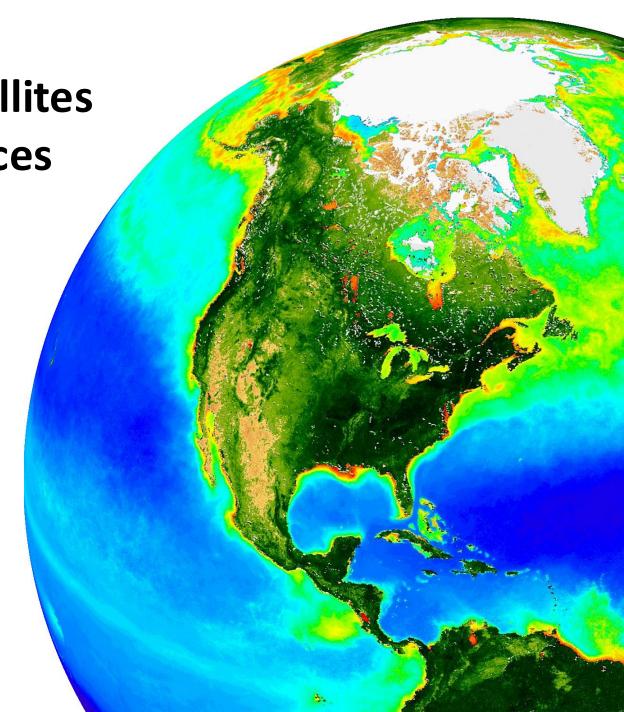
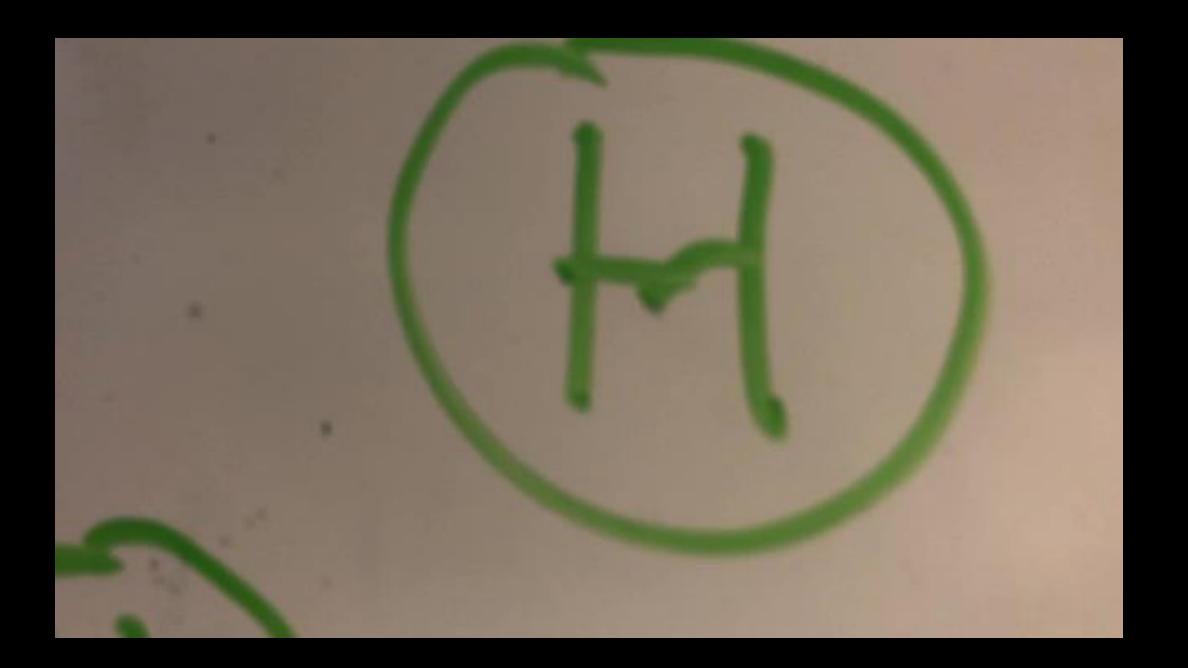
Why don't all ocean color satellites measure hyperspectral radiances at meter-scales?


Jeremy Werdell


NASA Goddard Space Flight Center

Acknowledgements:

