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Satellite instruments measure the
spectral radiant flux leaving the top
of Earth’s atmosphere

This includes contributions from
everything directly in or directed
into its instantaneous field of view

Ideally, forward models representing
the combined ocean-atmosphere
system (COAS) could be repeatedly
run to find the combination that
best reproduces the measured
top-of-atmosphere radiance

Historically, this has been (and in many ways

still is) too computationally expensive
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Remote Sensing of Inherent Optical Properties:
Fundamentals, Tests of Algorithms, and Applications

Chapter 1
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Why are Inherent Optical Properties Needed in
Ocean-Colour Remote Sensing?

Ronald Zaneveld, Andrew Barnard and ZhongPing Lee

IOP(A)[chl, whatever] = forward model = Rrs(A)

Rrs(A) = inverse model = IOP(A), chl, whatever
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inverse (adjective): opposite or contrary in
position, direction, order, or effect

Solve RTE for Reflectance

¢

cos0 O = —aL,(6,$) —bL(6,9) + [, B(2,6,$;6', ¢ )L(6, $)dQ

e Successive order scattering, SOS

— Separate radiance into unscattered (L,), single scattered
(L,), doubly scattered (L,),...(L,,) contributions

e Single scattering approximation, SSA

— Consider only the unscattered and singly scattered radiance
terms, L, and L,

e Quasi-single scattering approximation, QSSA

— Note volume scattering functions are highly peaked in
forward direction (diffraction)

— For upward light field, forward scattered like unscattered
— So, replace b with b,




The RTE describes how the light field varies with a and b using very sophisticated math.

The QSSA has historically provided a useful simplification for use in, e.g., ocean color remote sensing.
Here’s a gross oversimplification of how it works ...

R e E- irrad!ance reLlecknunce (uu"H(SS)
& " e |
(/Pwo»p( /fﬁ‘mf ﬁé'd EM 4 Ed x "L,
"QQCKSCAH-CW(-/ clowrriraiel /ijl«"
Dowr oo vd fight £eld Ed x¢
Ed attenvated bj Seam-¢ €d x ( a + {ob “ lg()
H[owtv;u) ’7%(!.«)0‘154 QC‘OHIK(C' qu X [a o 55 + Q_p)
light  [ookS Unhattens atto &
Ed x (* i Eb)
R G 2 L W
Ed

€d « (c\-fé,,) cu-é‘;



The RTE describes how the light field varies with a and b using very sophisticated math.
The QSSA has historically provided a useful simplification for use in, e.g., remote sensing.
Here’s a gross oversimplification of how it works ...
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You have heard how to estimate chl from spectral
reflectance ratios, but back in 1977 Morel and Prieur
were already investigating the IOPs < R relationship

Analysis of variations in ocean color!

André Morel and Louis Prieur
Laboratoire de Physique et Chimie Marines, Station Marine de Villefranche-sur-Mer, Q@Qe"
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You have heard how to estimate chl from spectral
reflectance ratios, but back in 1977 Morel and Prieur
were already investigating the IOPs < R relationship

e “Howard Gordon” Ocean
— Homogeneous water

— Plane parallel geometry Analysis of variations in ocean color!

André Morel and Louis Prieur
Laboratoire de Physique et Chimie Marines, Station Marine de Villefranche-sur-Mer, Q@Qe"

— Level surface
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= N (0) |nte rnal sources (e-g- ) ﬂ uorescence, Ra ma n) Spectral measurements of downwelling and upwelling daylight werc made in waters

different with respect to turbidity and pigment content and from these data the spectral val-

ues of the reflectance ratio just below the sea surface, R(\), were calculated. The experi-

mental results are interpreted by comparison with the theoretical R(\) values computed from

Lu( A) - the absorption and back-scattering coefficients. The importance of molecular scattering in

® : (ST‘ ) the light back-scattering process is emphasized. The R(\) values observed for blue waters
Eq (/1) are in full agreement with computed valucs in which new and realistic values of the absorp-

. tion coefficicnt for pure water are used and presented. For the various green waters, the

o — 2 y ( A) [u ( /’{)] l chlorophyll concentrations and the scattering coefficients, as measured, are used in compu-

