
PART II


RADIATIVE TRANSFER


Part II of our book develops the laws that govern the transfer of

radiant energy from one location to another.


Chapter 4 discusses the transfer of radiant energy across the air-
water surface of a natural water body. This chapter introduces the 
interaction principle, from which the entire formalism of radiative transfer 
theory can be derived. Here the interaction principle provides us with the 
boundary conditions that will be required for the solution of the radiative 
transfer equations to be developed in Chapter 5. Both radiance and 
irradiance levels of the interaction principle are presented.  This chapter is 
distinguished by a discussion of the numerical techniques needed for a 
proper application of the interaction principles to wind-blown, random air-
water surfaces.  The chapter contains many numerically generated results, 
which illustrate the radiative transfer properties of wind-blown water 
surfaces. 

Chapter 5 treats the transfer of radiant energy within the water body. 
The chapter begins with a discussion of the physical processes of 
absorption, elastic and inelastic scattering, and emission.  We then develop 
the complete radiance transfer equation, from which the two-flow 
equations governing irradiance transfer are then obtained.  We thoroughly 
discuss the input required for solution of the various equations.  The two-
flow equations yield several useful relations among inherent and apparent 
optical properties. We finish the chapter with a discussion of how 
polarization and the processes of Raman scattering, fluorescence, and 
bioluminescence are included in the radiative transfer equations. 
Discussion of the associated numerical techniques for solving the transfer 
equations is deferred to Part III. 
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Chapter 4


Across the Surface


Most of the photons descending from the atmosphere over an ocean or 
lake eventually reach the water surface.  The surface reflects some of these 
photons back to the sky, and transmits the remainder into the water body. 
Likewise, photons within a water body occasionally strike the air-water 
surface from below; some of these photons pass through the surface into the 
air and some are reflected back into the water body.  The precise description 
of this activity is partly provided by the interaction principle of radiative 
transfer theory written, in this instance, for the air-water surface.  In this 
chapter we shall state the interaction principles for radiance and irradiance for 
a general wind-blown surface, and show how the associated reflectance and 
transmittance functions occurring in the principles can be evaluated.  These 
interaction principles serve as boundary conditions for the solution of the 
radiance and irradiance equations of transfer within the water body. 

We shall discuss three states of the air-water surface.  The first is a 
level water surface, for which the associated surface reflectance and 
transmittance functions can be evaluated analytically.  The second is a surface 
covered by wind-generated capillary waves.  We shall discuss in some detail 
the numerical techniques needed for modeling of capillary-wave surfaces. 
Radiative transfer across such surfaces will be illustrated by numerically 
generated examples.  Third, we show how the numerical techniques developed 
for capillary waves can be extended to gravity waves, or to well developed 
seas with all scales of wave motion. 

Radiative transfer across wind-blown surfaces is in many ways more 
complex and difficult to describe quantitatively than is transfer within the 
water.  Our discussion in this chapter therefore has some rather abstract and 
mathematical sections.  We offer no apology for this, since it is not our fault 
that nature has made sea surfaces so complicated.  However, those sections 
that deal primarily with numerical techniques, rather than with general 
principles or with illustrative examples, have their headings followed by two 
vertical bars:  ''.  If you wish only an overview of the subject, you may skip 
the barred sections without guilt.  If you find our presentation of numerical 
algorithms to be tedious, just remember that the discussion here is 
considerably less tedious than having to figure out these matters for  
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yourself when it comes time to write a computer program.  Those readers 
desiring to apply radiative transfer theory to the numerical solution of their 
own problems will find the barred sections very useful, since the path from 
elegant theory to numerical algorithms is seldom obvious. 

4.1 Interaction Principles

Radiative transfer theory is distinguished by the fact that it is one of the 
branches of physics that can be made to rest on a single principle from which 
all the salient structures of the theory can be systematically deduced. In this 
sense it is a closed subset of electromagnetic theory.  The principle that 
permits this mode of construction of radiative transfer theory is called the 
interaction principle [see Supplementary Note 3]. 

The interaction principle is a statement of the linearity of classical 
radiative transfer processes.  Thus radiative transfer theory, a complex web of 
deductions following from the principle, is at its core a linear theory of the 
interaction of light with matter on a phenomenological level. The structure of 
the theory arises from two restrictions placed on the theory by its principal 
developers. 

The first restriction is that the theory be concerned only with 
electromagnetic radiation of low irradiances and of low photon energies.  By 
"low irradiances" we mean that the radiant energy incident on a material 
medium induces a response in the medium that is directly proportional to the 
magnitude of the electric field describing the radiation.  It is this linear 
response – and the linearity of Maxwell's equations – that leads, for example, 
to the simple laws of reflection and refraction that we shall encounter in 
Section 4.2.  At extremely high irradiances, typically greater than 1010 W m-2 

(as can be generated with lasers), materials may exhibit responses that are 
proportional to the square (or higher powers) of the electric field.  The 
resulting phenomena, such as frequency doubling of light passing through a 
crystal, are the subject matter of modern nonlinear optics.  By "low photon 
energies" we mean that the photons lack enough energy to produce phenomena 
such as the excitation of atomic nuclei or pair production (conversion of a 
photon into an electron-positron pair), as can occur with gamma rays.  Such 
phenomena require the tools of quantum mechanics for study.  At ultraviolet 
to infrared wavelengths, photons can induce atomic electron transitions and 
can excite molecular vibrations and rotations, but no more.  The typical 
irradiances of 103 W m-2 at visible wavelengths encountered in hydrologic 
optics are well within the "low irradiance, low photon energy" domain for 
which radiative transfer theory is valid.  Note that radiative transfer theory 
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does include inelastic phenomena such as spontaneous Raman scattering and 
fluorescence, which are well described as linear responses of optical media. 

The second restriction placed on radiative transfer theory is that it be 
a phenomenological theory.  That is to say, we make our measurements and 
define our variables at a macroscopic level of observation for which 
geometrical optics is valid, and we do not examine the underlying causes of 
physical phenomena. For example, the volume scattering function $ contains 
all of the information needed to completely describe the scattering properties 
of a given macroscopic volume of water.  Neither the microscopic, physical 
details of the scattering process (e.g. absorption and re-emission of photons by 
atoms), nor the scattering phenomena of physical optics (e.g. diffraction) are 
within the purview of radiative transfer theory.  It is only the net effect of these 
microscopic, physical processes as parameterized by the bulk quantity $ that 
is of interest. 

Of course, we legitimately may wish to predict the value of the 
scattering function $ from first principles and a knowledge of the constituents 
of a water sample.  We outlined in Section 3.11 one way in which this can be 
done.  However, this noble endeavor cannot be accomplished within the 
framework of classical radiative transfer theory. 

Plane-parallel water bodies 

Our subsequent detailed development of radiative transfer theory will 
be restricted to the special case of plane-parallel water bodies. Thus we 
assume that the water body is infinite in horizontal extent and that there are no 
horizontal variations of inherent optical properties or of boundary conditions. 
The inherent optical properties of the water body may, however, vary 
arbitrarily with depth.  These assumptions reduce the number of spatial 
variables to one, the depth, and allow us to discuss hydrologic optics in the 
simplest setting that is still a usefully realistic model of nature.  But more 
importantly, the adoption of plane-parallel water bodies will enable us to 
employ some very powerful mathematical techniques that are applicable only 
to problems with simplified geometry. 

In Section 1.4 and Fig. 1.3 we adopted a cartesian coordinate system 
in which the nadir direction  is used as the reference direction for defining 
the polar angle 2, and the downwind direction  is the reference for the 
azimuthal angle N. We now consider the depth variable x3 in more detail. 
Observations taken at sea are recorded in terms of the geometric depth z, 
measured in meters positive downward from the mean sea surface. We shall 
learn in Chapter 5 that the relevant measure of depth in computing 
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underwater light fields is the optical depth ., which is defined via 

(4.1) 

m

where c(z) is the beam attenuation coefficient at geometric depth z, and d. and 
dz are infinitesimal increments of . and z. Note that because c has units of 

!1, the optical depth is nondimensional. The standard symbol for optical 
depth is J. However, we wish to reserve J for later use (as a local 
transmittance).  We therefore adopt the Greek equivalent of z as a reasonable 
replacement for J. The symbol z will always denote geometric depth, as is 
customary in oceanography. 

We shall take the depth variable x3 to be either geometric depth z or 
optical depth ., as is convenient at the moment; both have the value zero at 
mean sea level.  We can obtain the finite optical depth . corresponding to a 
finite geometric depth z by integration of Eq. (4.1): 

(4.2) 

If the beam attenuation coefficient is known as a function of the optical depth, 
we can obtain corresponding z and . values from 

It will prove very convenient to denote certain depths as follows.  Let 
"a" denote depth zero, but in the air just above the water surface; let "w" be 
depth zero, but in the water just below the surface. The air-water surface is 
then an infinitesimally thin slab between depths a and w, denoted by S[a,w]. 
Corresponding optical and geometric depths within the water body are denoted 
by "." and "z," respectively.  When we need to specify several arbitrary depths 
within the water body, we shall use subscripts on . or z, e.g. .1, .2, and .3, 
where .1 # .2 # .3 always. Next, let "m" be the maximum depth of interest, i.e. 
the greatest depth at which we wish to study the optical properties of the water 
body.  Finally, let "b" denote the bottom of the water body. The context in a 
given discussion will make clear whether m and b represent optical or 
geometric depths.  The region of interest is then the slab S[w,m], and the 
bottom boundary of the water body is the slab S[m,b]. The lower boundary 
S[m,b] can be either an infinitesimally thin surface representing, say, a muddy 
or sandy bottom, or S[m,b] can represent a finitely or infinitely thick slab of 
water below the greatest depth of interest.  Indeed, the surface S[a,w] can in 
principle 
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Fig. 4.1.  Representation of a plane-parallel water body and the associated 
coordinate system.  [redrawn from Mobley and Preisendorfer (1988)] 

represent a finitely thick layer such as a glass plate or a film of oil, but we shall 
not explicitly consider this possibility. Clearly we then have 

The plane-parallel water body and associated coordinate system are shown in 
Fig. 4.1. 

Interaction principle for the air-water surface 

The interaction principle for the air-water surface S[a,w] is an algebraic 
prescription for calculating the radiant power emerging from the surface when 
the radiant power incident on the surface is specified. We shall formulate the 
principle for both radiances and the irradiances. 

Recalling the definitions and discussions in Chapter 1, we can, for 
brevity, let L(.; 
. and in direction = (2,N); the wavelength 8 and time t

) be the (monochromatic) spectral radiance at optical depth 
 are understood. 

With this notation, L(a; ), 0 = d, represents the downward radiance incident 
on the air-water surface from above; this radiance is called the air-incident 
radiance. Likewise, L(w; ), 0 = , is the radiance incident onu



152 Across the Surface 

S[a,w radiance.the surface ] from below; this is the water-incident These 
incident radiances give rise to two response radiances: L(a; ), 0 = u, 
emanating from the upper side of the surface and L(w; ), 0 = d, emanating 
from the lower side of S[a,w]. 

associated with S[a,w], namely t( ; 6 ), 
r(a,w; 6 ), r(w,a; 6 ) and t(a,w; 6 !1, such that 

The interaction principle for radiance then asserts the existence of four 
radiance transfer functions w,a

), each of dimension sr

(4.3) 

and 

(4.4) 

The physical interpretations of Eqs. (4.3) and (4.4) are quite simple. 
Consider Eq. (4.3).  On the left hand side we have the radiance just above the 
surface (at "depth" a); this radiance is directed away from the surface ( 0 = u, 
i.e. the photons are traveling upward). The first term on the right hand side of 
Eq. (4.3) specifies how much of the radiance incident on the bottom side of the 
surface (depth w) in the upward direction ( 0 = u) is transmitted through the 
surface and into direction . The integration over all 0 = u merely adds up 
the radiance L(w; ) incident in all upward directions, which is transmitted in 
some amount determined by t(w,a; 6 ) into direction .  The second term on 
the right hand side tells us how much [r(a,w; 6 )] of the downward ( 0 = d) 

aradiance incident on the upper side of the surface (depth ) is reflected back 
upward into direction 0 =  by the surface between depths a and w. Au

corresponding interpretation holds for Eq. (4.4):  now the left hand side gives 
w) that is directed away from thethe radiance just below the surface (depth 

surface ( 0 = d), and so on. 
Note how the order of the depth arguments a and w reminds us of the 

distinct physical processes:  t(a,w; 6 ) transmits radiance from above the
surface to below (i.e. from depth a to depth w), whereas t(w,a; 6 ) transmits
radiance from below the surface to above it (i.e. from depth w to depth a). 
Likewise, radiance reflectance from the air side of the surface, 
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r( ; 6 
r(w,a; 6 ). 6

 are 

a,w ), is physically different from reflectance from the water side, 
  The direction of the arrow in the  part of the argument 

reminds us that photons (radiance) originally traveling in direction 
reflected or transmitted into direction . 