Gary Davis, Bryan Monosmith, Ryan Vandermuelen, **Ivona Cetinić** & Curt Mobley

2025 Ocean Optics Summer Course

current and future missions : it's a consumers market

SENSOR / DATA LINK	AGENCY	SATELLITE	LAUNCH DATE	SWATH (KM)	SPATIAL RESOLUTION (M)	BANDS	SPECTRAL COVERAGE (NM)	SPECTRAL RESPONSE FUNCTION	EQUATORIAL CROSSING TIME
COCTS CZI	NSOAS/CAST (China)	HY-1D	11 June 2020	3000 950	1100 50	10 4	402 - 12,500 433 - 885		13:30
COCTS CZI	NSOAS/CAST (China)	HY-1C	7 September 2018	3000 950	1100 50	10 4	402 - 12,500 433 - 885		10:30
GOCI-II Geostationary	KARI/KIOST (South Korea)	GeoKompsat- 2B	18 February 2020	2500 x 2500	250	13	380 - 900	SRF-link	10 times/day
MODIS-Aqua	NASA (USA)	Aqua (EOS-PM1)	4 May 2002	2330	250/500/1000	36	405-14,385	SRF-link	13:30
MODIS-Terra	NASA (USA)	Terra (EOS-AM1)	18 Dec 1999	2330	250/500/1000	36	405-14,385	SRF-link	10:30
MSI	ESA	Sentinel-2A	23 June 2015	290	10/20/60	13	442-2202	SRF-link	10:30
MSI	ESA	Sentinel-2B	7 March 2017	290	10/20/60	13	442-2186	SRF-link	10:30
OCM-2	ISRO (India)	Oceansat-2 (India)	23 Sept 2009	1420	360/4000	8	400 - 900		12:00
OLCI	ESA/ EUMETSAT	Sentinel 3A	16 Feb 2016	1270	300/1200	21	400 - 1020	SRF-link	10:00
OLCI	ESA/ EUMETSAT	Sentinel 3B	25 April 2018	1270	300/1200	21	400 - 1020	SRF-link	10:00
SGLI	JAXA (Japan)	GCOM-C	23 Dec 2017	1150 - 1400	250/1000	19	375 - 12,500	SRF-link	10:30
VIIRS	NOAA (USA)	Suomi NPP	28 Oct 2011	3000	375 / 750	22	402 - 11,800	SRF-link	13:30
VIIRS	NOAA/NASA (USA)	JPSS-1/NOAA- 20	18 Nov 2017	3000	370 / 740	22	402 - 11,800	SRF-link	13:30

SATELLITE	AGENCY	SENSOR / DATA LINK	LAUNCH DATE	SWATH (KM)	SPATIAL RESOLUTION (M)	# OF BANDS	SPECTRAL COVERAGE (NM)	ORBIT
HY-1E/F (China)	CNSA (China)	CZI	2021	2900 1000	1100 250	10 4	402 - 12,500 433 - 885	Polar
EnMAP	DLR (Germany)	HSI	2021-2022	30	30	242	420 - 2450	Polar
OCEANSAT- 3	ISRO (India)	OCM-3	end-2021	1400	360 / 1	13	400 - 1,010	Polar
SABIA-MAR	CONAE	Multi- spectral Optical Camera	2023	200/2200	200/1100	16	380 - 11,800	Polar
PACE	NASA	OCI SPEXone	2023	2000	1000 2500	Hyperspec (5 nm, 350-890nm + 7 bands NIR-SWIR) Hyperspec (2 nm)	350-2250 nm	Polar
		HARP-2		1550	3000	4 bands	385-770 nm	
							440-870 nm	
GISAT-1	ISRO (India)	MX-VNIR HyS-VNIR HyS-SWIR	12 August 2021	470 160 190	42 320 191	6 158 256	450-875 375-1000 900-2500	Geostationary (35.786 km) at 93.5°E
SBG	NASA	*Hyper- VSWIR *TIR-	2026	~185 ~600	30 60-100	>200	380-2500	Polar
		lmager		~600	60-100	~0		
GLIMR	NASA	*VNIR- imager *WFOV- sensor	>2023	TBD	300 133	141	340-1040	Geostationary -Cont.US coasts, Amazon, Caribbean

why include this talk?

My prediction is that >50% of you will someday:

- 1. use satellite data for your research and wish to understand engineering design choices (== shake your fist at the clouds and shout "why are there so many options and differences across instruments?")
- 2. serve as members of space agency Science Definition Teams (or equivalent, e.g., 2017 Decadal Survey "designated observable" teams)
- 3. serve on satellite mission review boards or proposal panels
- 4. write proposals for new missions (or field campaigns or instruments)
- 5. build something that requires trade space and a fixed budget

chasing photons – considerations for making & maintaining useful satellite ocean color measurements

alternative title: the trade space within which you will work when creating an instrument design concept

why don't all ocean color satellites measure hyperspectral radiances at meter-scales?