- =1 g l tations which account for the observed R(\) values. The inverse process, i.e. lo infer the

content of the water from R(A) measurements at sclected wavelengths, is discussed in

bp (A) (S'r - ) view of remote sensing applications.
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1. relate Rrs to a and bb

R(4)
0.52 + 1.7R (1)

Is(4) = 22: G @], (v@) = — 2@
) i=1 l ’ a(d) + by(4)

Is(4) =

2. IOPs are additive. Define a and bb.

Nnap

Aph
by(A) = bpw(A) + ) bopni(A) + D, Donapi(A).
i=1 i=1

Nph Nnap Nedom

a@) = @) + D, Qi) + D, GuapiA) + D, Cedomi(A),
i=1 i=1 i=1

3. 10Ps are proportional to component concentrations,
so redefine as a function of concentration and spectral
shapes

IOPcomponent = [Concentration] X IOpconcentration—specific
= scalar X vector
= magnitude X spectral shape
= eigenvalue X eigenvector

Nph Nnap
by(A) = bpw(A) + D, Bophibipni(A) + D, BonapiDimapi ().

=1 i=1

Nph Nnap

a(d) = a,() + ), Api@n;A) + D, Angpial,;(A)
i=1 i=1

Nedom

+ Z Acdom,i a:dom,i (A)a

i=1




3A. Define a reduced number of concentration spectral shapes
Np
by(A) = bpw(A) + D Bupibppi(A).

i=1 p’ " “ph’ " dg

Nph Ndg
adg(/l) = anap(l) + Aedom(A), a(d) =a,,(4) + Z Aph,ia;h,i (1) + Z Adg,ia;g,i(l)-

i=1 =1

in a hyperspectral world, there’s potential for multiply deconstructing each component if the 10Ps differ ...
... but some IOPs do not significantly differ, and we’ve lived in a multispectral world

3. IOPs are proportional to component concentrations, Nph Nnap
so redefine as a function of concentration and spectral by(2) = bow(A) + D Bopnibipni(A) + ), Bonap,iinapi(A).
shapes ol e
_ Nph Nnap
IOP omponent = [concentration] X I0Pconcentration—specific a) = a, () + Z Aph,ia;h,i(/l) + Z Apapi@ :ap,i( 2)
= scalar X vector ] ey

= magnitude X spectral shape Nedom

= eigenvalue X eigenvector % E Acdom,i a:dom,i (4),
i=1
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4. Put it all together

Nbbp

/ Z bip; () X 5 by,
i=1

bow () + B 1, X by (D) .

a,, (1) + Hodinidi X a;hyt(’l) P - a;;,ap (A) + Acpom X arpom(A) + bpw(A) + B bp X b;p (1)

!

u(d) =
Nphyt Nnap Ncpom
a;hyti(/n X Apnyt; Z a;lapi(/l) X Ana.p,—
i=1 i=1 i=1

acpom;(A) X Acpom;

water values are known and “constant”
spectral shapes (eigenvectors) are “known” and defined
magnitudes (eigenvalues) are unknown and to be retrieved
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Additional components or nuances for consideration:

1.

2.

3.

4.

the cost or merit function used in least-squares regression

for future exploration:
R_ (4 )) « only considers absolute

N, ,¢ :
Xz — Z (Rrs(/l )

=1

differences

2
(/{ ) * could be spectrally

weighted (e.g., by SNRs)

guality control of the output eigenvectors and their IOP products

100% <A |Rys(2) = Res (3)]
Nﬂ i=1 RI‘S('{i) ‘

A-Rrs =

uncertainties calculations (more later)

performance assessments (more later)

-0. O5bbw(/1) < bb (4) <0.05 m™!
-0.05a,(1) < a (/1) <5 m1
-0.05a,(1) < a (/1) <5m1
AR < 33%
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one sentence summary of this inversion paradigm: How much of
each absorbing and backscattering component is needed (in a least
squares sense) to reconstruct the measured reflectance spectrum?

