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Plan for today

 Lidar basics

« What does our world look like under lidar?

*  What discoveries have we made?
» Data availability and processing
 Sources of uncertainty

* Ongoing work

« Summary and advice for future studies
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i Ongoing work

Light Detection And Ranging (LiDAR)

Active measurement: Emits photons

and measures distance (height) using

time of travel & speed of light

» Vertical resolution is f(photon
frequency)

* by, in water can be calculated

whereafter phytoplankton carbon can

be derived (using Cphyto empirical

relationships)

Backscatter from
air molecules

Backscatter from
air molecules and
cloud/aerosol
particles

Backscatter
from the ocean
surface
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Ba.lckscatter from .
water’ molecules
» and particles- .

w plankton)

Detected signal

No dedicated ocean lidar satellite in
orbit (yet!!)

Hostetler et al., 2017
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' ) CALIPSO (2006) and ICESat-2 (2018)
Lidar basics | | / \ Cloud-Aerosol Ice, Cloud and land

Lidar and Infrared Elevation Satellite

Pathfinder
Satellite
Observation

| Lia world

Discoveries

Dat
9 Used for decades to study the oceans (pioneering work by Churnside and others)

Uncertainty
i Ongoing work

t Summary Can measure laser induced fluorescence, wavelength shifted Raman scattering,
L RO J :
Vx._‘,i\«:\.\ “\ v ——=cc\_polarization properties
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Cloud-Aerosol Ice, Cloud and land

Lidar and Infrared Elevation Satellite
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Lidar basics

| Lar world

Discoveries

Dat
Jata S = Used for decades to study the oceans (pioneering work by Churnside and others)
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Uncertainty
i Ongoing work

i Can measure laser induced fluorescence, wavelength shifted Raman scattering,
AV T i \ = ~==c=c\ polarization properties (look for work by Brian Collister and others)
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What does the world look like from a lidar perspective?

SPATIAL COVERAGE
Lidar world | 1 day global coverage comparisons with MODIS-Aqua (passive satellite)

Discoveries

Data

Uncertainty |
i Ongoing work
Sy
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Lidar by, is in black, MODIS b, is colored.
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e S SPATIAL COVERAGE
l * MODIS observes swaths of area while lidar provides lines of data.
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Lidar basics

Lidar world

Discoveries

Data

Uncertainty

CALIOP (CALIPSO) spatial coverage

one day

Behrenfeld et al 2019

eight day

20 40 60 80
Number of months with
paired day and night
retrievals

_

For reference, MODIS-
Aqua would be 0
everywhere as there
are no nighttime
MODIS-Aqua data
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effects of absorption & scattering
Lidar world

» No information during night

Discoveries

* Retrievals are affected by clouds,
aerosols, and low solar zenith
angle

Uncertainty §
d Ongoing work
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March 1, 2023 MODIS Aqua - OBPG

e Ocean color measures combined

i GENERAL DIFFERENCES WITH OCEAN COLOR

r.. Inversion refresher

rs is « the ratio of scattering to scattering
+ absorption

2
_ bp(V)

And absorption (a) is the sum of all
absorbing constituents (spectrally) and
backscattering (by) is the sum of
backscattering from seawater and from
particles.

a() = ay ) +Mge ™ cdim +Myypax, ()

by (N)= bpw (7»)+Mbp A7,




TEHNICAL DIFFERENCES BETWEEN PASSIVE AND ACTIVE SATELLITES

The ocean system is complex & highly variable.

Lidar world
tarth

X_
\\ Obs. Sat.

Discoveries

Process Ship

Data

Survey Ship PMEL Mooring

»x O0I Global Node

-

Uncertaity 2
Ongoing work
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_ Lidar basics |

The ocean system is complex & highly variable.

Lidar world

Discoveries

Data

Uncertainty

i Ongoing work
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But this is what a pixel of ocean ‘looks like” with an ocean color satellite data.

* Conceptual rendering of a 1 degree pixel as seen from space
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The ocean system is complex & highly variable.

Lidar world

Discoveries

Data
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This is what an equivalent ‘pixel” of ocean ‘looks like” with a lidar
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Lidarbasics |

Lidar world

Discoveries

Uncertainty
i Ongoing work
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TEHNICAL DIFFERENCES BETWEEN PASSIVE AND ACTIVE SATELLITES

Polar ecosystems

Passive satellite, winter

Lidar satellite, winter

Behrenfeld et al.,2017



- %\“ B What have we discovered with lidar
satellites when applied to oceans?