It is implicitly assumed in writing Eqs. (4.3) and (4.4) that the surface 
S[a,w] neither absorbs nor emits photons – it only reflects or transmits them. 
This assumption is physically reasonable since, for our present purposes, 
S[a,w] represents just a discontinuity in the real index of refraction, not a finite 
layer of a material medium. 

from Eqs. (4.3)We can obtain the interaction principle for irradiance
and (4.4).  Multiplying Eq. (4.3) by * A * (note that A # 0) and 
integrating over = u, and multiplying Eq. (4.4) by * A * (although now 
A  > 0) and integrating over = d, we find 

(4.5) 
and 

(4.6) 

Here E  and Ed are the upward and downward spectral plane irradiances at the u

indicated depths.  In order to obtain the simple forms of Eqs. (4.5) and (4.6), 
we have defined four irradiance transfer functions: 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

Observe that the irradiance transfer functions are dimensionless. 
If the four radiance transfer functions are known, then Eqs. (4.3) and 

(4.4) tell us all there is to know about how the air-water surface affects any 
incident radiance distribution.  Likewise, if the irradiance transfer functions 
of Eq. (4.7) are known, then Eqs. (4.5) and (4.6) completely specify the  
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surface as regards its effect on the incident irradiance corresponding to the 
incident radiance seen in Eqs. (4.7).  Unfortunately, however, the elegant 
interaction principle gives us no clue as to how the needed transfer functions 
are obtained in practice.  Our main purposes in the remainder of this chapter 
are to develop a means of evaluating the transfer functions for a wind-blown 
water surface, and to obtain some intuitive feeling for the nature of these 
functions.  We shall see that in all cases the transfer functions for both 
irradiance and radiance can be approximately evaluated using Monte Carlo 
procedures.  Alternatively, since radiance is more fundamental than irradiance, 
the irradiance transfer functions can be determined by a numerical integration 
of Eq. (4.7), once the radiance transfer functions have been determined by a 
Monte Carlo procedure. 

Note that the radiance transfer functions, t(w,a; 6 ) etc., depend only 
on the nature of the air-water surface; thus they are inherent optical properties 
(IOP's).  However, the irradiance transfer functions, t(w,a) etc., depend both 
on the nature of the surface and on the incident radiance distribution, as is 
seen in the defining Eqs. (4.7).  The irradiance transfer functions are therefore 
not IOP's. This is our first hint that irradiance, which appears simpler than 
radiance because it does not contain detailed directional information, is in fact 
often more difficult to treat mathematically than is radiance.  We shall say 
more about this matter in Section 5.10. 

The specific form of the interaction principle used here for the air-water 
surface is derived from the general statement of the principle found in 
Preisendorfer (1965, p. 114) or in H.O. II, p. 205.  The interaction principle is 
simply a formalization (a translation into mathematical form) of the 
requirement that radiative transfer theory on the phenomenological level be a 
linear theory.  The principle then supplies the linear operators needed to 
describe the phenomenon.  The integrals in Eqs. (4.3) and (4.4) are examples 
of these linear operators; the transfer functions, t(w,a; 6 ) and its three 
partners, are the kernels of these operators.  Mathematical concerns about the 
existence of the operators are addressed in H.O. II, p. 372. The interaction 
method of formulating problems in radiative transfer theory is treated in detail 
in H.O. II, Chapter 3. 

4.2 The Level Surface

It is a rare day when a lake or ocean surface is glassy calm, for even a 
slight breeze will ruffle the water surface with capillary waves, and ocean 
swell may be present on a surface that otherwise would be calm.  However, 
discussion of a level water surface is not just an idle mathematical exercise 



155 4.2 The Level Surface 

of little applicability to natural waters.  First, a level surface allows us to 
introduce several important concepts in their simplest form, and thereby gain 
some intuition about the physical processes involved.  Second, our numerical 
treatment of wind-blown air-water surfaces rests on a resolution of the wave-
covered surface into small wave facets, each of which can be treated as a 
locally plane surface (although tilted from the horizontal) obeying the laws of 
geometrical optics now to be discussed. 

When the air-water surface is a flat horizontal plane, the reflection and 
transmission of photons across the surface follow directly from the laws of 
geometrical optics.  There are two cases to consider, as shown in Fig. 4.2, 
namely the air-incident and water-incident cases.  As above, the term "air­
incident" refers to downward traveling photons that are incident from the air 
onto the water surface.  "Water-incident" refers to upward traveling photons 
incident from the water body onto the water surface.  The air-water surface 
divides space into two regions:  the atmosphere, with real index of refraction 
na, and the water body, with index of refraction n . The convenientw

approximations n  = 1 and nw = 1.34 are sufficiently accurate for our presenta

purposes. 

Fresnel reflectance 

We now find the concept of a light ray to be convenient. We envision 
a ray simply as a narrow beam of photons traveling in almost the same 
direction.  The ray has a given spectral power, small cross sectional area, and 
small solid angle, from which the radiance of the ray can be defined using Eq. 
(1.20).  A collimated laser beam is a good physical approximation to the 
concept of a ray. 

In the air-incident case shown in Fig. 4.2(a), such a ray of photons 
approaches the air-water surface along direction in = d; is a unit vector 

). Upon reaching the water normal to the surface and directed upward (  = ! 
surface, the ray  produces two daughter rays:  a reflected ray along and ar

transmitted (refracted) ray along t.  The directions and t lie in the planer

defined by and .  One can compute the directions and t by observingr

the colinearity of the vector tips of the reflected direction and the modified 
transmitted or incident directions.  This colinearity, which is shown by the 
dashed lines in Fig. 4.2, follows from Snell's law written for the air-incident 
case: 

(4.8) 

The resulting expressions for the reflected and transmitted ray directions are 
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Fig. 4.2.  Schematic diagrams for reflected and refracted rays.  The diagrams 
summarize Eqs. (4.8)-(4.13). [redrawn from Preisendorfer and Mobley (1985)] 

(4.9a) 
and 

(4.9b) 
where 

(4.9c) 

The angles of reflection and transmission are given by 
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(4.10a) 
and 

(4.10b) 

respectively. 
For the water-incident case shown in Fig. 4.2(b), Snell's law reads 

(4.11) 

The reflected and transmitted directions are 

(4.12a) 

(4.12b) 
and 

where 

4.12c) 

and the corresponding angles of reflection and transmission are 

(4.13a) 
and 

(4.13b) 

For either the air-incident or the water-incident case, the reflectance 
r(2)) of the unperturbed air-water surface for unpolarized incident radiant 
energy is given by Fresnel's formula (Sears, 1949, p. 174): 

(4.14a) 

which holds if 2) � 0. In the case of normal incidence, 2) = 0 and hence 2r = 
2t = 0 also.  Equation (4.14a) is then indeterminate.  In this special case the 
surface reflectance is given by [see Supplementary Note 4] 

(4.14b) 
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# r(2)) #The Fresnel reflectance lies in the interval 0  1 and gives the 
fraction of photons incident in a narrow beam along (from air or water) that 
is reflected by the surface. In other words, r(2)) gives the fraction of the 
incident irradiance of a collimated beam that is reflected by a level surface. 
Figure 4.3 shows the behavior of r(2)) for both air-incident and water-incident 
rays.  The reflectance is shown for two values of nw, which bracket the range 
of n  encountered in natural waters. For both air- and water-incident rays, the w

reflectance is 0.02 to 0.03 for rays with incident angles of less than 30°.  For 
air-incident rays, the reflectance does not exceed 0.1 until the angle of 
incidence is greater than 65°.  For water-incident rays, however, the reflectance 
increases very rapidly for 2) greater than 30°, and equals one for incident 
angles greater than or equal to the critical angle 2) = sin!1(1/nw) . 48°. This 
phenomenon of total internal reflection greatly influences the passage of 
radiant energy back and forth across the sea surface.  For example, an air-
incident ray with 2) = 50° transmits at least 96% of its energy through a level 
surface and into the water, whereas a water-incident ray with 2) = 50° transmits 
none of its energy into the air.  Thus, figuratively stated, it is much easier for 
light to get "into the water" than it is for light to get "out of the water." 

Fig. 4.3.  Behavior of the Fresnel reflectance function of Eq. (4.14) for the 
extreme values of the real index of refraction n  encountered in hydrologic w

optics. 
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The n2 law for radiance 

We now pause to pick up an important law of geometrical radiometry, 
the n2 law for radiance. To see the general form of this law, consider two 
media separated by a transparent surface, as in Fig. 4.4(a).  Suppose that a ray 
with central direction 1 in medium 1, of index of refraction n1, is incident on 
a locally plane boundary surface, which has a normal . Further, suppose that 
the ray crosses the interface and passes into medium 2, of index of refraction 
n2.  The central refracted direction is 2, which lies in the plane defined by 1 

and .  With the incident and refracted angles 21 and 22 assigned to 1 and 2 

as shown in Fig. 4.4(a), Snell's law states that 21 and 22 are related by 

(4.15) 

By construction, the azimuthal spreads )N1 and )N2 of the rays are equal and 
of magnitude, say, )N. The narrow rays then have solid angles given by 
[recall Eq. (1.12)] 

Fig. 4.4. Geometry used in deriving the n2 law for radiance. 
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(4.16) 

Now, squaring each side of Eq. (4.15) and taking differentials gives 

Multiplying each side of this equation by )N and using Eq. (4.16), we come 
to 

(4.17) 

which is called Straubel's invariant in geometrical optics. 
We now can derive the n2-law for radiance.  Let the radiances of the 

two rays be 

(4.18) 

where )Mj and )A are, respectively, the spectral radiant powers and the cross-j 

sectional areas of the incident (j = 1) and refracted (j = 2) rays.  Now, from Eq. 
(4.14) we know r( 1@ ), and hence the Fresnel transmittance t( 1@ ) = 1 ! 
r( 1@ ) of the air-water surface. Thus we know 

(4.19) 

Observe from Fig. 4.4(b) that )A1 and )A2 are related to )A by 

(4.20) 

Now, from Eq. (4.18) we have 

which by Eqs. (4.19) and (4.20) has the equivalent form 

(4.21a) 

Straubel's invariant (4.17) reduces this to still another equivalent form: 

(4.21b) 
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or 

(4.21c) 

Equation (4.21) in any of its forms is the desired n2 law for radiance. 
We have derived the n2 law from considerations of a beam of photons 

traveling an infinitesimal distance across the boundary from one medium to 
another.  For this geometry, Eq. (4.21) is exact.  The n2 law is valid for finite 
path lengths in the two media, to the accuracy with which absorption and 
scattering out of the beam within the media can be ignored.  If we also take 
t( 1@ ) . 1 [as is the case of nearly normal incidence on an air-water surface, 
for which t( 1@ ) . 0.97 as seen in Fig. 4.3], then Eq. (4.21) reduces to 

(4.22) 

This result is known as the fundamental theorem of radiometry (Wyatt, 1978). 
The theorem is often stated as "the radiance divided by the square of the index 
of refraction is constant along any path."  However, because all real substances 
have at least some absorption and scattering, the theorem is strictly true only 
for paths in a vacuum.  In this case, n1 = n2 = 1, and Eq. (4.22) reduces to just 
L2 = L1, which is the radiance invariance law of Section 1.5.  Equation (4.21) 
is thus a generalization of Eq. (1.33) to the case of material media. 