. can reconstruct this?
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Explosion of papers in the mid-1990’s to mid-2000’s on ocean color inversion modeling:

* Roesler and Perry 1995 — two component backscattering; thoughtful re: fluorescence
 Leeetal. 1996 = Lee et al. 2002 = QAA

* Hoge and Lyon 1996

e Garver and Siegel 1997 & Maritorena et al. 2002 = GSM

* Roesler and Boss 2003 — shift focus from bb to beam-c and its spectral slope

* Roelser et al. 2004 — use component aph to infer phytoplankton community structure
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you live in a consumer’s market!

Trs 1) = GA)

Bow (A) + Byyby, (A)

ay, (1) + Ay ++A54a44 (1)

Table 1

Example methods for deriving normalized apn().

Reference Uses measured data (Y/N) Input data required Description

Prieur and Sathyendranath (1981) ' 4 Ca Single apx(A) vector

Roesler et al. (1989) Y Ca Single a(A) shape

Lee et al. (19964, b) N C; Blends two Gaussian basis vectors

Bricaud et al. (1995) 2 Ca Blends two basis vectors

Bricaud et al. (1998) Y Ca Blends two basis vectors

Hoge and Lyon (1996) N G Single Gaussian basis vector (Hoepffner and Sathyendranath, 1993)
Sathyendranath et al. (2001) Y Ca Blends a;h()\.) basis vectors for two phytoplankton populations
Ciotti et al. (2002) Y Size parameter, S¢ Blends a;h()\.) basis vectors for micro- and picophytoplankton

Werdell et al. 2018, Prog. Oceanography

16



you live in a consumer’s market!

Trs 1) = GA)

bpw (1) + By

ay (A1) + Appay,p (1) + +Agga5,(4)

Table 3
Example methods for deriving normalized Sg,.

Method Uses measured data (Y/N) Input data required Description
Morel and Maritorena (2001) Y C; ® Sy, defined in terms of b
Gordon et al. (1988) N C; ® Defines by(A) from C,
® Assumes b = F(Ca)
Ciotti et al. (1999) ¥ C: ® Logarithmic function from — 2 where C, = 0.05mgm 2 to 0 where C, = 20mgm 3
Lee et al. (2002) Y rs(\) ® Empirical relationship
Roesler and Boss (2003) N b ), cp(h), ap(A) ® Solves for for byp(A) and S
Antoine et al. (2011) Y C. or by(555) ® Empirical relationship
Brewin et al. (2012) ¥ C, ® Empirical relationship for bg,(\)

Werdell et al. 2018, Prog. Oceanography
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you live in a consumer’s market!

Bow (A) + Byyby, (A)

Trs 1) = GA)

Table 2
Example approaches for partitioning a(\) into ay,(A) and a(A).

a,, (1) @h(/l) + +Adga;"lg (4

Reference Method and assumptions for parameterizing a,,(A) and a;,(M\) Additional input data Applied to ocean
color data? (Y/N)
Roesler et al. (1989) ® a4(A) has fixed exponential slope, S e C, N
® a,,(\) blue-to-red absorption peak defined using pigment data ® Phaeophytin-a concentration
® Solves for ag(A) and apn(A)
Lee et al. (2002) ® a4(A) has fixed exponential slope, S ® None ¥
® Empirical relationship uses r,;(A) to parameterize band ratio of a,,(\)
® Solves for ag(A) and apn(A)
Ciotti and Bricaud (2006) ® a4(A) assumed to be exponential ®C, ¥
Method 1 ® Empirical relationships uses C, to parameterize band ratios of a,(\)
® Solves for My, Sy, agfA), and a,,(A) algebraically (Bricaud and Stramski
1990)
Ciotti and Bricaud (2006) ® a,4()) assumed to be exponential ® Ca ¥
Method 2 ® a,,(\) parameterized through mixing of pico- and microphytoplankton
contributions (Ciotti et al. 2002)
® Solves for My, Sy, My, and the size parameter of phytoplankton (Sy) via
nonlinear optimization
Zheng and Stramski ® a;()) assumed to be exponential ® Pre-determined bounds of inequality Y
(2013b) ® a,,(\) shape expressed through band ratios of 412:443 and 510:490 constraints
® Searches multiple speculative (feasible) solutions of My, Sj,, ag(A), and
apn(A) (Bricaud and Stramski, 1990)
® Computes candidate and selects optimal solution for a4(A) and a,(A) using
stacked inequality contstraints
Zhang et al. (2015) ® a4(A) assumed to be exponential ® C,specific a,;,.O\.) for pico-, nano-,and N
® a,,(\) parameterized as the sum of mixing of pico-, nano-, and micro-phytoplankton