' Lidar world |

Discoveries

Data :

Uncertainty

d Ongomg work
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What have we learned so far from CALIPSO and ICESat-2?

L l da r bas ICS GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 4355-4360, doi:10.1002/grl.50816, 2013

Ongoing work

Lidar World
Space-based lidar measurements of global ocean carbon stocks

DiSCOVEI‘iES Michael J. Behrenfeld,! Yongxiang Hu,? Chris A. Hostetler,? Giorgio Dall’Olmo,’
Sharon D. Rodier,? John W. Hair,? and Charles R. Trepte2 G |Oba| aggregated bbp data present
Received 31 July 2013; accepted 2 August 2013; published 23 August 2013. l n depe n de nt measureme nt

Data
T o by, data are converted to
Uncertainty | S RS T e N0 phytoplankton carbon

Ee

[ summary
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0.5 1 2 4 6 810
by, X 10° ()




= %5\‘“‘ }' What have we learned so far from CALIPSO and ICESat-2?

T — Global satellite-observed daily vertical
migrations of ocean animals

| Ldar World

Discoveries

| https://doi.org/10.1038/s41586-019-1796-9 Michael J. Behrenfeld™, Peter Gaube?, Alice Della Penna??, Robert T. O’'Malley’,

& . William J. Burt*5, Yongxiang Hu®, Paula S. Bontempi’, Deborah K. Steinberg?®,
ata . Received: 27 September 2018 Emmanuel S. Boss®, David A. Siegel'®", Chris A. Hostetler®, Philippe D. Tortell*'? &
wp Accepted: 10 October 2019 Scott C. Doney"

~

Published online: 27 November 2019

~—
1|

N
1

Uncertainty
Ongoing work
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by, covaries with all particles,
including zooplankton!

Differences in by, from day to
night are attributed to daily
migrating zooplankton




L Al \\hat have we learned so far from CALIPSO and ICESat-22
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Lidarbasics |

Liar World

nature _
QBBS:II;[! E]I!;JEEDECEMBER 2016 | DOI: 10.1038/NGEO2861 geOSCIence

Annual boom-bust cycles of polar phytoplankton  Derivatives of by,,-derived
Discoveries biomass revealed by space-based lidar phytoplankton carbon are used to

Michael J. Behrenfeld'™, Yongxiang Hu?, Robert T. O’'Malley’, Emmanuel S. Boss3, Chris A. Hostetler?, traCk pO l ar p hytop l an ktOn CyC I €s
2 David A. Siegel?, Jorge L. Sarmiento®, Jennifer Schulien’, Johnathan W. Hair?, Xiaomei Lu?,
Data & Sharon Rodier? and Amy Jo Scarino?

b

Uncertainty
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Lol What have we learned so far from CALIPSO and ICESat-22

| |
. . Contents lists available at ScienceDirect L
Lidar basics |
— & e ' Remote Sensing of Environment l
) ] journal homepage: www.elsevier.com/locate/rse
Lidar World
Antarctic spring ice-edge blooms observed from space by ICESat-2 1)
DiSCOVEl‘ieS Xiaomei Lu™”*, Yongxiang Hu""*, Yuekui Yang®, Paula Bontempi’, Ali Omar”, Rosemary Baize" L1 . M
Science Systems and Applications, Inc., Hampton, VA 23666, USA FO r th e fl rSt tl m e, C m - SC a- l e
SNASA Langley Research F’enter, Hampton, VA 23681, USA . . .
e o ™ resolution of the particle field
_Daa | . Wwas achieved from ICESat-2
| < M., shortly after its launch.
Uncertainty H 2-
5 0.003
-15 1 ! 1 1 1 1 1 1 1 1 1
lat -50.78 -51.32 -51.86 -52.39 -52.92 -53.46 -54.01 -54.62 55.22 1 5 m IS depth |Im It In Open

lon 2317 231 23.01 2294 2284 22.75 2267 22.55 22,46 e ocean from ICESat_Z due to
« data downlink restrictions, but
s the depth could be expanded