A useful corollary of the n2 law arises when we consider the successive 
crossings of a ray from one medium to another, as in the case of successive 
interactions of photons with a random air-water surface.  Consider Fig. 4.5. 
A ray of radiance L1 starts in a medium with index of refraction n1, goes1

through a succession of refractions, and ends up with radiance L  in a medium s

of refractive index n . In the jth crossing of a surface, the incident radiance is s

Lj, the direction of incidence is , and the interface normal is , so that thej j

Fresnel transmittance 1  ! r( @ ) is determined.  Let t(j,j+1) be the Fresnel j j

n
transmittance of the interface between the media with refractive indexes nj and 

j+1. Then by successive applications of Eq. (4.21b) we find 

(4.23)
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Fig. 4.5. An arbitrary sequence of ray-surface refractions. 

Equivalently, for the radiant powers M  = Ls)Ss)A  and M1 = L1)S1)A1,s s

(4.24) 

where Eq. (4.17) has been used in the reduction of Eq. (4.23).  Equation (4.23) 
shows that the final radiance Ls depends only on the initial radiance L1, on the 
initial and final indexes of refraction, and on the product of the transmittances. 
If the ray begins and ends in air or begins and ends in water, then n  = n1, ands

L  = L1A t(j,j+1). Equation (4.24) is even simpler:  the radiant power of a ray s

is affected only by the Fresnel transmittances.  This result will be useful below 
in the Monte Carlo determinations of the air-water surface transfer functions. 
In particular it shows that as the radiant power of a transmitted ray is traced 
through a set of air and water regions, it is not necessary to include the nj 

2 

factors. 

Transfer functions for a level surface 

We are now in a position to determine the explicit forms of the four 
radiance transfer functions for a level air-water surface. 

The Fresnel formula (4.14) and the law of reflection (4.9a) allow us to 
write the air-incident radiance reflection function of Eq. (4.3) as 

(4.25) 

for the case of a level air-water surface.  Here 0 = d and 0 = , and *( ! r)u

is the Dirac delta function defined in Eq. (1.15); it picks out only that direction
 for which = . Recall that r( @  is dimensionless andr
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that *( ! r) has units of sr!1; thus r(a,w; 6 ) has units of sr!1, as required. 
The water-incident radiance reflection function r(w,a; 6 ) has the same form 
as Eq. (4.25).  However, in the air-incident case, r( @ ) is evaluated using the 
2t 2t of Eq. (4.10b), whereas in the water-incident case  is given by Eq. (4.13b). 
Thus a reciprocity relation holds for r( @ ): if and are the reflected andr t

transmitted daughter rays of , then r(! @ ) = r( @ ) and t(! @ ) = t( @ ),r t

where t( @ ) = 1 ! r( @ ) is the fraction of photons transmitted by the
surface.  These reciprocity relations for rays crossing the air-water surface are 
specific examples of general relations that hold true whenever the direction of 
photon travel is reversed.  Such relations are the foundation of very powerful 
techniques (namely backward Monte Carlo methods) for solving radiative 
transfer problems; these matters will be discussed in Section 6.2. 

Let us now apply the n2 law for radiance to the air-water surface, with 
medium 1 as the air (n1 = 1) and medium 2 as the water (n2 = nw). Then Eq. 
(4.21b) can be written as 

(4.26) 

for transmission from air to water.  For the case of transmission from water to 
air, Eq. (4.21b) yields 

(4.27) 

Since the t( @ )n 2 factor in Eq. (4.26) is precisely the function that transmits a w 

radiance La through the water surface to give Lw, this equation implies that the 
air-incident radiance transmittance function for a level surface can be written 
as 

(4.28) 

In this equation, t( @ ) = 1 ! r( @ ), where r( @ ) is given by Fresnel's
formula (4.14), and  t is given by the law of refraction (4.9b).  In a similar 
fashion, Eq. (4.27) yields the water-incident radiance transmittance function: 

(4.29) 

where now and are in = , and t is given by Eq. (4.12b).  The radiance u

reflectance and transmittance functions are now in a form suitable for use in 
the interaction principles (4.3) and (4.4). 
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As a simple example of the use of these transfer functions, let us 
explicitly evaluate the irradiance transfer function r(a,w) for the special case 
of a level surface and a collimated radiance distribution.  Air-incident radiance 
collimated in direction  can be written as o

(4.30) 

where E  is the plane irradiance on a surface perpendicular to = z o; Ed

E *cos2 * is then the plane irradiance relative to . Now by Eq. (4.7b), z o 

Substitution for L(a; ) from Eq. (4.30) and for r(a,w; 6 ) from Eq. (4.25)
gives 

The integral over 0 = d is nonzero only when = , thuso

The
corresponding to 

= r integral is nonzero only for , the direction of reflection 

o, and we get

But * r@ * = *cos2r * = *cos2o *, and we are left with just 

Thus for the special case of a collimated incident radiance distribution and a 
r(a,w) is just thelevel air-water surface, the irradiance reflectance function 

Fresnel reflectance of the surface, r( @ ), as given by Eq. (4.14). o

Such a simple result is not obtained for other distributions of  incident 
radiance or for wind-blown water surfaces.  In order to evaluate the 
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various radiance and irradiance transfer functions for other incident radiance 
distributions and sea states, we must resort to numerical methods. 

Conservation of energy 

Radiant energy in the form of a narrow ray in direction  incident on 
a level water surface produces on the surface an irradiance Ei 

) .  This incident 
irradiance Ei 

) is partly reflected and partly transmitted to form two new streams 
of irradiance E  and Et, respectively of magnitudes r

(4.31) 

Because t( @ ) = 1 ! r( @ ), always, it is clear that conservation of radiant 
energy across the surface holds at the point of incidence:  E  + Et = Ei 

) . It is r

also clear that, by construction, this relation holds at any point of a locally 
plane (but otherwise arbitrarily structured) air-water surface.  This fact will be 
used repeatedly (and implicitly) in the ray-tracing procedures below. 

It is clear from Eq. (4.31) that the transmitted irradiance just below the 
water surface, Ed(w), is always less than the irradiance Ed(a) that produced 

.Ed(w
1), since some of the incident irradiance is always reflected by the surface

The  same is not true for radiance.  Thus L(w; ), 0 = d, can be greater in 
magnitude than L(a; ), 0 = d, which produced it.  This behavior is a simple 
consequence of geometric optics and the definition of radiance as power per 
unit area per unit solid angle.  In passing from the air into the water, a ray of 
solid angle )Sa( ), used to define L(a, ), "contracts" to a ray with solid angle 

as can be seen from Straubel's invariant (4.17).  Since )Sw( ) is the solid
angle used in the definition (or measurement) of L(w; ), the magnitude of
L(w; ) can be either greater or less than L(a; ). Numerical values can be 

1In this statement we are considering only the contribution to Ed(w) 
made by irradiance transmitted through the surface.  The value of Ed(w) as 
measured in a water body also contains a contribution by upwelling light 
that has been reflected back downward by the water surface; recall Eq. (4.6). 
In special circumstances, the total Ed(w) can exceed Ed(a); see Mobley, et 
al. (1993) for an example of this situation. 
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obtained from the n2 law for radiance.  Consider the case of normal incidence, 
2) = 0, and water for which nw = 1.34. Then from Eq. (4.21b) we get 

This increase in radiance in a particular direction in no way violates 
conservation of energy, which results from an integral of the radiance over all 
directions. 

4.3 Capillary Waves

The level surface was easily treated using analytical mathematics.  For 
example, the four radiance reflectance and transmission functions needed in 
Eqs. (4.3) and (4.4) were evaluated using only the Fresnel reflectance formula 
and the Dirac delta function.  However, we are unable to provide a 
corresponding analytical treatment of even the simplest wind-blown surface 
(although a number of analytical results pertaining to random air-water 
surfaces are found in H.O. VI, Sections 12.10-12.14).  We therefore are forced 
to seek recourse in numerical techniques.  In the following sections we present 
some Monte Carlo procedures that have proved useful for estimating needed 
quantities such as the radiance reflectance and transmittance functions of Eqs. 
(4.3) and (4.4), and their irradiance counterparts of Eqs. (4.5) and (4.6).  Along 
with these numerical techniques, we shall discuss various numerically obtained 
results, and thereby gain further insight into radiative transfer across air-water 
surfaces. 

Monte Carlo methods comprise a large collection of mathematical 
techniques for statistically estimating the solution of a given problem by 
repeated random simulations of the process under investigation.  In the 
problem at hand, we first construct a mathematical representation of a random, 
wind-blown, air-water surface.  We then simulate light rays and trace their 
interactions with the random water surface.  By repeating this process many 
times, we eventually obtain an acceptably accurate statistical description of 
how real light interacts with real water surfaces, i.e. we obtain statistical 
estimates of the surface reflectance and transmittance functions.  Several 
general references on Monte Carlo methods are given at the end of Chapter 6. 

The time-averaged optical characteristics of wind-ruffled water 
surfaces are determined primarily by capillary waves, so long as the surface 
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remains free of whitecaps.  For this reason we shall concentrate on the 
numerical treatment of a water surface that is covered by wind-induced 
capillary waves, but which is otherwise horizontal.  The numerical techniques 
developed for capillary waves are equally capable of modeling a full gravity-
wave spectrum, or a spectrum of mixed gravity and capillary waves.  The price 
of added realism in the numerical simulation lies mostly increased computer 
costs, rather than in additional intellectual effort. 

We begin our numerical discussions by learning how to construct a 
random ensemble of water surfaces comprising capillary waves.  Once a 
realization of a water surface is available, we can proceed to trace rays of 
incident photons as they are reflected and refracted by the (numerically 
simulated) water surface.  Careful tally of the fates of these reflected and 
refracted rays allows the computation of the desired reflectance and 
transmittance functions.  Thus we are attempting to simulate those processes 
in nature whereby countless individual photons interact with a random air-
water surface, and in combination lead to the macroscopic quantities of 
radiative transfer. 

The present computations leading to the desired optical properties of 
a wind-roughened water surface fall into five main stages: 

(i) construction of a realization of the random air-water surface, 

(ii) tracing incident parent light rays over, under, and through the realized 
surface toward their ultimate destinations, 

(iii) assigning radiant energy content to each processed daughter ray, 

(iv) storing daughter rays (that proliferate owing to multiple scattering of 
the parent ray) to await further processing, as in (ii) and (iii), and 

(v) accumulating the assigned ray energies of the daughter rays to obtain 
the associated reflectance and transmittance properties of the random 
surface. 

Stage (i) is described in this section.  Stages (ii)-(iv) are discussed in Section 
4.4, and stage (v) is treated in Section 4.5.  A full treatment of the 
mathematical details can be found in Preisendorfer and Mobley (1985). 

Wave-slope wind-speed law 

Consider a wind blowing across a water surface and momentarily 
maintaining a set of capillary waves.  At a fixed horizontal position, the water 
surface elevation 0 changes erratically in time because of the passing 
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waves.  The nondimensional upwind (or alongwind) and crosswind slopes of 
the water surface are 

respectively, where x1 and x2 are the horizontal coordinates of Fig. 4.1.  It is 
known from experiment that the capillary wave slopes 0  and 0  vary in au c

random manner, being independently and normally distributed with zero mean 
and variances 

(4.32) 

and where U is the wind speed in meters per second measured at an 
anemometer height of 12.5 m above mean sea level.  Equation (4.32) is a 
statement of the wave-slope wind-speed law of capillary waves [see 
Supplementary Note 5]. 

The wave elevation 0 is also distributed normally with zero mean and 
variance 

(4.33) 

The values of a0 and q are left unspecified, since they will not be needed. 
The wave-slope wind-speed law (4.32) was first deduced by Duntley 

(1952, 1954), and by Cox and Munk (1954a, b).  Duntley determined wave-
slope distributions by in-situ electrical measurements; Cox and Munk used 
light reflected from the water surface to deduce the wave-slope statistics. 
Their studies were dual and complementary:  Duntley found the wave-slope 
wind-speed law from wave-slope time series obtained at a single point in 
space, whereas Cox and Munk found the same law from a spatially extensive 
glitter pattern photographed at one point in time (see H.O. VI, p. 145-152). 
This agreement of results is an example of ergodic equivalence, which states 
that for (most) stationary random processes, a time series taken at a given point 
yields the same information as spatially extensive data taken at a given time. 
We shall use this equivalence in our Monte Carlo simulations below. 

Constructing a surface realization '' 

This is our first encounter with a barred heading, which tells the reader 
that the following discussion deals primarily with numerical techniques. In the 
present instance, we are beginning to learn how the wave-slope wind-speed 
law (4.32) can be used to construct a numerical model of a capillary-wave 
surface. This model is the foundation of various 
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algorithms that eventually yield estimates of the reflectance and transmittance 
functions seen in Eqs. (4.3)-(4.6). 