3 case studies:

- (1) stationary satellite staring at 1 m² for 1 s
- (2) moving satellite staring at 1 m²
- (3) moving satellite scanning side to side

$$SNR = \frac{N_{electrons}}{\sqrt{N_{electrons}}}$$

(oversimplification; assumes no dark current or noise)

what we will (hopefully) learn:

- how many photons leave a 1 m² of ocean surface
- how many photons from this patch reach the satellite detector
- how many photons must the detector collect to achieve useful SNR

consider a satellite instrument with the following characteristics

these numbers are just for reference for the exercise – don't stare too hard

optical efficiency (OE) = 0.6

quantum efficiency (QE) = 0.9

aperture = 0.09 m (90 mm)

view angle = 20 deg

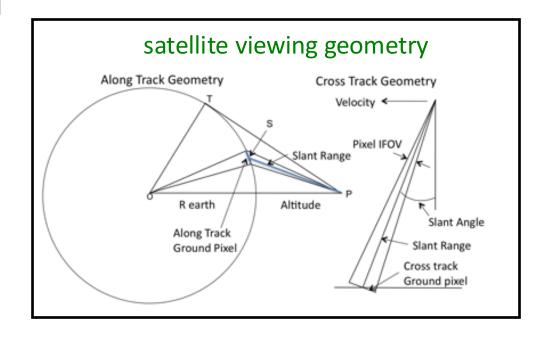
altitude = 705,000 m (705 km)

slant range = 750,000 m (750 km)

parts observatory

let's focus on a fluorescence channel:

wavelength = $0.678 \mu m (678 nm)$


bandwidth ($\Delta\lambda$) = 0.010 μ m (10 nm)

typical TOA radiance = $14.5 \text{ W m}^{-2} \, \mu\text{m}^{-1} \, \text{sr}^{-1}$

desired SNR = 2000

solid angle of aperture (sensor) as seen from earth's surface = 4.5 e⁻¹⁴ sr

ground velocity = 6838 m s⁻¹

case 1: a stationary satellite taking a quick peek at Earth

power reaching detector for 1 m² areal footprint & 1 s integration time:

$$P_{detector} = L$$
 $\Omega_{aperture}$ $Area_{surface}$ OE $\Delta\lambda$ $3.94e^{-15} = 14.5$ $4.5e^{-14}$ 1 0.6 0.01 $W = W m^{-2} sr^{-1} \mu m^{-1} sr$ m^2 (none) μm

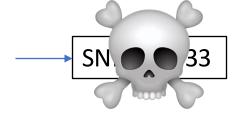
photoelectrons reaching detector:

$$N_{electrons} = P_{detector} \ t \ QE \ \lambda \ h^{-1} \ c^{-1}$$

$$12074 = 3.94e^{-15} \ 1 \ 0.9 \ 0.678 \ (6.63e^{-34})^{-1} \ (3e^{14})^{-1}$$

$$(none) = J \ s^{-1} \ s \ (none) \ \mu m \ J^{-1} \ s^{-1} \ s \ \mu m^{-1}$$

$$this is for top-of-atmosphere \longrightarrow SNR =~109$$

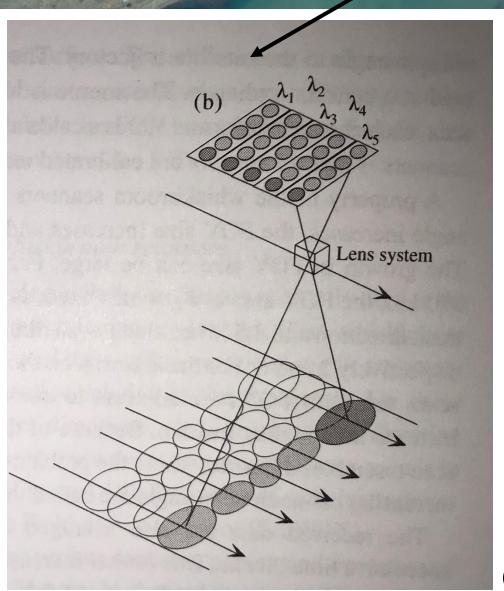

if we consider that the ocean contributes ~5% of this signal, then the number of photoelectrons from the ocean surface reaching the detector is ~603

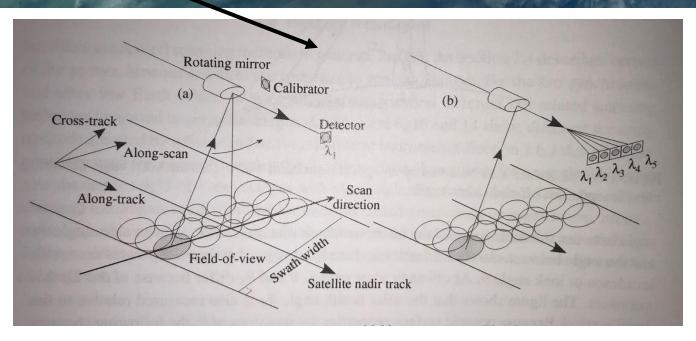
case 2: a moving satellite that stares at 1 m² at nadir

```
ground velocity = distance / time 6838 \text{ m s}^{-1} = 1 \text{ m} / t integration time = 0.000146 \text{ s}
```

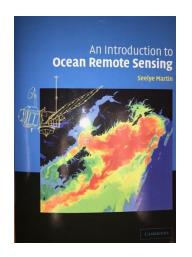
repeat calculations with new integration time ...

... photoelectrons from ocean surface reaching detector ~ 0.088


but, increase pixel size to 1 km² ...