Ongoing work
[ Surmar,

15+ 1 > O A 1 ! vl ) 1 1 ’J . . .
V\ \ VLA lat -57.78 -57.96 5804 -58.10 -58.18 -58.22 5828 -58.36 for ocean Optlmlzed ||dar
“‘,'\\-\, : lon -31.77 -31.72 -31.81 3174 -31.81 -31.83 -31.87 -31.84
X, , g | i3 0.03
A E 2018-11-
@ 0.01
-
3 -
-
= 0,003
< -15= L 1 1 ! 1 1 'i
lat -5741 -5760 -58.08 -58.27 -5845 -58.96 5297 6312 -63.26

Altitude (m)

lon 13965 139.61 139.54 13947 13944 139.31 13846 13844 13840
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Lidarbasics |

| Liar World

Discoveries

Data

Uncertainty |
i Ongoing work
i Summary
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What have we learned so far from CALIPSO and ICESat-2?

Applied Optics vol. 60, issue 23, pp. 6978-6988 (2021) - https://doi.org/10.1364/A0.426137

Seasonal bias in global ocean color observations

m M K. M. Bisson, E. Boss, P. J. Werdell, A. Ibrahim, R. Frouin, and M. . Behrenfeld

Author Information ~ Q Find other works by these authors ~

CALIPSO

When CALIOP data were
compared with MODIS-Aqua data
on global scales, weird patterns
(not obviously biological) were
observed. When looking closer we
found systematic biases in MODIS-
Aqua data that we did not expect

‘ —Argo

Bisson et al 2021a
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Discoveries

Data

i Ongoing work
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What have we learned so far from CALIPSO and ICESat-2?

MODIS-Aqua
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Systematic biases in MODIS-Aqua (and
other ocean color satellites) data exist
in all IOPs and AOPs, even at the

ocean color validation site (MOBY)....

Mismatch in seasonal cycles
between in situ observations and
satellites at longer wavelengths
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IR Lidar for ocean research: We are living off
atmospheric & polar satellites!

| Liar World |

Discoveries

CALIPSO and ICESat-2 data development has been
‘DIY” and very creative, as these satellites were not built

i Ongoi k
,‘ for ocean research as a goal.

t Summary
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= R | ICESat-2 (ATLAS instrument) CALIPSO (CALIOP instrument)

\

\

’ Photon counting altimeter Photon counting altimeter
o — g1 No polarization information Cross and co parallel polarization channels
Hdar wor 10 kHz 20.25 Hz
Discoveries 10 cm vertical resolution in water 21 m vertical resolution in water
11 m footprint 100 m footprint

23

Uncertainty
{ Onoing vork
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t Summary
L e ATV “

image sources: NASA gallery



ICESat-2 (ATLAS instrument)

Photon counting altimeter

No polarization information

10 kHz

10 cm vertical resolution in water
11 m footprint

, |

Lia world

Discoveries

=

. ==

Uncertainty

i Ongoing work
‘ Summary

¥y

L Y “

super solid, gets
the job done,
one of the best

CALIPSO (CALIOP instrument)

Photon counting altimeter

Cross and co parallel polarization channels
20.25 Hz

21 m vertical resolution in water
100 m footprint

more pizazz
through
polarization
channels gives a ‘je
ne sais quoi’ to the
mission




Lol CALIOP data processing and access
e
Ry
o e ' theo
o - bbp (532) ~ 7.2 Rpart Rpaﬁ — :Bcross—-pol > C1

Liar World ﬂco—pol

Discoveries CALIOP by,

Beross-pol = integrated attenuated backscatter

Data | measured with the cross-polarized channels (sr)

| Beopol = integrated attenuated backscatter
measured with the co-polarized channels (sr')

Uncertainty |
i Ongoing work
Sy

Vol ¥ \‘\ O A
V‘ \ "“1]\"\0 L ) h 1

c; = unitless correction for crosstalk between
polarization channels (1 — depolarization
discrepancy between measured and theoretical
molecular depolarization in stratosphere)

Rineory = theoretical ocean surface reflectance (sr)
derived from wind speed, viewing angles, water
index of refraction

Behrenfeld et al 2022




Validation status

Geophysical Research Letters o

RESEARCH LETTER  Particulate Backscattering in the Global Ocean: A

10.1029/2020GL090909 Comparison of Independent Assessments

Key Points: K. M. Bisson' ©, E. Boss?, P. J. Werdell> ©, A. Ibrahim** ©©, and M. J. Behrenfeld'
« Spatiotemporal correlation scales are