For the computation of photon paths through a random water surface, 
to be described in the next section, we need to construct a large number of 
random capillary-wave surfaces.  Figure 4.6 shows a portion of the mean-sea-
level plane partitioned into a hexagonal grid of congruent isosceles triangles, 
called triads.  The dimensions and orientation of one triad are shown in the 
inset of Fig. 4.6; the vertices of the triad are labeled v1, v2, v3. The *-dimension 
is aligned along the wind direction, while the opposite vertex may be as shown, 
or as reflected in the *-base. 

Now randomly draw three numbers 01, 02, 03 (with units of meters) 
from N(0,F2), a normal population of zero mean and variance F2 [that will be 
determined below; see Eq. (4.39)].  Draw three vertical lines (parallel to ) 
through the vertices of the triad and mark off in turn the lengths 01, 02, 03 on 
each of the three lines starting from the vertices v1, v2, v3, respectively, at mean 
sea level; this is illustrated for vertices v2 and v3 in Fig. 4.6. Since we have 
chosen to measure depth as positive downward, positive 0j's correspond to 
points below mean sea level, negative 0j's to points above 

Fig. 4.6.  Model of the sea surface as a hexagonal grid of triangular wave 
facets.  A sequence of reflected and refracted rays is illustrated for a particular 
realization of the random sea surface. 
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mean sea level (the case illustrated in Fig. 4.6).  Connect the three points so 
found to form a facet of the surface.  Complete the realized surface by 
constructing all facets above or below the hexagonal grid.  Note that only the 
first facet constructed requires the drawing of three random numbers; 
subsequent facets are defined by drawing only one number 0j and using it to 
determine the remaining unspecified vertex height of a neighboring facet. 
Four such facets are shown above the hexagonal grid of Fig. 4.6.  The 
hexagonal grid may be thought of as covering a small patch of the ocean 
surface; the facets represent individual capillary wave faces. 

After a wave facet has been defined for each triad in the hexagonal 
grid, we have one realization of a random capillary wave surface.  Repeating 
the process, starting with a new seed for a random number generator, yields 
another, different realization of the random surface.  In this manner we can 
generate an ensemble (or collection) of realizations of a random capillary wave 
surface. 

By construction as just described, the upwind and crosswind slopes of 
a facet (with vertices numbered as in the inset of Fig. 4.6) are given by 

(4.34) 

Let õ{@} denote an ensemble average, i.e. the average of the quantity in braces 
over all the realizations in the ensemble. Then by construction 

for i, j = 1, 2, 3. Here * i!j is the Kronecker delta symbol defined in Eq. (1.19). 
Similarly, it follows that 0  and 0c are normally distributed with variances u

(4.35) 

and that 0  and 0  are uncorrelated:  õ{0 0c} = 0.u c u

The elevation of a wave facet is defined as 

Thus 0 is the vertical displacement (in meters) of the facet's centroid above or 
below the plane of the hexagonal grid.  This 0 is a normally distributed variate 
of zero mean and variance 
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(4.36) 

Fixing scales '' 

We may now fix the horizontal sizes * and ,, and the vertical scale F, 
of the random wave facets as a function of wind speed U. From Eqs. (4.32), 
(4.33), (4.35) and (4.36) we have 

(4.37) 

from which 

(4.38a) 

This means that the shape of a triad is independent of the wind speed and of 
the physical units of * and ,. Moreover, by Eqs. (4.32) and (4.35), 

(4.38b) 

Thus only the vertical scale of the capillary surface changes with wind speed 
(i.e. the surface becomes more choppy as U increases). 

For the purposes of numerical ray tracing, only the relative orientations 
of the facets are important, and we are free to choose * = 1, say.  This then 
fixes , and F by Eq. (4.38).  We shall therefore work with 

(4.39) 

The probability distribution of wave slopes 

A random water surface built over the hexagonal grid of Fig. 4.6 in the 
manner described above, using triad geometry defined by Eq. (4.39), will by 
construction obey the wave-slope wind-speed law (4.32) of capillary waves. 
In other words, the resultant population of alongwind and crosswind slopes of 
the realized air-water surfaces will then follow the two-dimensional normal 
distribution 

(4.40) 
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The connection between 0u, 0c and the outward (or upward) normal  
to a triangular wave facet is 

(4.41) 

where , , and  are as shown in Figs. (4.1) and (4.6).  Note that Eq. (4.41) 
reduces to = -  for a level surface. 

Symmetries of the air-water surface 

Observe that by systematically changing the signs of 0  and 0c, we can u

obtain four orientations of  with the same value of the probability density. 
Thus p(0u,0c) has symmetries which, for later reference, we spell out in 
analytic form. 

Recall from Eq. (1.10) that the unit vector = (>1, >2, >3) has 
components >1 = (1 ! :2)½cosN, >2 = (1 ! :2)½sinN, and >3 = : in our wind-
oriented coordinate system.  If a downward directed light ray  is reflected by 
a wave facet into the upward direction , then from geometrical optics the 
wave facet must have alongwind and crosswind slopes at the point of reflection 
given by (Preisendorfer and Mobley, 1985): 

Thus the argument of the exponential in Eq. (4.40) can be written 

This function, by inspection, has the symmetries 

(4.42a) 

(4.42b) 

(4.42c) 
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where !1 # :, :) # 1 and 0 # N, N)< 2B. This symmetry is that of an ellipse 
whose axes are parallel to the alongwind and crosswind directions.  As we 
shall see in Section 8.5, the relations expressed in Eq. (4.42) can significantly 
reduce the numerical effort in calculations of the surface transfer functions of 
a wind-ruffled water surface. 

4.4 Ray Tracing '' 

We now have available a mathematical model of a capillary wave 
surface.  This model reproduces nature to the extent that the slope statistics of 
the triangular wave facets are identical to the slope statistics (4.32) measured 
for actual capillary waves.  The next step of our computation is to use the 
realized surfaces to trace the paths of light rays as they intercept the surface, 
there to be reflected and refracted by the wave facets, eventually leaving the 
surface region.  We can think of these hypothetical light rays as consisting of 
a stream of photons, each possessing the same properties (direction, energy, 
etc.), carrying a given amount of energy per unit time, i.e. a certain spectral 
power.  The geometrical factors required to convert the ray power into an 
irradiance or radiance will be incorporated at the appropriate steps of the ray-
tracing algorithm [as for example in Eq. (4.49), below]. 

Consider once again Fig. 4.6 with its illustration of one realization of 
the triangular wave facets.  These facets, four of which are shown in the figure, 
are contained in the hexagonal domain, the region of space directly above and 
below the hexagonal grid.  A parent ray of unit radiant power is shown 
entering the hexagonal domain at point A of Fig. 4.6. Every such initial ray 
eventually intercepts a surface wave facet, as at B. In general, each encounter 
of a ray with a wave facet generates both a reflected and a refracted daughter 
ray.  From knowledge of the wave facet's orientation, the directions and radiant 
powers of these daughter rays are determined by Snell's law and Fresnel's 
formula, respectively, as described in Section 4.2.  The daughter rays may 
undergo further encounters with other wave facets. As illustrated in Fig. 4.6, 
the first refracted ray at B heads downward through the water and leaves the 
hexagonal domain at D without further scattering.  The first reflected ray at B, 
however, intercepts another facet at C, generating two more rays.  The 
reflected ray starting from C leaves the domain at E.  The refracted ray starting 
from C encounters yet another facet at F and undergoes a total internal 
reflection before leaving the domain at G. Thus the initial ray finally results 
in one reflected and two refracted rays 
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emerging from the hexagonal domain.  The powers at the points of emergence 
contribute to the appropriate reflectance and transmittance functions. 

The computations involved in the ray-tracing require little more than 
the judicious application of analytic geometry and geometrical optics.  In 
essence the ray-tracing procedure devolves on repeatedly finding the 
intersection of a straight line and a triangular plane facet in space.  The details 
are rather tedious and need not be repeated here; the algorithms are fully 
described in Preisendorfer and Mobley (1985). 

Figure 4.7 does however give an overview of the entire computational 
process in the form of a flow diagram of eleven steps.  In step 1 of the diagram 
the computer run is initialized by choosing the wind speed and direction, size 
of the hexagonal grid, lighting conditions, and the like.  In step 2 a realization 
of the random surface is constructed over the hexagonal grid as in Section 4.3. 
In step 3 an initial ray incident along the desired direction  is specified.  This 
parent ray may approach the surface from the air side, as in Fig. 4.6, or from 
the water side. The parent ray  is assigned a radiant power M) = 1, and the 
point ) where the ray enters the hexagonal domain (e.g. point A of Fig. 4.6) 
is determined.  The information ( , ) ,M)), which fully determines a ray, is 
then stored in an array, called the stack. [In computer jargon, this array is a 
"push-down, pop-up" or "last-in, first-out" stack.]  In step 4 we pull the next 
available ray triple ( , ,M) from the stack and trace the ray to completion in 
step 5.  That is, in step 5, we extend the ray from point along direction 
until either the surface is encountered or the ray leaves the hexagonal domain. 
If, in executing step 5, the surface is encountered, the point i of interception 
of the ray and the surface is determined (e.g. point B in Fig. 4.6), and daughter 
rays (e.g., BC and BD in Fig. 4.6) are produced.  In step 6, one daughter ray is 
always generated at i along the reflected direction . In step 7, one daughter r

ray will be generated along t if and only if the ray is not totally internally 
reflected at i. (For example, at point F in Fig. 4.6, total internal reflection 

In either of steps 6 or 7,takes place and there is no transmitted daughter ray.)
the direction  of the parent ray (which of course may be a daughter ray from 
a previous ray-surface interception), the normal  to the intercepted wave 
facet, and the daughter ray direction determine an associated Fresnel factorr

for reflectance, as in Eq. (4.14).  This factor is multiplied into the current 
radiant power M of the parent ray to obtain the power M  of the reflected r

daughter ray.  The power of the transmitted ray is then Mt = M ! M . Ther

daughter-ray triples are pushed into the stack for further processing.  On the 
other hand, step 5 may fail to produce a point of interception i (as at D, G, or 
E of Fig. 4.6).  In this 
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Fig. 4.7.  Flow chart of the Monte Carlo ray-tracing procedure for estimating 
the reflectance and transmittance functions of a wind-blown water surface. 
[redrawn from Preisendorfer and Mobley (1985)] 

case, the ray has finished its interactions with the surface in the hexagonal 
domain, and its radiant power is added (in step 8) to an accumulating sum for 
a reflectance or transmittance function, as the case may be. 

In practice an initial parent ray may go on to encounter the air-water 
surface a large number (~10) of times so that, at some stage in the running 
calculation, several of its daughter ray triples may be simultaneously in the 
stack awaiting further processing of the kind in step 5 (during which they in 
turn can generate more daughter ray triples).  The pushing activity of steps 3, 
6 and 7 places each ray triple in the stack as soon as the ray is  
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generated.  The stack is systematically serviced by the pulling activity of step 
4 via step 9.  The stack is crucial to the ray tracing algorithm, since it allows 
the "tree" of multiply scattered rays to grow without restrictions on the number 
of ray-surface interactions or upon the order in which daughter rays are traced 
to completion.  When the stack of waiting ray triples is depleted, we check in 
step 10 to see if another surface realization is needed.  If so, we return to step 
2 of the ray-tracing flow diagram and begin anew; otherwise the final results 
are computed in step 11. 

4.5 Irradiance Transfer Functions '' 

We now consider the details of estimating the four irradiance 
reflectance and transmittance functions r± and t± of a random air-water surface. 
These are the functions encountered in the interaction principles (4.5) and (4.6) 
of Section 4.1, and defined in Eq. (4.7).  We shall work with the random 
capillary surfaces defined in Section 4.3, and perform ray tracing as described 
in Section 4.4. 