- integration time increases by 3 orders of magnitude
- area increases by 6 orders of magnitude

major reason why pushbroom instruments are attractive ... SNR ~ 2400 for a 150 m pixel


repeat calculations with new area and integration time ...

pushbroom vs. whiskbroom (scanner)

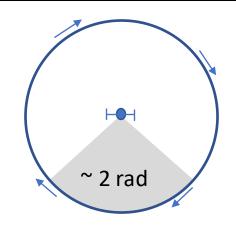
HICO Landsat 8 OLI MERIS OLCI SeaWiFS MODIS VIIRS PACE OCI

case 3: consider a moving satellite that scans from side-to-side

keep the 1 km pixel, but rotate the telescope at 1 Hz

instantaneous field of view (IFOV) ~ pixel size / altitude 0.00133 rad ~ 1 km / 750 km

a swath width of ~2 rad translates to ~1,500 pixels:

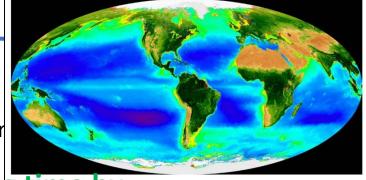

= swath width / IFOV 1,504 = 2 rad / 0.00133 rad

dividing the 88M photoelectrons by 1,500 pixels leaves ~59,000 photoelectrons from the ocean surface reaching the detector

useful duty cycle of of scan mirror is < 1/3, so really, we're talking about ~19,600 ocean surface photons

propagating this to TOA results in ~392,000 photons reach detector

wide-swath scanning instrument like SeaWiFS & PACE OCI


case 3: consider a moving satellite that scans from side-to-side

requires >10x photons reaching the detector

(... especially since most telescopes r

in this experiment, reducing time by 1/6 and increasing the pixel to 4000 km, gives an SNR of 2046

Pre-Aerosol, Clouds, and ocean **Ecosystem (PACE) Mission Science Definition Team Report**

October 16, 2012

useful duty cycle of of scan mirror is < 1/3, so really, we're talking about ~19,600 ocean surface photons

460 15 6.83 72.4 475 6.19 72.2 15 1 490 68.6 15 5.31 66.3 510 15 4.58 532 65.1 15 3.92 555 15 64.3 3.39 583 15 2.81 62.4 617 2.19 58.2 15 640 56.4 10 1.90 655 15 1.67 53.5 1.60 53.6 665 678 1.45 51.9 10 15 710 1.19 12 Q 748 44.7 10 0.93 1 820 39.3 0.59 15 865 40 0.45 33.3 1240 15.8 20 0.088 1640 40 8.2 0.029 2130 0.008 SNR = ~626

Band

Width

15

15

15

15

15

15

(nm)

350

360

385

412

425

443

Spatial

Resol.

(km²)

1

1

1

SNR-

Spec

300

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

2000

1000

600

600

600

180

35.6

37.6

38.1

60.2

58.5

66.4

7.46

7.22

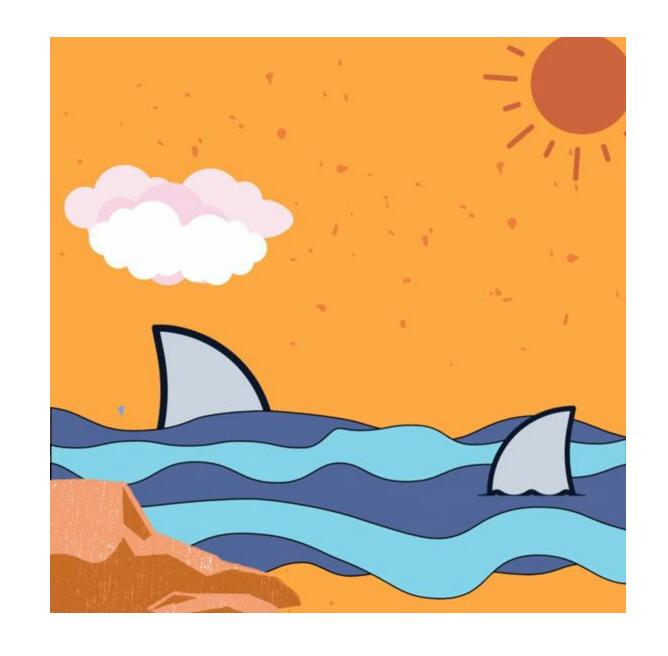
6.11

7.86

6.95

7.02

propagating this to TOA results in ~392,000 photons reach detector


satellite instruments come in all shapes and sizes and have varying capabilities
how does one choose what to use / build?

how would you design a mission to monitor coastal harmful algal blooms & their interactions with the atmosphere under pervasive absorbing aerosols?

Optics Class Class Shark Tank exercise

(aka build a mission with your new co-Pls)

Jeremy (courtesy of Ivona and Ryan)

goal: build your own mission

- 1. Find your team members (maybe groups of 5?)
- 2. Think about the assigned science question (coastal HABs + abs aer)
- 3. Think what kind of space-based observation would you need to get data to address that question (you can copy already existing missions a bit)
- 4. Your budget its 100\$ (and you are cost capped) go shopping
- 5. Cool acronym (or yeah not a real mission)

What measurements & data products? All of them.