Liar World

fl“a-_“ﬁﬁe‘j be“‘feen global lidar and 'Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA, “School of Marine Sciences,
. ‘S‘;Zﬁ;‘:}ﬁ;ﬂi‘;zwe T error University of Maine, Orono, ME, USA, *NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt,

and bias compared to ocean Maryland, USA, *Science Systems and Applications Inc., Lanham, MD, USA

color observations of particulate

Discoveries
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Summary
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Bisson et al 2021b
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’ Geophysical Research Letters o

RESEARCH LETTER  Particulate Backscattering in the Global Ocean: A

10.1029/2020GL090909 Comparison of Independent Assessments

. Key Points: K. M. Bisson' ©©, E. Boss?, P. J. Werdell’ ©, A. Ibrahim** (9, and M. J. Behrenfeld"
Lidar World i
‘1 a.nnt‘bd b “:’ gl obal “ d ar a.nd 'Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA, 2School of Marine Sciences,
. s tellite I ;mims lower error University of Maine, Orono, ME, USA, *NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt,
and bia: compar ed to ocean Maryland, USA, “Science Systems and Applications Inc., Lanham, MD, USA

color observations of particulate

Discoveries

_—
Q
S

(b)

Lo — g
Data : E % . CALIPSO data (from CALIOP instrument)
. — °,, were compared with Argo by, and
N MODIS-Aqua by,. CALIOP was found to
3 outperform MODIS-Aqua relative to

float observations, regardless of time

i Ongoing work &> matchup period (top vs bottom panels)

(c) - | (d)

kS T = ki ar
; 35
= 2
Summary f e o 0
g 30 -
N oden e T F 4
,“, | g 2 410/
\ ) \ = 25 a
= 20/ g -20
b= +/ 21 hxs -
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> D D D S N b D D
; 47 \. \\‘\\) \\\\\\ ; &7 _\ \’
inversion variants (L inversion variants

Bisson et al 2021b
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— _ , Geophvsical R h Lett In situ evaluation of spaceborne CALIOP lidar
Lidar basics A eophysical Research Letters = measurements of the upper-ocean particle
foas T RESEARCH LETTER  Particulate Backscattering in the Global Ocean: A i ini
sl 10-1029/202061090909 Comparison of Independent Assessments backscatteri ng coefficient
. i Key Points: K. M. Bisson' ©, E. Boss?, P. J. Werdell® ©, A. Ibrahim>* (, and M. J. Behrenfeld" - *
I—- I d a r WO r I d ' Zpa-ﬂutllf::{bwt;% gi bal li ddl s:r 'Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA, “School of Marine Sciences, L = L EONE ’ R ARGEEE LA HEIDSE e AND M ARCEL B ABIN
. Satellite lidar has luwer error University o{Majx}e}, Orono, ME, USA, 1NA.SA F}oddard Space Flight Cent'er, Ocean Ecology Laboratory, Greenbelt, UMI Takuvik, CNRS/Université Laval, Québec’ QC’ Canada
and bias compared to ocean Maryland, USA, “Science Systems and Applications Inc., Lanham, MD, USA Yo Dasnivtsbinnbilaonl v

color observations of particulate

Config1 9 x9km/16 days

(b) - 1.N=16 ﬂ»f

Discoveries
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tzs:. ——r ——3 S os / '
Data 1 w ~ CALIPSO data (from CALIOP instrument) £ ool - CALIORP (solid
B | ., werecompared with Argo by, and § . / ~ yellow) agrees well
U — H : MODIS-Aqua by,. CALIOP was found to 3 f - for the primary
| Uncerainy | o - = -
K outperform MODIS-Aqua relative to © | caLioP| processing but not
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Bisson et al 2021b
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e ICESat-2 data processing and access

i
' Start from raw ATLO3 photon height product, distributed in granules and organized into
. 3 pairs of strong and weak beams

. . +X 3
Lidar World o o o
Weak (1) Weak (1) Weak (1)
= 5+0.2 mR|
. . §_ (2.5 km)
Discoveries "
Strong (4) Strong (4) Strong (4)
1 6.61£0.26 mR
g G ——
Data ,5 G
T Track Direction

oncerany § 1| |||

—>| |<—90m ¥ b ol e Tl - ol B P, T ol o B A A { OP Rhasd SR L

= . 1 day orbit of ICESat-2 data
ngoing work Y
Photon height product 91 day repeat cycle

