Apparent Optical Properties (AOPs)
Emmanuel and Charlotte

A good AOP depends weakly on the external
environment and strongly on |IOPs.

Historically IOPs were hard to measure (but easy to
interpret).

AOPs are easier to measure using radiometers (but often

harder to interpret).
Thanks to slides by Mobley and Roesler
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Why not use irradiance as an AQOP ?

Ocean Optics Book
Crater Lake San Vicente Reservoir
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Figure 2.2: Spectral downwelling and upwelling irradiances measured in Crater Lake, Ore- Figure 2'.3: Sl?ectral downwelling and upwelling irrac?iances measured.in San Vicente Reser-
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=>» Relatively easy to measure

=>» Do they fit all the criterias ?

=» Highly variable depending on external conditions (ex: Cloud overpass)



K-functions : much stronger contenders:

A 1 dEq4(z,\) dln E4(z, \) _ 1 E(X07)
Ka(z,A) = T Ealz, N e = K(4,z) zln(—E(A, ) )

The depth derivative (slope) of the Irradiance on a log-linear plot

Ed and Eu at 555 nm Case1,Chl=1mgm®
1.00E+01 Factor of 10 i 1K,
—~ vanation for : i K,
E F _"\‘:_._________‘ ; — 10 :_ _E
£ LN — different sky | ——Ed® : B
) e — - EUU) o E K
< 1.00E-01 Ny —EdpD) = 2ok 3.
s - . — — — Eu(30) = E ;
% 1.00E-02 "= mmg | T = Ed(60) - ]
3 . | T . Eu(60) © 30F E
L 1.00E-03 - . —— Ed{owest : , ]
T 1.00E-04 1 Rt ] o L 3
oom e e e W . S|m||0r' sun at 60: dotted E
X 10 20 30 0 - S|Op6$ 53?)4 0.06 0.08 0.10 | 0.12 0.14
Figure from Collin Roesler depth [m] ‘ ‘ : ; | .

K at 555 nm [m'1]

=>» What can you say about the different Kds (relationship to each other and to the sun angle) ?



K's have a strong dependance on IOPs

Crater Lake and Pure Water San Vicente Reservoir
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Figure 4.2: The red curve in the left panel is the average K4 between 5 and 25 m in Crater much as Crater lake’s Kd and Ku

Lake; the blue curve is the average K, between 5 and 25 m. The green curves are for
optically pure water, including Raman scattering effects. The right panel shows K43 and

Ky for San Vicente Reservoir. > Note that they didn’t use Ed(0) in
the Kd computation ...



Dependance on solar angle o o
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Convergence at depth
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Figure 4.3: Computed K functions for “highly scattering” water. The Sun was at a zenith

angle of 40 deg and the sea surface was level. The optical depth is numerically equal to Same but highly absorbing water .
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At depth (and far from the bottom !), irradiance is no longer affected by boundary conditions .

=>» For a given water body, the K’s all approach the same value as you go deeper: the asymptotic diffuse
attenuation coefficient, K.. , which is an IOP (or at least depends solely on IOPs)



How do we measure it ?

In theory : In real life :
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Assuming homogeneity : Ed (z) = Ed (0)exp(-Kd(z))



Organelli et al.,2016

Correction for the first few meters

Dark values due to
Knowing it is noisy in the first instrument

N
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Current BGC-Argo floats have 2 wavelengths in common with

satellites = as we are moving towards hyperspectral
measurements, QC will have to be adapted for different

wavelengths

Iterative Kd
T 1 I T

0.45

If you have light at surface (from
Satellite) and K = can constrain
the whole subsurface light field

available for photosynthesis and
photochemistry.

=» Primary production, heat

350 400 450 500 550 exchange etc ...
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What about KPAR

SRR s it constant with depth ?

ya_ From J.S. Levine

Are all wavelengths attenuated with depth at the
same rate ? NO

K,(iPAR,z) = lln[%J

z iPAR(z)

=» Is highly dependent on the layer in which you
calculate it .

For a layer of 2 zpd (From Morel07) :

K,(iPAR) = 0.0665 + 0.874K,(490) — 0.00121 / K ,(490).




Average (mean) cosine OSOMEO!

The average cosine gives the average of the cos(@) as weighted by the
radiance distribution.

=>» This tells you something about the directional pattern
of the radiance.
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What do they tell us ?

The more scattering > the faster is asymptotic

attained . .
The more.gbsorbing 9\ the more collimated
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Mobley, 2004, Hydrolight with b=a (b/c=0.5) &
b=4a (b/c=0.8).

Collin Roesler



AOPs are closely linked together and can be used
in Inverse problem solving (more on that later ...)

Figure from Collin Roesler
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Explain these AOPs...
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A survey of methods to obtain ‘reflectance’
Based on review by Ruddick et al., 2019

Take away message:
There are many kind of ‘reflectance’.

In all, upwelled ‘light’ is normalized by downwelling ‘light’.

L

Watch out for definitions.

In each | want you to think about what problems there may be.



What do the satellite measure?
What reflectance is typically computed?

Radiance is typically measured off nadir to avoid glint.
Normalized by a model of plane irradiance.

Often, normalized further for nadir view and sun at nadir.
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Profiling radiometers .0+
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L0+ Lee et al., 2013
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An aside about radiance measurements:
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Plague should be horizontal and above the height of all
other structures or objects (including humans).




R .=Eu/Ed

Irradiance reflectance
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Secchi disk depth: theory

Contrast reduction theory for detecting target for any direction:

viewing angle

apparent _ |
contrast of attenuatio rela.tlve to
target A straight up
Tg coefﬁuent
CT(9)¢:Z)
= exp[-cr + K(0,9,z) rcos(0
Co(8,9.27) pl (0,9.2) (0)]
inherent .
contrast of range d'foS(?
attenuation
target 1a
coefficient

Parameters are for photopic spectral response

Preisendorfer (1963), Duntley (1976) but work originated in 1940’s

Watch for newer theory by ZP Lee



Parting words

AOPs are very useful quantities to obtain BGC
information regarding the ocean.

Necessary to reconstruct the subsurface light field.

L

Necessary to validate OCR measurements.