What instruments? Active? Passive? Both.

Spectral – what wavelengths? Thermal? Yes please! UV-to-SWIR plus thermal.

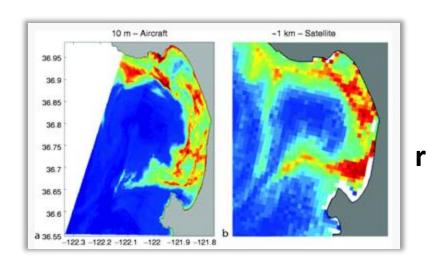
Spectral – what resolution? Hyperspectral, of course.

What spatial footprint?

The smaller the better. 10 m!

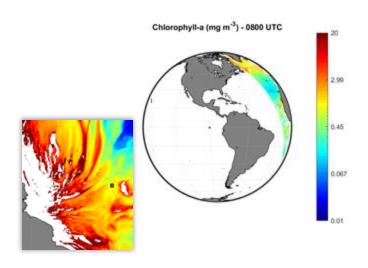
What repeatability?

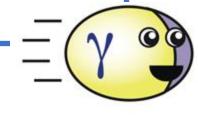
Daily global, duh. Phytos are transient.

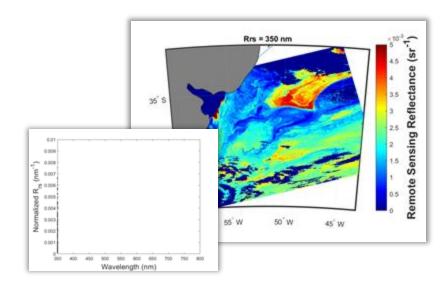

What allowable image quality?

High SNRs, no image artifacts.

What temporal stability? Change is bad.

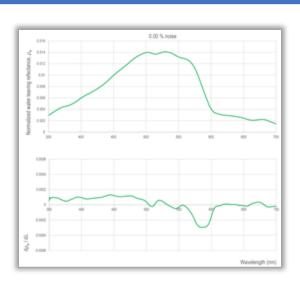

You can't have this mission (from orbit alone anyway).


the battle over the happy photon



spatial resolution

temporal resolution



spectral resolution

signal to Noise

-\$5

Cafe

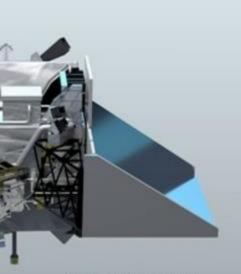
OPEN: MON-SUN

123 Anywhere St., Any City, ST 12345

INSTRUMENTS (VIS)

multispectral (10) radiometer	\$35
HYPERSPECTRAL radiometer	\$55
multispectral (3) radiometer	\$25
Hyperspec, multiangle polarimeter	\$45
lidar, single channel	\$50
instrument yet to be invented	\$80
multispec (4), multiangle polarimeter	\$40
SPATIAL RES	
1 km (radiometer)	\$25
300 m (radiometer)	\$40
1 km (polarimeter)	\$50
10 m (radiometer)	\$65
2-3 km (radiometer)	\$25
TEMPORAL RES	
DAILY	\$25
7-10 DAYS	\$10
MULTIPLE TIMES A DAY (GEO) MULTIPLE TIMES A DAY (constellation)	\$35 \$20
ADD ONS	720
SWIR	\$10
JV	\$10
THERMAL	\$15
additional bands in vis	\$2
additional angles	\$4
more than occasional artifact	-\$7
ow SNR (lower than pace instr)	-\$15
nigher-than-planned SNR at spec. range	-\$5
Calibration (MORE reliable): On board calibrator	\$5

Calibration (LESS reliable): Cross


calibrate with existing sensors

INSTRUMENTS (VIS)

multispectral (10) radiometer	\$35
HYPERSPECTRAL radiometer	\$55
multispectral (3) radiometer	\$25
Hyperspec, multiangle polarimeter	\$45
lidar, single channel	\$50
instrument yet to be invented	\$80
multispec (4), multiangle polarimeter	\$40

Cafe

OPEN: MON-SUN 7 AM - 5 PM

123 Anywhere St., Any City, ST 12345

INSTRUMENTS (VIS)

multispectral (10) radiometer	\$35
HYPERSPECTRAL radiometer	\$55
multispectral (3) radiometer	\$25
Hyperspec, multiangle polarimeter	\$45
lidar, single channel	\$50
instrument yet to be invented	\$80
multispec (4), multiangle polarimeter	\$40

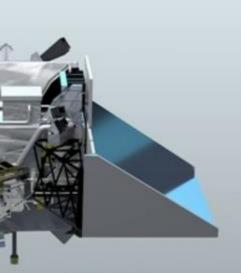
SPATIAL RES

1 km (radiometer)	\$25
300 m (radiometer)	\$40
1 km (polarimeter)	\$50
10 m (radiometer)	\$65
2-3 km (radiometer)	\$25