Let S(T) be the Tth realization of a random capillary-wave surface 
defined over a hexagonal domain like that of Fig. 4.6; T = 1, ..., S, where S is 
the total number of surfaces to be generated.  S(T) of course depends on the 
wind speed U, which is held constant.  The hexagonal grid is located at the 
mean water surface, about which the facets of S(T) are randomly placed. 
Parallel to the mean horizontal surface, and just above and below S(T) at fixed 
distances, are two imaginary horizontal monitoring surfaces (h.m.s.), which we 
will use in the derivations below.  We now consider two specific examples of 
how to compute the reflectance of S(T) for downward irradiance. On the basis 
of these examples we can then describe the general recurrence formulas for the 
reflected and transmitted radiant powers M  and Mt needed in steps 6 and 7 ofr

the ray-tracing flow chart of Fig. 4.7. 

Examples of ray paths '' 

Consider a narrow unpolarized ray of central direction incident on 
S(T) at point B, as shown in Fig. 4.6. A closeup of this is shown in the upper 
panel of Fig. 4.8.  The ray illuminates a small patch A of outward normal  on 
S(T).  To define the reflectance of S(T) when the surface is highly crinkled, we 
place an h.m.s. just above S(T), as shown. We use the h.m.s. to register the 
incident radiant power M(I) of the ray as it crosses a small patch I of the h.m.s. 
on its way to patch A on S(T). Clearly M(A) = M(I) by conservation of energy. 
Now in accordance with Eq. (4.31), a 
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Fig. 4.8.  Examples of simple (upper panel) and complex (lower panel) ray 
paths, and of the use of an upper horizontal monitoring surface (h.m.s.) in 
computing the irradiance reflectance r+ = r(a,w).  [redrawn from Preisendorfer 
and Mobley (1985)] 

fraction r( @ ) of M(A) is reflected into the direction  and then streams 
upward through patch R of the h.m.s. If M(R) is the radiant power of the 
reflected ray crossing R, then M(R) = M(A)r( @ ) = M(I)r( @ ). 

The irradiance reflectance r+( ;T) relative to this particular ray and 
surface realization S(T) is by definition 

(4.43) 

The corresponding irradiance transmittance is, as always, 

(4.44) 

Recall that the notation "r+" is used to represent r(a,w), as in Eq. (4.7b); the 



178 Across the Surface 

"+" subscript reminds us that r+( ) is a reflectance for rays  initially headed 
downward (the positive direction), i.e. 0 = d. 

The preceding ideas can be extended to more complicated paths over 
S(T).  In the lower panel of Fig. 4.8, an incident ray of unpolarized radiant 
power M(I) crosses the h.m.s. and illuminates a small patch A1 with outward 
normal 1, whereupon a refracted daughter ray is born and travels along 
direction a distance d underwater to encounter patch A2 of outward normal 1

2, there to be partially refracted into a new daughter ray along 2. The final 
withA3encounter of this particular ray with the water surface is over patch 

outward normal 3, from which a new daughter ray proceeds along toward3

the h.m.s. and emerges through patch R carrying radiant power M(R). The 
ratio of this emergent power M(R) to the incident power M(I), i.e., the 
reflectance of S(T) in this path instance, is 

(4.45) 

Note that we have neglected the small amount of attenuation by the water as 
the ray travels distance d from patch A1 to A2. 

The general recursive ray path '' 

There is clearly an unlimited number of possible daughter paths that 
can spring from a single incident ray approaching S(T) along a given direction 

.  Figure 4.9 shows some of these possibilities.  We can classify ray 
configurations by counting the number ns of scattering points and the number 
nb of ray branches (the total number of rays) involved in the scattering event. 
For air-incident rays, numerical experimentation shows that the three-branch, 
single-scattering event shown at the upper-left corner of Fig. 4.9 is by far the 
most common at all wind speeds and angles of incidence.  As the wind speed 
increases, or as the incident rays come in nearly horizontally, then the numbers 
of scatters and branches increase.  For water-incident rays, single-scattering 
events are also most common.  Figure 4.9 shows how these single-scattering 
events consist of two kinds:  the case of n  = 1, nb = 2 when total internal s

reflection occurs, and the case of ns = 1, nb = 3 when an upwardly transmitted 
ray is created.  For crinkly surfaces, water-incident rays can undergo multiple 
scattering (n $ 2), as indicated in the n  = 2, nb = 4 case of Fig. 4.9. Of thes s

many possible configurations for air-incident multiple scattering, the second-
order scatter, five-branch case is the most common, with third-order scatter, 
seven-branch cases being the 
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Fig. 4.9.  Schematic diagrams of common water-surface scattering events.  The 
order of the scattering is n , and nb is the number of branches (the total number s

of rays involved in the scattering event).  The upper row of diagrams is for air-
incident rays, and the lower row is for water-incident rays.  [redrawn from 
Preisendorfer and Mobley (1985)] 

next most common.  Configurations such as the n  = 3, nb = 6 case shown in s

Fig. 4.6 are rare, and cases where nb $ 10 almost never occur. 
While it is possible to develop an algebraic notation to explicitly 

represent the general forms of Eqs. (4.43) or (4.45), it is more expedient in 
numerical work to simply write down a recursive formula for the radiant power 
of a newly born daughter ray at each step between the beginning and end of the 
parent ray's travels; and so we proceed as follows. 

Suppose the numerical computation is at step (5) of the ray tracing 
procedure of Fig. 4.7.  We then know the values of , and M defining the 
parent ray.  Tracing the ray from  to an interception point i along yields 
a calculable distance d = * ! *. The outward normal i to S(T) at isi i

known from Eqs. (4.34) and (4.41).  From i we can decide (as in Fig. 4.2) 
whether the path of the ray was in air or in water by finding whether @ < 0i

(air-incident case) or @ i > 0 (water-incident case). Note that an air-incident 
ray can be traveling either downward or upward; examples of each possibility 
are seen in the n  = 3, nb = 7 case of Fig. 4.9.s
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The same is true for water-incident rays.  The daughter ray directions andr

 at i are then found as in Eqs. (4.9) or (4.12). In the air-incident case the t

generated daughter rays are defined by 

(4.46a) 

for the reflected ray, and 

(4.46b) 

for the refracted ray. In the water-incident case the daughter rays are defined 
in a similar way.  In the case of total internal reflection, r( @ i) = 1 and there
is no refracted ray.  The daughter ray triples defined by Eqs. (4.46) are 
immediately pushed into the stack for subsequent processing, as described in 
steps (6) and (7) of Fig. 4.7. 

After the last ray of the last surface realization has been processed, the 
final tally yields the desired irradiance transfer functions r±( ) and t±( ) of the
random surface, for a given wind speed U and incident direction of photons. 

Transfer functions as ensemble averages '' 

We now interpret statistically the results of the preceding calculations. 
First, it should be noted that a single number such as r+( ;T), found in Eqs. 
(4.43) or (4.45) by tracing a single ray, is statistically speaking, rather 
meaningless.  It is only after thousands or even millions of such reflection 
numbers have been accumulated, and then averaged over T, that a statistically 
meaningful result begins to emerge. Thus imagine these reflections to occur 
independently and in great numbers over the extent of the hexagonal grid for 
a single realization S(T) of the surface.  For a sufficiently large number of 
reflections, the ratio of the total amount of reflected radiant power from a small 
neighborhood about each point of the horizontal monitoring surface for S(T), 
to the power incident upon the neighborhood, will approach a limit. This limit 
is the desired irradiance reflectance.  By virtue of our construction of S(T), this 
limit will be independent of the horizontal location of the neighborhood on the 
h.m.s. and will be a weighted average of terms of the kind seen in Eqs. (4.43) 
and (4.45).  By ergodic equivalence, this argument will also go through by 
applying it to an ensemble of realized surfaces S(T) irradiated over a small 
neighborhood about a fixed common point of their grid. A simple heuristic 
argument towards this end, using radiometric concepts, will now be 
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sketched.  The argument also provides the basis for the interpretations of r+( ). 

Let M(I) be the downward incident radiant power over patch I of the 
upper h.m.s. of a realization S(T) of the random water surface (as in the 
diagrams of Fig. 4.8).  This M(I) is produced by a ray of radiance L( ) about
direction 0 = d. If )S and )A are the solid angle and the area of the ray 
normal to , then

(4.47) 

If r+( ;T) is the facet reflectance associated with one of the daughter 
rays initiated by this parent ray, then by Eq. (4.47) the associated upward 
emergent power M(R;T) through the upper h.m.s. of S(T) is given by 

(4.48) 

After solving Eq. (4.48) for r+( ;T), multiplying and dividing by * @ *, and
taking the ensemble average we find 

(4.49) 

Note that )A/* @ * is the area of illuminated patch I, which we may assign 
to the ensemble average of M(R;T). Thus we see that the numerator of r+( ) 
in Eq. (4.49) is an average upward radiant emittance (W m-2) of the h.m.s., 
while the denominator is the downward irradiance (W m-2) on the h.m.s.  The 
value of r+( ) in Eq. (4.49) is found in practice as outlined in steps 8 and 11 
of Fig. 4.7.  The values of r!( ) and of t±( ) are found in a similar way.  This 
practical procedure gives the meaning of the ensemble average over all T (= 
1, ..., S) on the right in Eq. (4.49), and in turn, Eq. (4.49) shows the theoretical 
basis of steps 8-11 of Fig. 4.7. 

The upper and lower horizontal monitoring surfaces have been 
conceptual aids in the development of Eq. (4.49).  Since the random air-water 
surface is on average flat and horizontal, we may think of the horizontal 
monitoring surface approaching the mean surface and coalescing with it.  Then 
r±( ) and t±( ) can be regarded as functions describing the  
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optical properties of the mean horizontal surface of a wind-roughened water 
surface. 

4.6 Numerical Examples of Irradiance Transfer

Preisendorfer and Mobley (1986) used the numerical methods 
described in the preceding sections to study the optical properties of a water 
surface covered with capillary waves. Numerical experimentation showed that 
the sampling variability (Monte Carlo fluctuation) in computed r± and t± values 
was at most a few percent for ensemble averages based an 3,000 surface 
realizations (with one parent ray  per realization).  Most simulations were 
performed for collimated incident radiance distributions L( ), i.e. for all 
exactly the same, which corresponds to an infinitely distant, point sun in a 
black sky.  Simulations performed with a variable  corresponding to the 
finite angular size of the sun agreed with the point-sun simulations to better 
than one percent, except at high wind speeds (U = 20 m s!1) for nearly 
horizontal incident rays, in which case the results differed by a few percent. 

The results presented below are therefore accurate to within a few 
percent, for the assumed sea-state model. The magnitude of errors due to 
physical processes not modeled, in particular the presence of whitecaps and 
gravity waves at higher wind speeds, has not been quantified. 

In the figures below, the incident ray direction  is specified by 
)(2s ,Ns 

)), where 2 ) is the polar angle of the light source measured from either s 
)the zenith or the nadir direction.  Thus 0 # 2 # 90°, and the phrase "air­s 

incident rays" or "water-incident rays" must be added to avoid ambiguity.  A 
source located in the downwind direction has N ) = 0.s 

Some observations on multiple scattering 

The phenomenon of multiple scattering is quite difficult to handle in 
analytic formulations, but is nearly trivial to study when using Monte Carlo 
ray-tracing procedures. In Fig. 4.9 we defined the order ns of scattering as the 
total number of times a parent ray or any of its daughter rays intercepts a wave 
surface.  Figure 4.10 shows, as a function of 2 ) and wind speed, the percentages 

of incoming rays that undergoes multiple scattering of any order (n $ 2). Thiss 

figure is for incoming rays that are parallel to the wind (N ) = 0). The figure s 

is based on over 150,000 ray tracings.  The curves are applicable to both air­
)incident and water-incident rays.  Observe that for a given incidence angle 2 ,s 

the percentage of rays undergoing multiple 
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Fig. 4.10.  Percentage of incident rays that results in multiple scattering (n $s 

2) from a capillary wave surface, as a function of wind speed U and source 
angle 2 ) of the parent rays.  [redrawn from Preisendorfer and Mobley (1985)] s 

scattering generally increases with wind speed U, up to an incident angle of 
about 70°.  Rays incident from within 30° of the zenith or from a similar cone 
near the nadir almost never have multiple scatters for winds in the range U = 
0 to 20 m s!1. We see that for wind speed U $ 5 m s!1, roughly ten percent of 
the rays incident from the range 60° # 2 )# 80° have multiple scatters.  This is s 

because the relative angles between the tilted wave facets and the incident rays 
are then most conducive to reflecting the incident ray into a nearly horizontal 
direction, so that the reflected daughter ray hits a neighboring facet. There is 
an overall dropoff in multiple scattering for nearly horizontal incoming rays, 
since the daughter rays then tend to head away from the surface at angles that 
cause them, on average, to miss even the nearest facets.  The quantitative 
effects of multiple scattering are seen in the following figures. 