microphytoplankton contributions
® Solves for Mg, Sqg, a4g(A), and ap(A) including contributions of pico-, nano-,
and microphytoplankton using constrained least-squares optimization

Remember thisfrom
the empirical
algorithms lecture?

“Dirty secret:
e embedded into

nearly 100% of all
ocean color”

Werdell et al. 2018,
Prog. Oceanography
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you live in a consumer’s market!

s (A)@ @)

Ay, (

Generalized ocean color inversion model for retrieving
marine inherent optical properties

Table 1. Summary of Eigenvectors Available for Use in GIOP (as of March 2011)*

Eigenvector Description Reference
User-provided a(2)

ay(2) Maritorena et al. (2002) tabulated a;(2) 18]
Bricaud ef al. (1998)-derived a}(4) using OC-derived C, [14]
Ciotti and Bricaud (2006)-derived aj(2) using user-provided size fraction [17]
Eq. (5) with user-provided S,

a[;g(/l) Eq. (5) with Lee et al. (2002)-derived Sy, 171
Eq. (’3) with Franz and Werdell (2010)-derived S, [13]
User provided a 224
Eq. (8) with user-provided S;,
Eq. (8) with Hoge and Lyon (1996)-derived Spp [4]
Eq. (8) with Lee ef al. (2002)-derived S, [7]
Eq. (8) with Ciotti et al. (1999)-derived S, [15]

bgp(/l) Eq. (8) with Morel and Maritorena (2001)-derived pr [22]
Eq. (8) with Loisel and Stramski (2000)-derived S, 6]
User—provided b;p 2)
Loisel and Stramski (2000)-derived bgp(l) [6]
Lee et al. (2002)-derived bj,(2) 171

“Boldface indicates the eigenvector used in GIOP-DC.

Werdell et al. 2013, Applied Optics

Werdell et al. 2018, Prog. Oceanography

Table 4

Example of semi-analytical solution classes used in ocean-color algorithms.

Class

Methodology

Example usage

Non-linear spectral
optimization

Levenberg Marquardt

Roesler and Perry
(1995)

Garver and Siegel
(1997)
Maritorena et al.
(2002)

Nelder-Mead

Evers-King et al.
(2014)

Particle swarm

Slade et al. (2004)

Genetic algorithm

Lee et al. (1999)
Haigang et al.
(2003)

Simulated annealing

Salinas et al.
(2007)

Direct linear inversion

Linear matrix inversion

Hoge and Lyon
(1996)
Wang et al. (2005)

Spectral deconvolution

Step-wise algebraic

Lee et al. (2002)
Smyth et al. (2006)
Pinkerton et al.
(2006)

Bulk inversion

Step-wise algebraic solving for
each wavelength
independently

Loisel and Stramski
(2000)

Ensemble inversion

Adaptive linear matrix
inversion

Brando et al.
(2012)

19



a tool like GIOP (its goals anyway):

* supports and consolidates critical understanding of how inversion algorithms operate
* democratizes inversion algorithm development & refinement

* simplifies sensitivity analyses

* simplifies (NASA’s) code maintenance (and anyone’s ability to update it)