TEMPORAL RES

\$25
\$10
\$35
\$20

ADD ONS


SWIR	\$10
UV	\$10
THERMAL	\$15
additional bands in vis	\$2
additional angles	\$4
more than occasional artifact	-\$7
low SNR (lower than pace instr)	-\$15
higher-than-planned SNR at spec. range	-\$5
Calibration (MORE reliable): On board calibrator	\$5
Calibration (LESS reliable): Cross calibrate with existing sensors	-\$5

SPATIAL RES

I km (radiometer)	\$25
300 m (radiometer)	\$40
I km (polarimeter)	\$50
10 m (radiometer)	\$65
2-3 km (radiometer)	\$25

Cafe

GRATUITY(AKA LAUNCH + SPACECRAFT) = 20%

> OPEN: MON-SUN 7 AM - 5 PM

123 Anywhere St., Anv City, ST 12345

INSTRUMENTS (VIS)

multispectral (10) radiometer	\$35
HYPERSPECTRAL radiometer	\$55
multispectral (3) radiometer	\$25
Hyperspec, multiangle polarimeter	\$45
lidar, single channel	\$50
instrument yet to be invented	\$80
multispec (4), multiangle polarimeter	\$40

SPATIAL RES

1 km (radiometer)	\$25
300 m (radiometer)	\$40
1 km (polarimeter)	\$50
10 m (radiometer)	\$65
2-3 km (radiometer)	\$25

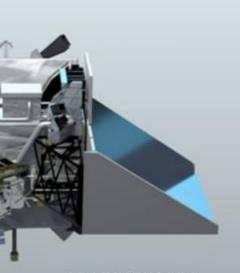
TEMPORAL RES

calibrate with existing sensors

DAILY	\$25
7-10 DAYS	\$10
MULTIPLE TIMES A DAY (GEO)	\$35
MULTIPLE TIMES A DAY (constellation)	\$20

ADD ONS

SWIR	\$10
UV	\$10
THERMAL	\$15
additional bands in vis	\$2
additional angles	\$4
more than occasional artifact	-\$7
low SNR (lower than pace instr)	-\$15
higher-than-planned SNR at spec. range	-\$5
Calibration (MORE reliable): On board calibrator	\$5
Calibration (LESS reliable): Cross	-\$5


TEMPORAL RES

DAILY	\$25
7-10 DAYS	\$10
MULTIPLE TIMES A DAY (GEO)	\$35
MULTIPLE TIMES A DAY (constellation)	\$20

\$35

Cafe

GRATUITY(AKA LAUNCH + SPACECRAFT) = 20%

> MON-SUN 7 AM - 5 PM

123 Anywhere St., Any City, ST 12345

INSTRUMENTS (VIS)

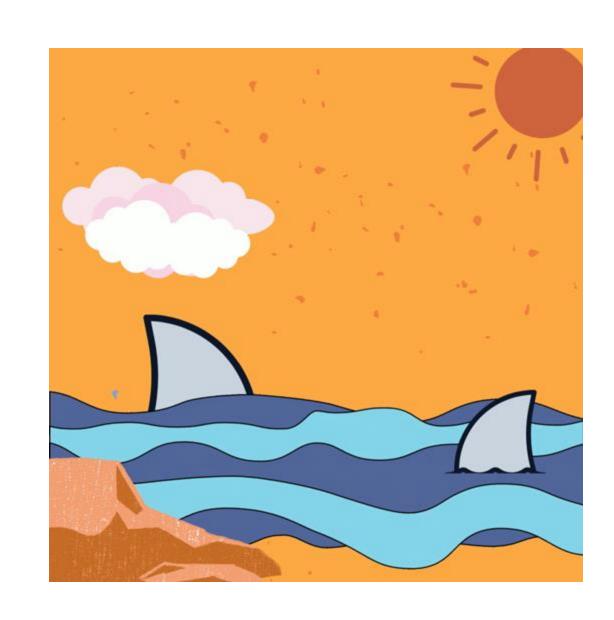
multispectral (10) radiometer

	200
HYPERSPECTRAL radiometer	\$55
multispectral (3) radiometer	\$25
Hyperspec, multiangle polarimeter	\$45
lidar, single channel	\$50
instrument yet to be invented	\$80
multispec (4), multiangle polarimeter	\$40
SPATIAL RES	
1 km (radiometer)	\$25
300 m (radiometer)	\$40
1 km (polarimeter)	\$50
10 m (radiometer)	\$65
2-3 km (radiometer)	\$25
TEMPORAL RES	
DAILY	\$25
7-10 DAYS	\$10
MULTIPLE TIMES A DAY (GEO)	\$35
MULTIPLE TIMES A DAY (constellation)	\$20
ADD ONS	
SWIR	\$10
UV	\$10
THERMAL	\$15
additional bands in vis	\$2
additional angles	\$4
more than occasional artifact	-\$7
low SNR (lower than pace instr)	-\$15
higher-than-planned SNR at spec. range	-\$5
Calibration (MORE reliable): On board calibrator	\$5
Calibration (LESS reliable): Cross calibrate with existing sensors	-\$5