Reflectances for capillary waves and collimated sources 

)Figure 4.11 shows r+( ) = r(a,w;2s ,Ns 
)) as a function of wind speed for 

)selected 2 ) and N  values. By the elliptical symmetry of the surface as s s 
)expressed in Eq. (4.42), it is sufficient to determine r+(2s ,Ns 

)) over the range 
)0° # N ) # 90° for each 2 .s s 

Four curves are shown in Fig. 4.11 for each 2 ) value. The solid lines s 

are for the alongwind case, N ) = 0° (or 180°), in which the incomings 
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)Fig. 4.11.  Reflectances r+( ) = r(a,w;2s ,Ns 
)) for random capillary waves and 

)air-incident light rays from distant point sources.  For each group of 2  curves,s 

the solid lines are for N ) = 0° (light source and wind along the same direction), s 

and the dashed curves are for N ) = 90° (source at right angles to the winds 

direction).  For each pair of solid or pair of dashed curves, the top curve is for 
total scattering and the bottom curve is for single scattering only.  [redrawn 
from Preisendorfer and Mobley (1985)] 
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)Fig. 4.12.  Capillary-wave reflectances r+( ) = r(a,w;2s ,Ns 
)) as a function of 

wind speed and 2 ), for N ) = 0° and total scattering (replots of the upper solid s s 

curve of each solid pair in Fig. 4.11).  [redrawn from Preisendorfer and 
Mobley (1985)] 
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rays are in the vertical plane parallel to the wind.  The dashed lines are for the 
)crosswind case, Ns  = 90° (or 270°), in which the incoming rays are in the 

vertical plane perpendicular to the wind.  In the computations, a separate tally 
was kept for singly-scattered rays, so that the effects of multiple scattering 
could be isolated.  For each pair of solid or dashed curves, the top curve gives 
the total reflectance computed from all rays and the bottom curve gives the 
reflectance as computed from singly-scattered rays only.  Most points on the 
curves of Fig. 4.11, above each labeled wind speed, are the average of three 
separate experiments of 3000 surface realizations per experiment.  Spot checks 
of the accuracy of these curves showed that they are within a few percent of 
the true values (as defined by an infinite number of surface realizations).  For 
example, for the alongwind total scattering case of U = 20 m s!1 with 2 ) = 60°,s 

five experiments (of 3000 realizations each) yielded an average r+( ) value of
0.05456, with a standard deviation of 0.00053.  For the same situation except 

)for 2  = 80°, the five-experiment average yielded r+( ) = 0.14045 with as 

standard deviation of 0.00128.  Two of these standard deviations on each side 
of the curves will define points that are only slightly more separated than the 
drawn thickness of the curves.  According to standard statistical reasoning, we 
can be 95% confident that the true mean values lie between these points. 

The reflectances for zero wind speed in Fig. 4.11 are just the 
unpolarized Fresnel reflectance as given by Eq. (4.14) for a horizontal plane 

)surface (the index of refraction used was nw = 4/3) for the given 2 . For highs 

solar altitudes (i.e. small 2 )), the reflectance increases slightly as the wind s 

increases from zero, whereas for low solar altitudes, the reflectance decreases 
markedly as the wind picks up.  This qualitative behavior was predicted by 
Cox and Munk (1955) from approximate analytic calculations.  Figure 4.11 
reveals the quantitative features of this behavior, in particular the effects of 
capillary-wave anisotropy and multiple scattering. 

Figure 4.12 reproduces in different form the total scattering curves of 
Fig. 4.11 for the alongwind case N ) = 0°. The curve for U = 0 is the Fresnel s 

reflectance for a level surface, as was seen in Fig. 4.3. 
)A detailed view of the dependence of r+(2s ,Ns 

)) on the azimuth angle 
N ) of the source relative to the wind direction is shown in Fig. 4.13.  Thiss 

figure gives the total-scattering reflectance at a wind speed of 20 m s!1 for 
capillary waves.  Since the wave facets are slightly less tilted, on average, in 
the crosswind direction than in the alongwind direction [recall that F 2 > F 2 inu c 

Eq. (4.32)], rays incident at right angles to the wind see a slightly flatter water 
surface, and thus have a slightly higher reflectance.  This behavior is seen in 
Fig. 4.13.  The dependence is very weak at high sun altitudes, but becomes 
substantial for incident angles near the horizon. 
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Fig. 4.13.  Dependence of the capillary-wave, total-scattering reflectance r+( ) 
)= r(a,w;2 ,N )) on light source position relative to the wind direction, for a s s 

wind speed of U = 20 m s!1. [redrawn from Preisendorfer and Mobley (1985)] 

)The reflectances for an underwater light source, r!( ) = r(w,a;2s ,Ns 
)), 

)are shown in Fig. 4.14.  Now 2  is measured from the nadir to the source s 

location.  The arrangement of the curves (alongwind and crosswind, total and 
single scattering) is the same as for the air-incident case in Fig. 4.11. 
However, the curves are markedly different from their counterparts in Fig. 4.11 
because of the effects of total internal reflection.  For the flat surface at zero 
wind speed, any water-incident ray with 2 ) $ sin!1(1/nw) [= 48.59° for n = s w 

4/3; recall Eq. (4.13b)] is totally reflected, giving a reflectance of 1.  The 
reflectance increases quite rapidly as this angle is approached, and is constant 
thereafter from 48.59° to 90°.  As soon as the wind increases from U = 0, rays 
incident at 2 ) = 48.59° begin hitting tilted facets and sometimes experience s 

only partial reflection with daughter rays making it through to the air above; 
the reflectance then drops sharply for this 2 ) value. Water-incident rays froms 

nearly horizontal directions are almost always totally reflected even at high 
wind speeds, so r!( ) remains close to 1 at these angles.  For angles of 
incidence 2 ) # 45°, there is a relatively s 
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)Fig. 4.14.  Reflectances r!( ) = r(w,a;2s ,Ns 
)) for random capillary waves and 

for water-incident light rays from distant point sources.  2 ) is measured froms 

the nadir to the source location.  The solid- and dashed-line conventions are the 
same as in Fig. 4.11.  [redrawn from Preisendorfer and Mobley (1985)] 
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)Fig. 4.15  Selected reflectances r!( ) = r(w,a;2s ,Ns 
)) replotted from Fig. 4.14. 

The solid curves are for the alongwind, total scattering cases for the wind 
speeds shown.  The dashed curve is the single-scattering contribution at U = 
20 m s!1. [redrawn from Preisendorfer and Mobley (1985)] 
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strong dependence on 2 ), compared to the air-incident case of Fig. 4.11.  Wes 

see that a rising wind speed now causes a rapid increase in the reflectances, 
with the alongwind values now generally being greater than the crosswind 
values.  Comparing the curves for total and single scattering shows that 
multiply-scattered rays often make a substantial contribution to the reflectance 
for water-incident rays. 

Figure 4.15 replots selected total-scattering curves (solid) from Fig. 
)4.14 in order to better show the strong dependence of r!( ) on 2 . The steeps 

slopes of the total- and single-scattering curves for the 20 m s!1 case show the 
importance of including multiple scattering in the r!( ) estimates.  The 
remaining solid curves are for total scattering, alongwind cases for the U = 3 
m s!1 and U = 0 wind speeds shown.  The U = 0 curve is just the Fresnel 
reflectance seen in Fig. 4.3. 

Reflectances for capillary waves and distributed sources 

The collimated-source reflectance r+( ) is a reasonable approximation 
to nature for the case of the sun in a very clear sky.  Likewise r!( ) applies to
a collimated, horizontally extensive light source just under the surface 
("horizontally extensive" means simply that we are in a plane-parallel 
geometry).  However, in the air-incident case, if the sky is overcast the position 
of the sun may be indiscernible, so that a horizontally extensive and 
directionally diffuse light source must be used in the calculations.  Likewise, 
the upwelling radiance distribution just below the sea surface is always diffuse 
in natural water bodies.  The reflectance for a diffuse source is in essence a 
weighted average of the collimated-source reflectances presented above; its 
value depends upon the exact form of the continuous radiance distribution over 
the appropriate hemisphere of incident directions.  Reflectances for diffuse 
light sources can be computed with the Monte Carlo ray tracing model simply 
by allowing the incoming ray directions  to be distributed according to the 
desired radiance distribution.  For example, a reflectance for a uniform sky 
would have  values chosen at random such that each point in the dome of the 
sky is equally likely to be the source direction of the parent ray with initial 
radiant power M) = 1. 

An approximate but convenient parameterization for diffuse lighting 
in nature is the cardioidal radiance distribution (H.O. VI, p. 21): 

(4.50) 

where Lo is the radiance of the horizon (2 ) = 90°), and C is a real number. Fors 

the case of a heavy overcast, observations indicate that C . 2, so that 
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on such a day the radiance of the sky at the zenith (2 ) = 0°) is roughly three s 

times the radiance of the sky at the horizon.  A sky over which L is uniform is 
given by C = 0. For water-incident rays, values of C in the range !0.9 # C # 
!0.7 are representative of the range of upwelling radiance distributions 
observed in natural waters, where the source direction 2 ) in Eq. (4.50) is now s 

measured from the nadir.  Thus a submerged swimmer looking toward her 
horizon may see five to ten times the brightness (radiance) that she sees 
looking straight down into the depths. 

That the subsurface horizon is much brighter than the nadir is in part 
a consequence of the total internal reflection of rays that are incident on the 
bottom side of the water surface from nearly horizontal directions.  Another 
reason for the bright subsurface horizon is traceable to the large ratio of 
forward to backward scattering values of the volume scattering function of 
natural waters.  It is simply more likely that light from the sun (after 
transmission through the sea surface) will be scattered into nearly horizontal 
directions than be backscattered into the zenith direction. 

The irradiance reflectance for a continuous radiance distribution is 
given by the ensemble-averaged versions of Eqs. (4.7b) and (4.7c) in which the 
integrations over the reflected directions  have been performed by the Monte 
Carlo procedure: 

)Here r±(2s ,Ns 
)) is the Monte Carlo-produced reflectance for a collimated light 

source, and r± is the corresponding reflectance for a continuous radiance 
distribution over the appropriate hemisphere.  As before, r+ is short for r(a,w), 

)and r! is r(w,a). Assuming a cardioidal distribution for L(2 ,N )) ands s 

integrating gives 

(4.51) 

)after letting : ) = cos 2 .s s 

The integral (4.51) can be evaluated numerically using the Monte 
) )Carlo-generated values of r±(2s ,Ns 

)) / r±(:s ,Ns 
)), which were discussed on the 

previous pages.  This is precisely the approach taken by Preisendorfer and 
Mobley (1985, 1986), who fit a bicubic spline function to the available 
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r±(:s 
) ,N )) values.  The continuous spline function was then used to integrate s 

Eq. (4.51) numerically.  This approach was computationally more efficient 
than performing de novo  ray tracing for the cardioidal distribution.  Figure 
4.16 shows their computed r+ = r(a,w) for a uniform sky and for heavy 
overcast conditions.  The results for total (solid curve) and single (dashed 
curve) scattering were computed by using the corresponding values of 
r+(:s 

) ,N )) in Eq. (4.51). s 
)For the case of no wind, r+(:s ,Ns 

)) is the Fresnel reflectance function, 
and Eq. (4.51) can be integrated analytically (H.O. VI, p. 22) to give r+(C=0) 
= 0.0665 and r+(C=2) = 0.0513 for the index of refraction nw = 4/3. The values 
computed by the bicubic spline integrations were respectively r+(C=0) = 
0.0669 and r+(C=2) = 0.0519 at U = 0. These comparisons indicate that the 
bicubic spline integration of Eq. (4.51) using the available collimated- source 
reflectances did not introduce any significant errors into the r+ values. We see 
in general that the reflectances r+ decrease with increasing wind speed and that 
the contribution by multiply scattered rays is usually significant. 