Tracks
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Distance from start of track (km)
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Uncertainty
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i Summary
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Light Detection And Ranging (LiDAR)

If it flew over a football field, the first ICESat would have taken a measurement outside each end
zone; ICESat-2 would take measurements within each yard line.
The pulses of light travel through a series of lenses and mirrors before beaming to the ground. This pathway along the optical

bench serves to start the stopwatch on the timing mechanism, check the laser's wavelength, set the size of the ground
footprint, ensure that the laser and the telescope are perfectly aligned, and split the laser into six beams.
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Lidar world

Discoveries

Data
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ICESat-2 ocean products

References
(Ocean focus)

e Deriving optical information  Lu et al. 2020, 2021,
(Kd, bbp) in coastal and Eidam et al, 2022,
global waters Babbel et al, 2021,

e Bathymetry in shallow waters Parrish et al, 2019

Product What is it?

Global
ATLO3 geolocated
photon data

Polar seaice e Sea ice freeboard Bisson and Cael, 2021
ATLO7 elevation e Sea ice lead identification
(ATL20) (Gridded sea ice
freeboard)

Ocean Elevation Sea surface height Bagnardi et al, 2021
(Gridded sea

surface height)

ATL12
(ATL19)
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L %im\ | ICESat-2 ocean products
i basics |
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Lidar world

Argo 3 years ICE%&t-Z 1T month
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Discoveries

Uncertainty

i Ongoing work
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Summary
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(Left) Under ice Argo float location (approximate within 50km) during October 2018-
2021. (Right) Location of sea ice leads longer than 200m during just October 2020
from the ATL10 product. Similar ICESat-2 coverage exists in the Arctic. (unpublished)




Lol |CESat-2 data processing and access

... 8
l Start from raw ATLO3 photon height product, distributed in granules and organized into 3 pairs of
el strong and weak beams
Lidar World | 107
Discoveries 5L
S(0)
C =
As
25 (z) exp(2Kdz) )
by(z) = = |
b(2) B(m)Ct2 |
. -5
{ Ongoingwork ||~ T - B2
k r constants. K is "
i == == calculated from ICESat- i
2 signal decay, S(z) is
YT he signal 15/
i TN the signal. 15
t“ ' \.‘N \ | A
\ n -20 ! | | | |
b 73.52 73.53 73.54 73.55 73.56 73.57

Lat




ICESat-2 data processing and access

Start from raw ATLO3 photon height product, distributed in granules and organized into 3 pairs of
- strong and weak beams

Lidar World
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15 L Demonstration of method to derive the
effective attenuation coefficient from the
exponential fit (purple) of the deconvolved
signal, where the signal is in black, the

-920 | | impulse response function is blue, and the

73.52 73 153 73.54 73.55 73 .|56 73 15 7 deconvolved signal with the afterpulse

peaks removed is in green.
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Lol |CESat-2 data processing and access

il
v After pulsing effects (instrument noise, not natural)
| Lidar World |
ICESat-2 Transient Response function
: : 001 Deconvolution matrix informed by impulse
Discoveries :
~25 1 response function
-5.0
Data ! _ _ _ o _
e — E B Sm (21) F(Zl) 0 . 0 S(Zl)
o o f‘l —10.0 4 Sm (22) _ F(z3) F(z) . 0 S (z2)
Uncertainty o DU
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i Ongoing work 200 1

e
Y S =F ' ()5, (2

1. Solve for signal by taking the inverse of the function above with the normalized signal previously
2. Then, calculate the effective attenuation coefficient from new signal
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$(2) =F (2) S (2)

Lidar World 1. Solve for signal by taking the inverse of the function above with the normalized signal previously
2. Then, calculate the effective attenuation coefficient from new signal
Discoveries 3. Calculate calibration constant from surface photons and theoretical backscatter from wind speed

0.0209 (_tan_zce))
ﬁS = e 202
4mto2cos*(0)

e

o is the wave slope variance estimated from wind speed, or 0.003 + 0.00512v (v = wind speed in meters
per second for winds between 7 and 13 m/s or 0.0146*sqrt(v) for winds < 7 m/s)

Uncertainty |

i Ongoing work And 6 is 1S2’s off nadir pointing angle (a max of 1.8 degrees)

e : oy
S 14

i ' GMAO wind speeds from MERRA-2 1-hourly instantaneous two-dimensional data products are used to
compute theoretical estimates of ocean surface backscatter
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1. Solve for signal by taking the inverse of the function above with the normalized signal previously