ADD ONS

SWIR	\$10
UV	\$10
THERMAL	\$15
additional bands in vis	\$2
additional angles	\$4
more than occasional artifact	-\$7
low SNR (lower than pace instr)	-\$15
higher-than-planned SNR at spec. range	-\$5
Calibration (MORE reliable): On board calibrator	\$5
Calibration (LESS reliable): Cross calibrate with existing sensors	-\$5

goal: build your own mission


- 1. Find your team members (maybe groups of 5?)
- 2. Think about the assigned science question (coastal HABs + abs aer)
- 3. Think what kind of space-based observation would you need to get data to address that question (you can copy already existing missions a bit)
- 4. Your budget its 100\$ (and you are cost capped) go shopping
- 5. Cool acronym (or yeah not a real mission)

what if you go over budget?

this includes schedule slips because time does indeed equal money

the review panel (who debriefs HQ) or HQ (alone) will decide your fate ...

- 1. they give you money
- 2. they cancel you
- 3. you get put on a shelf
- 4. you get eaten by sharks

What measurements & data products? All of them.

What instruments? Active? Passive? Both.

Spectral – what wavelengths? Thermal?

Yes please! UV-to-SWIR plus thermal.

Spectral – what resolution?

Hyperspectral, of course.

What spatial footprint?

The smaller the better. 10 m!

What repeatability?

Daily global, duh. Phytos are transient.

What allowable image quality?

High SNRs, no image artifacts.

What temporal stability? Change is bad.

You can't have this mission (from orbit alone anyway).

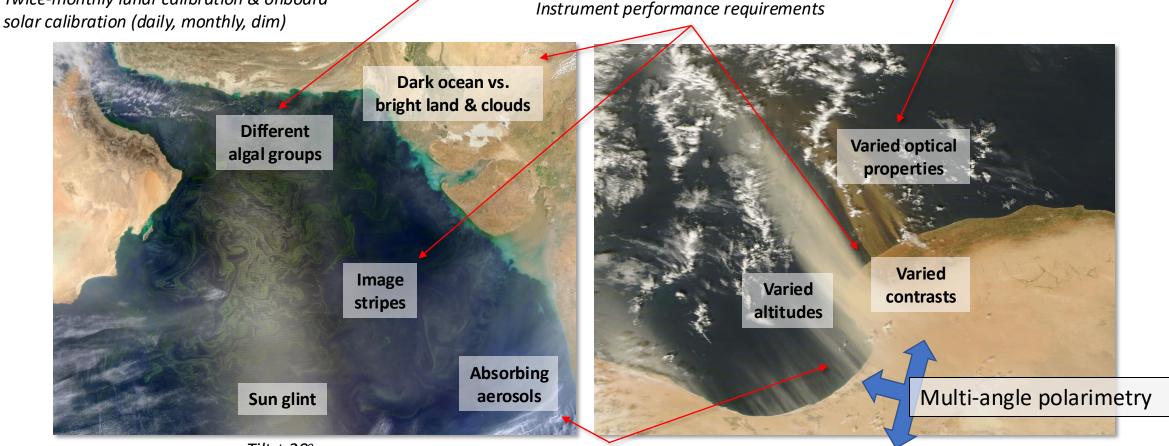
You have neither the budget nor the technology.

And certain aspects of the design are in conflict with each other.

So ... we make compromises based on overarching science objectives.

Extend key systematic ocean biological, ecological, & biogeochemical climate data records, as well as cloud & aerosol climate data records

GSD of 1 ± 0.1 km² at nadir


Twice-monthly lunar calibration & onboard

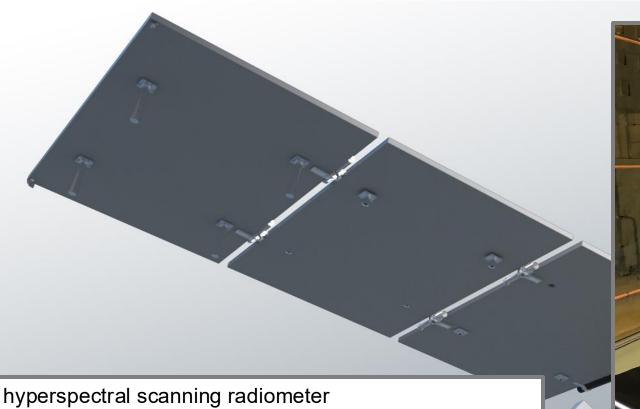
Make new global measurements of ocean color that are essential for understanding the global carbon cycle & ocean ecosystem responses to a changing climate