The diffuse-light reflectances for water-incident rays are shown in Fig. 
4.17 for a variety of upwelling subsurface radiance distributions.  Solid 

Fig. 4.16.  Reflectances r+ = r(a,w) for continuous radiance distributions over 
the sky hemisphere.  Solid lines are for total scattering, and dashed lines are for 
single scattering only.  C is the cardioidal parameter of Eq. (4.50).  [redrawn 
from Preisendorfer and Mobley (1985)] 
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Fig. 4.17.  Reflectances r! = r(w,a) for continuous radiance distributions over 
the water hemisphere.  Solid lines are for total scattering and dashed lines are 
for single scattering only.  C is the cardioidal parameter of Eq. (4.50). 
[redrawn from Preisendorfer and Mobley (1985)] 

curves are for total scattering; dashed curves are for single scattering.  For U 
= 0 and a uniform radiances distribution (C = 0), Judd (1942) numerically 
estimated the value r!(C=0) = 0.475 for nw = 4/3. The above integration of Eq. 
(4.51) for U = 0 yields r!(C=0) = 0.486, a difference of about 2%.  We see that 
both for uniform (C = 0) and natural lighting conditions (C = !0.7, !0.8, !0.9), 
the total r! is only weakly dependent on wind speed in the total scattering 
(solid curve) case, but is about an order of magnitude greater than r+. The 
observed dip in r! at low wind speeds constitutes the net effects of the relative 

)importance for different 2 ) of the rapidly changing values of r!(2s ,Ns 
)) seens 

in Fig. 4.14.  For the single scattering case, there is a significant decrease of r! 

with wind speed.  In practice, of course, one would work only with the total 
scattering (solid) curves in all of the above figures. 

It is important to distinguish between the albedo of the entire water 
body, 

and the irradiance reflectance r+ = r(a,w) of the air-water surface itself. The 
difference in A and r(a,w) is that A includes downwelling irradiance reflected 
back upward by the surface, as well as upwelling irradiance  
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transmitted from beneath the surface to above it; recall Eq. (4.5).  Thus we 
expect that r(a,w) < A. This is indeed the case, as can be seen by comparing 
the present computations or r(a,w) with measured albedos seen, for example, 
in Payne (1972) and in Simpson and Paulson (1979).  This comparison is 
discussed in Preisendorfer and Mobley (1986). 

The proper use of the quantities just computed is this: the r± and t± 

values are necessary input to the irradiance boundary conditions at the air-
water surface, as expressed by the interaction principles (4.5) and (4.6).  These 
boundary conditions are necessary for the solution of the two-flow irradiance 
equations for E  and Ed, which will be developed in Section 5.10.  The two-u

flow irradiance equations, when combined with their boundary conditions and 
certain additional information about the optical properties of the water itself, 
account for the effects of the water body as well as of the boundaries.  The 
equations generate values of E /Ed that can be directly compared with u

observations.  The solution of these equations along with their boundary 
conditions is the subject of Chapter 7. 

4.7 Radiance Transfer Functions '' 

We now illustrate the evaluation of the radiance reflectance and 
transmittance functions of a random air-water surface.  These functions are 
needed in the interaction principles (4.3) and (4.4), which are the sea-surface 
boundary conditions necessary for solution of the radiance transfer equation 
for L(.,2,N), to be developed in the next chapter. 

We shall again work with the random capillary surfaces defined in 
Section 4.3 and perform ray tracing as outlined in Section 4.4.  The ray-tracing 
procedure of this section is generally the same as that described in Section 4.5 
for the irradiance case.  There is, however, one important difference stemming 
from the fact that radiance is a directional quantity.  Since its reflectance and 
transmittance functions must convert one radiance into another radiance, it 
follows that the transfer functions must be bidirectional:  one direction for 
incident rays, and one direction  for scattered rays, as was seen in Eqs. (4.3) 
and (4.4). 

When doing numerical studies of radiance fields, it is impossible to 
consider the infinite number of pairs ( , ) of incident and scattered directions. 
Some sort of directional discretization is required, so that only a finite number 
of direction pairs need be treated.  Accordingly, we partition the upper (= u) and 
lower (= d) hemispheres of directions into a finite set of quadrilateral regions, 
called quads, plus a polar cap for each hemisphere.  We then use the Monte 
Carlo procedure to compute certain averages over 
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these regions.  Towards this end, we pause to define the notion of quad-
averaged directional functions, such as L( ), and of quad-averaged 
bidirectional functions, such as the r(a,w; 6 ), etc. of Eqs. (4.3) and (4.4). 
We shall use these definitions to obtain a quad-averaged, i.e. a directionally 
discretized, form of the interaction principles (4.3) and (4.4).  Moreover, we 
shall use these quad-averaging concepts repeatedly in Chapter 8 to reduce the 
radiance transfer equation within the water body to a form that is 
computationally tractable, and compatible with the quad-averaged interaction 
principles for the surface.  Hence the work of this section provides both the 
radiance transfer functions of a random air-water surface and a foundation for 
later numerical developments. 

Quad-averaged directional functions '' 

For our present and later purposes we partition the unit sphere = of 
directions into quadrilateral domains called quads, and into polar caps. A 
quad is bounded by circular arcs of constant :, i.e. of constant polar angle 2, 
and by circular arcs of constant azimuthal angle N.  The polar caps are circular 
domains centered on the two poles of the unit sphere.  Figure 4.18 illustrates 
a partitioning of = by means of 9 circles of constant : (4 in the upper 
hemisphere, 4 in the lower hemisphere, and the equator) and by 20 semicircles 
of constant N. Thus there are 4 × 20 + 4 × 20  = 160 quads, and two polar 
caps.  The figure also shows two directions, and , respectively belonging
to two different quads, Qrs in = d and Quv in = . The symbol "Qij" denotes theu

quad indexed by the ith : and jth N values, where i = 1,...,m and j = 1,...,2n are 
numbered from some reference quad chosen for convenience.  Note that the 
solid angles 

associated with quads Qrs and Quv are in general unequal in size.  Other 
= and indexing details will be discussed below. 

Let F( ) / F(:,N For 
partitionings of 

) denote any continuous function of direction.  
example, F( ) can be the spectral radiance, F( ) = L( ; ;8), where we omit 
the position and wavelength arguments for brevity.  Then the quad average of 
F( ) over any quad Quv in = is defined by 

(4.52) 
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Fig. 4.18.  An example partitioning of the unit sphere = into quads, for the case 
of m = 5 :-bands and n = 10 N-bands. The origin of the wind-oriented - -

 coordinate system is at the center of the unit sphere =; only  is shown. 
Several quads in the upper hemisphere = are explicitly labeled. [redrawnu

from Mobley and Preisendorfer (1988)] 

Quad-averaged quantities are fundamental building blocks of many 
numerical radiative transfer models, in the particular Monte Carlo models 
discussed in Chapter 6 and the invariant-imbedding model to be developed in 
Chapter 8.  Owing to the "smearing out" of the continuous F( ) by the
directional averaging in Eq. (4.52), the numerical model will not be able to 
resolve features of the radiance distribution that subtend solid angles smaller 
than S . However, the solid angles of the quads can in principle be made uv

arbitrarily small. 
In a manner of speaking, the quad-averaging process replaces the 

"clear" unit sphere (with perfect :-N resolution) by a polyhedron of frosted 
glass windows; each window (i.e.,  each quad or polar cap) makes uniform the 
radiance distribution within that window.  We note, however, that a model 
built up from such quad-averaging is still capable of arbitrarily fine resolution 
in its other variables, such as depth and wavelength. 
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Mathematical formalism of quad averaging '' 

The quad-averaging integral operator of Eq. (4.52) converts any 
continuous function of direction into its quad-averaged counterpart.  However, 
later applications of this operation to the development of quad-averaged forms 
of complicated equations will be simplified if we pause now to formalize the 
quad-averaging procedure. 

The quad-averaging procedure can be implemented in practice via the 
formal replacement of a function F(:,N) defined on the unit sphere = by the 
following linear combination  of its quad averages F(p,q): 

(4.53) 

where the dimensionless quad indicator function is defined by 

(4.54) 

and where ' ' q denotes a sum over all quads and polar caps Qpq in the unitp 

sphere =. Henceforth, unless noted otherwise, polar caps will be considered 
as special quads. Observe that  is a piecewise continuous function of 
direction but remains constant as (:,N) varies inside Qpq, and is of magnitude 
F(p,q), whereas the original F(:,N) in Eq. (4.52) may have varied inside Qpq. 
This follows from our interpretation of F(u,v) as an average and emphasizes 
the consequence of the directional averaging operation.  The same quad 
average over Quv, namely F(u,v), is obtained from Eq. (4.52) if  is used 
in place of F(:,N), as is easily shown by direct computation: 

(4.55) 

The interchange of summation and integration in the second line above is 
possible since only Ppq(:,N) depends on (:,N). But Ppq(:,N) is nonzero 
(namely of unit magnitude) only when (:,N) 0 Qpq, so the integral over Quv 
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is nonzero (and equal to Suv) only when quad Qpq is quad Quv. This is 
expressed in the third line by means of the Kronecker delta symbols.  Thus we 
see that 

(4.56a) 

and 

(4.56b) 

constitute a transform pair that respectively convert a continuous function of 
(:,N) into a discrete function of (u,v), and vice versa. 

Let us illustrate the utility of this formalism by its application to Eq. 
(1.23), which gives the downwelling plane irradiance Ed in terms of the 
continuous radiance distribution L(:,N): 

(4.57) 

Our goal is to obtain a formula which gives Ed in terms of quad-averaged 
radiances. We thus replace L(:,N) by  and employ Eq. (4.53) to get 

(4.58) 

The last equation follows because Puv(:,N) � 0 only when (:,N) 0 Quv 0 = d. 
The absolute value sign on : has been dropped since : > 0 in = d, and the sums 
over u and v now mean summation over all quads in = d. Now let :u(1) < :u(2) 
and Nv(1) < Nv(2) be the bounding (:,N) values of quad Quv, i.e. the quad is of 
size ):u = :u(2) ! :u(1) by )Nv = Nv(2) ! Nv(1).  The :-N integral in Eq. 
(4.58) then becomes 

(4.59) 
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Here :u / ½[:u(2) ! :u(1)] is the average value of : over quad Quv. Note that 
:  is not to be confused with , the upwelling average cosine defined in Eq. u

(3.15). The quad-averaged formula for Ed thus becomes 

(4.60) 

Note the net result of applying the quad-averaging formalism:  the 
integral over all directions (:,N) in = d is replaced by a sum over all quads in 
= d; continuous functions of direction, here L(:,N) and : itself, are replaced by 
the corresponding quad-averaged values, here L(u,v) and : ; and theu

differential element of solid angle d:dN is replaced by the finite solid angle of 
a quad, S .  The general validity of these simple conversion recipes (integrals uv

to sums, etc.) follows from the precise formalism of the quad-averaging 
process. 

Partitioning the unit sphere '' 

In the preceding discussion of quad-averaging, we saw qualitatively in 
Fig. 4.18 how the unit sphere is partitioned into quads.  We also used notation 
such as "' ' qF(p,q)" and remarked that the sums were "over all quads in =" p 

or "over all quads in = d," as was appropriate to the case at hand.  We now 
mention several schemes for partitioning = into quads, and we establish a 
bookkeeping scheme for labeling the quads.  We can then be more specific 
about how such sums are to be evaluated. 

Let the number of quads in the :-direction be M and let the number in 
the N-direction be N (M = 10 and N = 20 in Fig. 4.18).  Furthermore, let M and 
N be even, i.e. of the form M = 2m and N = 2n and, for reasons that will 
become clear later, let n itself be even. The restriction to even M and n values 
represents no significant loss of generality in the numerical model, but greatly 
simplifies the analysis formulas below.  We also require that non-polar cap 
quads have equal angular widths in the N-direction (the uniform )N makes 
possible the Fourier analysis in Chapter 8).  Thus we set 

We are free to center the first quad on the N = 0°, or downwind, direction as 
shown by the  unit vector in Fig. 4.18.  Then the centers of the non-polar 
quads Quv have the N values 

(4.61) 
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The azimuthal angle Nv is not defined for the polar cap quads (just as N is not 
defined at the poles, 2 = 0 and 2 = B, in a spherical coordinate system). 