Lidar World || 2. Then, calculate the effective attenuation coefficient from new signal
3. Calculate calibration constant from surface photons and theoretical backscatter from wind speed
Discoveries 0.0209 (_wn_zg@))
s = e 20
4mto2cos*(0)

— o2 is the wave slope variance estimated from wind speed, or 0.003 + 0.00512v (v = wind speed in meters
r—_—— per second for winds between 7 and 13 m/s or 0.0146*sqrt(v) for winds < 7 m/s)

Uncertainty §

' GMAO wind speeds from MERRA-2 1-hourly instantaneous two-dimensional data products are used to
== e compute theoretical estimates of ocean surface backscatter
i Summary
W, ?l*‘,\)’:;:‘??‘tx‘*;‘ m\“ C = S(O)
g " i
\ m2S (z) exp(2Kdz)

And 0 is 1S2’s off nadir pointing angle (a max of 1.8 degrees)

| R

\ bb (z) = B(?T)Ctz
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[ Wiy st | Influence of beta(pi)
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Large variation in
this constant and the
backscattering is
proportional to it!

Data
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- ICESat-2 data processing, issues

il “
If photon receiving channels are saturated, they stop recording photons ... subsurface features
oy - will be present but appear unnatural due to dead time effects

| Liar World
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Lidar World
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SCIENCE TEAM. = /
»
The Science Team is a group of competitively selected scientists who help define and ‘

implement ICESat-2's science goals. They provide guidance and advice to the ICESat-2
ICE, CLOUD, AND LAND ELEVATION SATELLITE-2
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project to ensure the missio‘meets its science requirements.

ANDELA, NIELS
Vegetation
NASA Goddard Space Flight Center

BORAK, JORDAN

Vegetation
NASA Goddard Space Flight Center

EIDAM, EMILY
Oceanography

University of North Carolina

FATOYIMBO, LOLA

Vegetation
NASA GSFC Biospheric Sciences Laboratory

FRICKER, HELEN

Ice sheets

University of California San Diego

HANAN, NIALL
Vegetation
New Mexico State University

HOLSCHUH, NICK

Land ice
Ambherst College

KWOK, RON
Sea ice
University of Washington Polar Science Center

LU, XIAOMEI
Atmospheric Science

NASA | aRC/SSA|

BISSON, KELSEY

Oceans

Oregon State University
CSATHO, BEA
Land Ice

University of Buffalo

FARRELL, SINEAD

Sea Ice
University of Maryland

FELIKSON, DENIS

Land Ice

NASA Goddard Space Flight Center
GARDNER, ALEX

Ice sheets
NASA Jet Propulsion Lab

HERZFELD, UTE
Land ice
University of Colorado Boulder

HORVAT, CHRIS

Sea ice

Brown University

LIPOVSKY, BRAD
Land ice
Harvard University

MAGRUDER, LORI

Laser altimetry, Science Team Leader
University of Texas

MAKSYM, TED

Sea ice

Woods Hole Oceanographic Institution
MORLIGHEM, MATHIEU

Land Ice

Dartmouth College
NEUENSCHWANDER, AMY

Vegetation

University of Texas

PALM, STEVE

Atmospheric science

Science Systems and Applications, Inc.

RYAN, JONATHAN

Hydrology
Brown University

SIEGFRIED, MATTHEW
Land ice
Colorado School of Mines

STROEVE, JULIENNE

Sea ice

University of Colorado Boulder

TILLING, RACHEL
Sea ice
NASA Goddard Space Flight Center

MORISON, JAMES

Arctic oceans
University of Washington

NEREM, STEVE
Oceanography

University of Colorado Boulder
PADMAN, LAURENCE
Antarctic oceanography

Earth & Space Research
POPESCU, SORIN

Vegetation
Texas A&M University

SHAPERO, DANIEL

Hydrology
University of Washington

SMITH, BEN

Ice sheets

University of Washington

THOMPSON, ANDY

Antarctic oceans

California Institute of Technology

VELICOGNA, ISABELLA

Ice sheets

University of California Irvine
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Collaborative open source science

DOI: 10.21105/joss.04912

1Tb per day
Assess simplified in 3 lines of code
Written in object oriented programming RANSFORM0PEY