Collect global observations of aerosol & cloud properties, focusing on reducing the largest uncertainties in climate & radiative forcing models of the Earth system

Spectral range from 350-865 @ 5 nm

940, 1038, 1250, 1378, 1615, 2130, 2260 nm

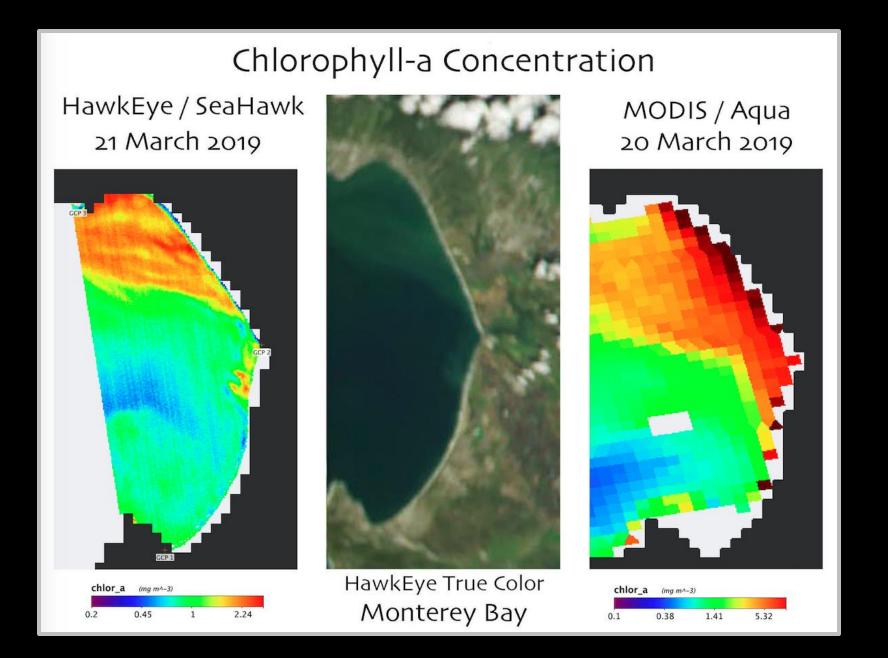
Tilt ± 20°


Spectral range goal of 320-865 @ 5 nm

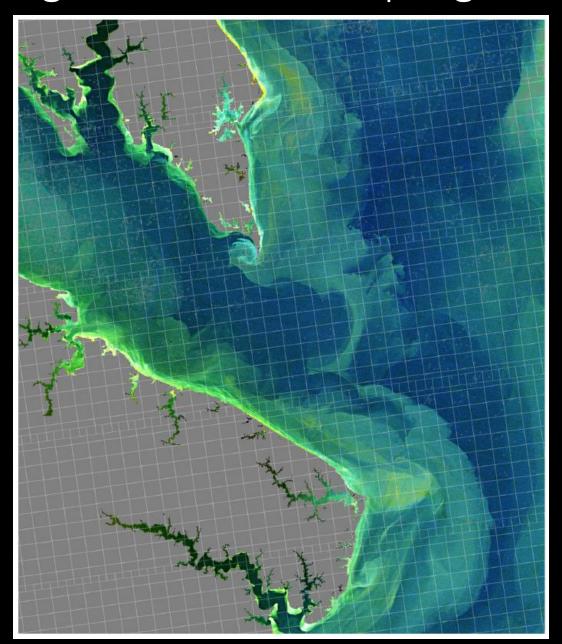
Improve our understanding of how aerosols influence ocean ecosystems & biogeochemical cycles and how ocean biological & photochemical processes affect the atmosphere

PAR =

image artifacts and instrument design



- hyperspectral scanning radiometer
- (320) 340 890 nm, 5 nm resolution, 2.5 nm steps⁺
- plus, 940, 1038, 1250, 1378, 1615, 2130, and 2250 nm
- single science pixel to mitigate image striping
- 2 day global coverage
- ground pixel size of 1 km² at nadir
- ± 20° fore/aft tilt to avoid Sun glint
- twice monthly lunar calibration
- daily on-board solar calibration
- <0.5% total system error for VIS-NIR
- SNRs optimized for ocean color science
- simulated top-of-atmosphere data available



- * developed primarily for mechanical processing assessments

all that said ...

Landsat OLI image with MODIS-Aqua grid shown (Franz et al. 2015)

persevere ...

... and collaborate

#NASAESABakeoff

satellite data flows, accessibility, processing lab

to be held next week – alternating with the cruise

will include a demonstration of satellite data processing

- goal is to demystify processing from L1A to L3
- will likely include a few quick sensitivity analyses

if you want to follow along ... install OCSSW between now and then

- https://seadas.gsfc.nasa.gov/
- https://seadas.gsfc.nasa.gov/requirements/
- it could (will!) present challenges I am no help (\odot), as I suffer from them too so pretend you're at your home institution and write emails, use the forum, etc.
- but remember to have fun it's empowering in the end!