seawater contains both water molecules and salt ions, must account for
additional fluctuations
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FiGure 1: Diagram illustrating the random thermal motion of molecules inducing a change of density of a small volume element in pure
water (a) and an electrolyte solution (b, ¢). Here, we assume the molecular mass for solutes (darker blue dots) is two times that of water
molecules (lighter blue dots). Therefore, in (c), the exchange of two solute molecules with four water molecules does not change the
density but alter the concentration of solute.

Zhang and Hu (2021)
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Scattering by seawater (molecular and salts)

State of the art <2009 has been a combination of excellent experimental data from the 1960s (Morel)
combined with the Smoluchowski-Einstein physical model and some evolution of the constants (e.g., S,
on?/dp, 8) used; largely empirical salinity effect based on single seawater measurement

see Zhang and Hu (2021) “Light Scattering by Pure Water and Seawater: Recent Development”
https://doi.org/10.34133/2021/9753625
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Scattering by seawater (molecular and salts)
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Scattering by bubbles
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Scattering by turbulence
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Scattering by phytoplankton

VSF normalized to 90 degrees
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Figure from Mobley OOB (2022), data from Volten et al. (1998)
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Scattering by non-algal particles — minerals
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Measured mass-specific scattering coeffcients b*(4) for
four types of minerals. From Ahn (1999, data courtesy of A.
Morel). Figure from Mobley OOB (2022)
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Measured mass-specific scattering coeffcients b*(4) for the same
samples of mineral dust suspended in seawater. From Stramski et
al. (2007, Fig. 6) with data provided courtesy of D. Stramski. Figure
from Mobley OOB (2022) 20



The “backscattering enigma”

Modeling phytoplankton as homogeneous spheres results in
backscattering levels too low (only a few percent contribution) to be
consistent with their influence on ocean color remote sensing
reflectance (e.g., Stramski and Kiefer 1991)

“..our present-day interpretation and | |
. . . Stramski, D., E. Boss, D. Bogucki, and K. J.
detailed understanding of major sources Voss, 2004. The role of seawater constituents
; ; ; 1R ; in light backscattering in the ocean. Progress in
of backscattering qnd its variability in the Oceanography, 61(1). 27-55.
ocean are uncertain and controversial.”



The “backscattering enigma”
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Both attenuation ¢, and
backscattering by,, were measured

Assuming a population of Mie
scatterers (with consistent size and
composition) to represent oceanic
phytoplankton could not explain
the measured IOPs
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The “backscattering enigma” 5>
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Final thoughts

In the ocean, to make high quality measurements, you can almost never neglect absorption
compared to scattering, or vice versa, for example:

When measuring absorption, you need to correct for scattering (e.g., ac-s
measurements)

When measuring scattering, you need to correct for absorption/attenuation along the
path or through the sample volume

So in general you need to measure both absorption and scattering simultaneously, and then
correct once and/or the other

All IOPs are extremely variable, even for a particular component like phytoplankton. There is
no single phytoplankton absorption spectrum, and it is even worse for scattering due to size
and shape effects. This variability makes it very hard to model |IOPs.

Models are always approximate. They can be good on average, but terrible in any specific
case.

Borrowed from Curt Mobley, see also section 3.5 in OOB, Mobley (2022)



Final thoughts

Models are always approximate. They can be good on average, but
terrible in any specific case. When using any model for IOPs, think about:

What data were used to develop the model?
Global relationships may not be appropriate regionally

Regional models may not be valid elsewhere (e.g., a model based on
North Atlantic data applied to the south Pacific)

Models based on near-surface data may not be applicable at depth

Models based on open-ocean data may not be applicable to coastal
waters

Models based on Mie theory may not be valid for your (nonspherical,
nonhomogeneous) particles.
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