Adaptable, community forward

icepyx: querying, obtaining, analyzing, and
manipulating ICESat-2 datasets
Jessica Scheick @'Y, Wei Ji Leong ©2, Kelsey Bisson @3, Anthony

Arendt ©*, Shashank Bhushan ©®*, Zachary Fair ©°, Norland Raphael
Hagen ©°, Scott Henderson @4, Friedrich Knuth ©#, Tian Li®’, Zheng

Liu ©*, Romina Piunno @2, Nitin Ravinder’, Landung “Don” Setiawan ©*,

Tyler Sutterley ©#, JP Swinski®, and Anubhav © 1°

1 University of New Hampshire, USA 2 Development Seed, USA 3 Oregon State University, USA 4
University of Washington, USA 5 NASA Goddard Space Flight Center, USA 6 CarbonPlan, USA 7
University of Bristol, UK 8 University of Toronto, Canada 9 University of Leeds, UK 10 University of
Maryland, College Park, USA q Corresponding author
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Can lidar and ocean color be combined to get

the best of bot

If bb is known from lidar, reduces
the amount of parameters to be
solved for and possibly constrains
solutions more accurately

(assuming bb and Rrs are accurate,

as well as Rrs to absorption
relationships)

N worlds?

r.. Inversion refresher

rs is « the ratio of scattering to scattering
+ absorption

_ bp(V)
rrs(D) = ; Gl e

And absorption (a) is the sum of all
absorbing constituents (spectrally) and
backscattering (by) is the sum of
backscattering from seawater and from
particles. .

a(d) = ay D) +M g€ cdm” +Mpb3* (D
by N)= bpw (7»)+Mbp A7,
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Can lidar and ocean color be combined to get the best of both
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Lidar World

Relative differences on global
scales between standard
absorption and lidar-derived
absorption show differences
greater than 50% in some
places

Discoveries

Data
Uncertainty |

Ongoing
Work

Need more field absorption
data to understand which is
more correct...
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Summary
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Advantages:
* Lidar provides impendent source of optical properties...closure
« Lidar by, is more accurate and less temporally biased than ocean color by,
* Lidar ‘sees’ into incredible features like sea ice cracks and subsurface
ocean bathymetry, enabling research from polar ecosystems to coral health
* Polarization offers additional data and features to be examined (not discussed today)

Challenges:
Processing is under constant development, no routine centralized route yet
Data require cloud computing or server storage — 1TB per day under ICESat-2

Methods rely on good beta(pi) values, which are uncertain, so field data are needed to
confirm realism often

BUT -- this creates ripe opportunities for funding, publications (low fruit), and synergies
across disciplines !!!
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Spaceborne Lidar in the Study of

Discoveries Marine Systems Future reading

Annual Review of Marine Science
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U n Cel‘tal nty Chris A. Hostetler,! Michael J. Behrenfeld,? Yongxiang Hu,! Johnathan W. Hair,! and Jennifer A.
a2

Schulien
ILangley Research Center, National Aeronautics and Space Administration, Hampton, Virginia 23681-2199, USA; email:

chris.a.hostetler@nasa.gov
- O n go i n g WO rk Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902, USA

Going Beyond Standard Ocean Color
Observations: Lidar and Polarimetry

Cédric Jamet ™, Amir Ibrahim?**, Ziauddin Ahmad?*, Federico Angelini®°, Marcel Babin®,
Michael J. Behrenfeld”’, Emmanuel Boss?®, Brian Cairns®, James Churnside °,

Jacek Chowdhary?®, Anthony B. Davis'', Davide Dionisi?, Lucile Duforét-Gaurier’,

Bryan Franz?, Robert Frouin'®, Meng Gao?>'*, Deric Gray ', Otto Hasekamp ',
Xianqgiang He '”, Chris Hostetler ®, Olga V. Kalashnikova'', Kirk Knobelspiesse?,

Léo Lacour®, Hubert Loisel, Vanderlei Martins '*, Eric Rehm®, Lorraine Remer™,

Idriss Sanhaj™, Knut Stamnes?°, Snorre Stamnes ', Stéphane Victori’®, Jeremy Werdell?
and Peng-Wang Zhai '

Vol. 10:121-147 (Volume publication date January 2018)
First published as a Review in Advance on September 27,2017
https://doi.org/10.1146/annurev-marine-121916-063335
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