* simplifies uncertainties calculations

Table 5. Delta Statistics for the Sensitivity Analyses®

MPD Median

Run N by a @ gq a AR, Aby, Aa Aa g, Aay

GIOP-DC 437 NA NA NA NA 1.04 8.52 8.56 27.25 35.83
Spp = 33% 440 5.19 5.17 7.58 2.98 0.99 11.23 11.70 32.14 34.69
Spp + 33% 436 5.65 5.70 8.82 2.90 1.14 11.40 10.70 23.51 39.12
Sgg —33% 448 18.96 33.44 101.73 46.59 1.61 16.27 19.08 32.94 31.95
Sgqg + 33% 399 3.77 8.41 40.10 32.92 1.23 9.44 8.95 79.90 59.32
Sgg from [7] 439 3.20 5.33 20.40 14.58 1.10 8.65 9.80 22.25 34.42
C, - 33% in [14] 419 2.02 2.92 1.48 7.25 1.19 8.79 8.83 28.62 31.10
C, + 33% in [14] 437 1.56 2.28 1.14 5.90 1.10 8.12 9.17 26.79 40.09
Fixed C, in [14] 369 4.57 7.89 2.60 21.68 1.46 11.30 11.53 30.97 26.70
aj, from [17] 357 8.33 31272 7.04 22.23 1.20 14.26 16.75 38.30 23.13
G from [22] 422 9.99 6.15 7.49 14.12 1.16 11.50 13.64 37.49 36.24
Matrix inversion 475 4.60 3.68 2.24 7.41 1.73 9.15 9.43 24.79 36.82
400 <1 <600 nm 424 0.23 0.21 0.08 0.38 0.92 8.76 8.78 31.94 36.55

“N is the sample size. MPD is the average spectral median percent difference between GIOP-DC and each alternate run, as calculated
in Tables 2 and 3. Medians of the AIOP frequency distributions are also presented, as presented in Table 4.



some recent advances and enhancements:

* expanded solution space (e.g., ag and ad) — Brando et al. 2012, Zheng et al. 2013, 2015, others

* temperature and salinity dependence of bbw — Werdell et al. 2013

e Raman adjustment of Rrs — McKinna et al. 2016 (from Lee et al. 2013, Westberry et al. 2013)

e Bayesian / Optimal Estimation retrievals — Erickson et al. 2020, Erickson et al. 2023

* seeding the inversion with an externally collected IOP — Bission et al. in review

* application to optically shallow waters — Lee et al. 1999, McKinna et al. 2015, Barnes et al. in prep, others
* application to PCC — Werdell et al. 2014, Chase et al. 2019, Kramer et al. 2022, others

 still little work exploiting the fluorescence signal
e expansion of parameterization across optical water types (Moore et al. 2014)
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the Rrs wavelength suite input into the inversion will influence the
values of the OUtpUt |OP retrievals (Werdell and McKinna 2019)

SeaWiFS: 412, 443, 490, 510, 555, 670

MODIS: 412, 443, 488, 531, 547, 667

MERIS: 412, 443, 490, 510, 560, 620, 665

VIIRS: 410, 443, 486, 551, 671

OLCI: 400, 412, 443, 490, 510, 560, 620, 665

PACE: 400, 412, 425, 443, 460, 475, 490, 510, 532, 555, 583, 617,
640, 655, 665

e 410-670 nm: 5 nm intervals from 410 to 670 nm

e 410-600 nm: 5 nm intervals from 410 to 600 nm

Unblased percent difference (%)
<1

13 35 &7 78 91 >l

FIGURE 8 | Global I0Ps calculated using SeaWiFS mission-long Frs(») and the UPD between I0OP values calcutated using SeaWiFS and VIIRS wavelength suites
(SeaWIFS = satelite and VIIRS = satellite in Equation 7). Geophysical values and UPD for a44(443) shown in (A,B), for a,,(443) in (C,D), and for bpp(443) in (E,F).
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FIGURE 5 | As for Figure 3, but for app(443).
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performance assessment of ocean color inversion models requires care:

independent datasets

variation in performance across spectral regions (good in blue vs. poor in red?)

performance of one product (e.g., aph) relative to the another (e.g., bbp)

uncertainties should consider both model and “truth” (McKinna et al. 2019)

large of wavelengths to consider

meaningful plots and results reporting
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quick wrap-up:

e ocean color inversion algorithms are powerful tools
e the devil is in the details
o eigenvector definitions
o solution methods
o over-vs. under-constrained solutions
o choice of wavelength
o correlations
* NO-ONne escapes empiricism
* used properly, these methods can be made portable and predictive