In Eq. (4.61), index v = 1 corresponds to the downwind azimuthal 
direction.  It is convenient to let the polar angle index u = 1 label the bands of 
quads adjacent to the "equator" of =. Then u = m labels the polar caps.  This 
notation is ambiguous since every quad Quv or Qm  in = u has its mirror image 
in = d. However, the context or other notation will always make clear which 
quad (the one in = or = d) is meant.u

The angular size ): (or )2) of the quads in the : direction can be fixed 
as desired. Unlike the azimuthal case, there is no requirement that the quads 
in different : bands (defined by pairs of neighboring circles of constant : 
value) have equal ): values. One simple scheme for defining the : bands is 
to let ):u = ): = 1/m, and thus have quads of equal : size and hence of equal 
solid angle S  = ):u)Nv = ):)N (except for the polar cap quads).  With this uv

choice there are 2(m!1)2n non-polar quads of size Suv =(1/m)(B/n) sr, and two 
polar cap quads of size Sm = (1/m)(2B) sr, which total to the required 4B sr in 
=. 

Alternatively, if we set 

and 

then all quads including the polar caps have the same solid angle 

This equal-solid-angle partition of = is shown in Fig. 4.19(a) for m = 10, n = 
12; i.e. 434 quads each of solid angle )S . 0.029 sr. The equal-solid-angle 
partition may be inconvenient for some applications, because the quads near 
the pole cover a large 2 range and thus, for example, may cause an 
unacceptable loss of 2-resolution for solar positions near the zenith, or for lines 
of sight directed near the nadir.  Fig. 4.19(b) shows an equal )2 partition of the 
unit sphere.  Figure 4.19(c) shows an equal )2 case for a relatively fine 
partition with m = 23, n = 30, so that )2 . 4° and )N = 6°. A quad 
partitioning with m . 10, n . 12 as in Fig. 4.19(b) has been found to be 
reasonable for most computations, especially for those where irradiances or 
irradiance K-functions are the quantities of primary interest. 
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Fig. 4.19.  Further examples of partitions of the unit sphere into quads.  (a) m 
= 10 :-bands and n = 12 N-bands, with all solid angles Spq and Sm equal. (b) 
m = 10 and n = 12, with all )2 values equal.  (c) m = 23, n = 30, with equal )2 
values, so that )2 . 4°, )N = 6°. (d) m = 10, n = 12, with an ad hoc selection 
of the )2 values. [redrawn from Mobley and Preisendorfer (1988)] 

Quad partitionings as fine as that of Fig. 4.19(c) are required only if 
high angular resolution of the radiance distribution is required, although it is 
computationally reasonable to run the numerical model developed in Chapter 
8 with such grids.  Special studies may require an ad hoc spacing of the : 
bands. Figure 4.19(d) shows a partitioning with many : bands near the 
equator, as might be needed in a study requiring high angular resolution of the 
sun when very near the horizon.  We do note that a grid for which the solar 
disk, which subtends an angle of about 0.5°, fills one quad of size 
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)2 = )N = 0.5° would require m = 180, n = 360. Since computation and 
storage requirements of the model developed in Chapter 8 are generally 

2proportional to m n2, such a grid would require nearly 300,000 times the 
computer effort relative to the m = 10, n = 12 grid.  Such resolution is presently 
beyond the computational abilities of all but the most powerful computers. 

For notational convenience in our later development, we will 
occasionally write sums of a function F(p,q) over all quads as separate sums 
over = + / = and = ! / = . Correspondingly, we will sometimes add a "+" ord u

"!" superscript to the summand as a reminder of which hemisphere is 
referenced by the sum, as for example in 

Here "(Qpq 0 =)" means "all quads Qpq of = are to be summed over", etc. 
Because there is no N dependence for the polar caps, these "quads" are 

always special cases.  The value of F(p,q) at a polar cap will then be denoted 
by "F±(m,@)." Thus we write 

(4.62) 

Sums over = or = ± will always be computed as shown by the explicit notation 
of Eq. (4.62), although we shall often omit the ranges of p and q if there is no 
danger of confusion. 

Quad-averaged bidirectional functions '' 

We can extend the above quad-averaging concept to bidirectional 
functions such as the surface transfer functions r(a,w; 6 ), etc., or the
scattering phase function ( 6 ). In our equations, such functions will 
always have units of sr!1. Accordingly, let f( 6 ) = f(:) ,N)6:,N) be any 
bidirectional function with units of sr!1. Then an appropriate extension of Eq. 
(4.52) is
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(4.63) 

where Qrs and Quv are any quads or polar caps in =. Observe that f(r,s6u,v) is 
dimensionless.  The inverse of this transformation, corresponding to Eq. (4.53), 
is 

(4.64) 

where the quad indicator functions Prs(:
) ,N)) and Puv(:,N) are defined as in Eq. 

(4.54).  The sums over r,s and u,v are evaluated as in Eq. (4.62).  Here 
(:) ,N)6:,N) is a bidirectional step function, the quad-averaged approximation 

to f(:) ,N)6:,N). If (:) ,N)6:,N) is substituted in place of f(:) ,N)6:,N) in Eq. 
(4.63), we obtain f(r,s6u,v), as expected. 

When there is no natural "up-down" notation built into f(:) ,N)6:,N) 
[this will be the case in Chapter 8 for the scattering function (:) ,N)6:,N)], 
we can keep track of which hemisphere (= + = = d or = ! = = u) a directional 
index pair (r,s) or (u,v) belongs to in the quantity f(r,s6u,v) by appending "+" 
and "!" superscripts to f. There are four cases, for which we write 

t(a,w; 6 
, t(w,a; 6 ) is of the type f !! , r(a,w; 6 f +!, and

Here we read upper and lower signs together.  From the basic definitions in
Eqs. (4.3) and (4.4), we see that the quad-averaged form of 

) is of the type 

(4.65) 

) is of
the type f ++


r(w,a;
 6 ) is of the type f !+. 
Finally, we establish some notation to cover the special directions 

involved with the polar caps of the partitioned direction sphere =. The 
notation carries to bidirectional functions the convention established in 
Eq.(4.62). There are three cases in the bidirectional function setting: 

polar cap to quad: f(m,@ 6u,v) 
quad to polar cap: f(r,s 6m,@) 

polar cap to polar cap: f(m,@ 6m,@) . 
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The dot serves to fill the unneeded azimuthal direction at the caps. It will be 
clear from the context (e.g., using superscript ± notation) whether we are at 
one or the other polar cap. 

Quad-averaged surface boundary conditions '' 

The interaction principles (4.3) and (4.4) may be placed into a 
directionally discrete form by using the preceding definitions of quad-averaged 
radiances and surface transfer functions.  To illustrate the process, we first 
quad-average each side of Eq. (4.3) over quad Quv. The left side by definition 
is L(a;u,v), with Quv in = +. The first term on the right side of Eq. (4.3) 
becomes 

where we have written the integral over = ! as the sum of integrals over all Qrs 

in = !. Next, using the approximate quad-averaged representation (4.53) for 
L(w;:) ,N)), this term reduces to 

Q
The indicator function Ppq in the square brackets produces zero integrals over 

rs unless (p,q) = (r,s). The net result is 

where we have used Eq. (4.63) to define t(w,a;r,s6u,v) as the quantity in 
braces. 

By repeating this development for the other terms in the boundary 
conditions, we eventually arrive at the quad-averaged versions of Eqs. (4.3) 
and (4.4): 
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(4.66) 

(4.67) 

Each of the four transfer functions in Eqs. (4.66) and (4.67) has been obtained 
from its continuous counterpart by an application of Eq. (4.63).  These 
interaction principles are for the water surface S[a,w] of the medium.  Observe 
how the ordered pairs (a,w) and (w,a) of depths of the upper (a) and lower (w) 
faces of the surface together with the "t" and "r" symbols serve to indicate the 
direction of transfer of the radiant power at the surface.  This notation serves 
also to make clear the hemispheres (+ or !) over which the sums are to be 
taken.  Thus L(w;r,s) in Eq. (4.66), being an incident radiance on the bottom 
(water) side of the surface , must be upward, so that Qrs is in = ! = = . Theu

response radiance L(a;u,v) on the upper (air) side of the surface must therefore 
be upward; and so on.  Equations (4.66) and (4.67) will play crucial roles in the 
numerical solution of the radiance transfer equation in Chapter 8. 

Radiance transfer functions by Monte Carlo simulation '' 

We are finally in position to start constructing the radiance transfer 
functions for the random air-water surface. 

Let us consider a Monte Carlo experiment in which many air-water 
surface realizations S(T) are generated, as in Section 4.5.  For each surface 
realization S(T), T =1, 2, ..., S, one parent ray is aimed toward the surface 

Qrs,along a randomly chosen direction in some selected input quad  as in Fig. 
4.18.  Let denote such a ray. This ray interacts with the Tth surfacers

realization, as illustrated in Fig. 4.6, and generates 6( ;T) final daughter raysrs

emerging from the hexagonal domain (6 = 3 in Fig. 4.6). The parent ray rs 

is assigned a unit amount of radiant power, M) = 1. At each interaction of a 
ray with a wave facet, the radiant power of the incident ray is apportioned to 
the daughter rays as described in Section 4.5.  Thus when the parent ray 
intercepts a wave facet, the reflected daughter ray is assigned a radiant power 
of magnitude Mr1, where r1 is the computed Fresnel reflectance, and the 
transmitted ray is assigned a power of M(1!r1). If the reflected daughter ray 
then intercepts another wave facet, as in Fig. 4.6, the 
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reflected ray receives a power Mr1r2 and the transmitted ray receives Mr1(1!r2), 
where r2 is the Fresnel reflectance for the second ray-facet intersection.  In this 
way it is possible to build up arbitrarily long products of Fresnel reflectances 
and transmittances just as we did in Section 4.5. 

Let A[ , ( ;T)] be the product of the Fresnel reflectances and j rs

transmittances of all the daughter rays along a single unbroken path through 
space which connects the parent ray  with the jth final daughter ray ( ;T)rs j rs

emerging from the hexagonal domain.  As the notation indicates, the daughter 
rays j, j = 1, 2, ..., 6, depend on the direction rs of the initial ray and upon 
the wave facet orientations making up the Tth random surface realization. The 
Fresnel product A is dimensionless and satisfies 0 # A # 1. (The product 
equals 1 only in the case of incident on the surface from the water side andrs

undergoing a total internal reflection to generate one final daughter ray 1). 
Now define a radiant-power transfer function M+! by 

(4.68a) 

where Qrs is in = and Quv is in = !. As before, Puv( ) = 1 if j is in quad Quv,+ j

and Puv( ) = 0 otherwise. The "+" in M+! denotes downward incidence (Qrsj

M

in = +) and the "!" denotes upward reflection (Quv in = !).  The sum over j adds 
up the 6 Fresnel products for all those generated ray paths in space (for a single 
surface realization) which connect the input quad Qrs and the output quad Quv; 
this result is then averaged over the ensemble of S surface realizations. 

+!(r,s;u,v) is therefore a sample estimate of the fraction of the radiant power 
incident down on the water surface toward quad Qrs that is reflected up into 
quad Quv. This fraction M+! can be associated with a unit area of the mean 
water surface in a way similar to Eq. (3.49) and is therefore an irradiance 
reflectance of the random sea surface for radiant power from Qrs in = + to Quv 

in = !. Three other transfer functions can be defined analogously to Eq. 
(4.68a), viz.: 

M!!(r,s6u,v) when Qrs is in = ! and Quv is in = !, (4.68b) 
M!+(r,s6u,v) when Qrs is in = ! and Quv is in = +, (4.68c) 

and 
M++(r,s6u,v) when Qrs is in = + and Quv is in = +. (4.68d) 

Since the power M) = 1 of each parent ray rs is apportioned without 
loss to the daughter rays, it is easy to see that 
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(4.69a) 

for every Qrs in = +, and 

(4.69b) 

for every Qrs in = !. These equations merely state that radiant power incident 
on the water surface is either reflected by the surface or transmitted through the 
surface without loss. 

We also note that the irradiance reflectance of the water surface for 
power incident in Qrs in = + is given by 

(4.70a) 

Here the summation is over the = ! hemisphere.  Defining the associated 
irradiance transmittance t+(r,s) as 

(4.70b) 

where the summation is over = +, we can express Eq. (4.69a) as 

r+(r,s) + t+(r,s) = 1 for every Qrs in = +. 

A similar statement holds for the upward incident power in Eq. (4.69b): 

r!(r,s) + t!(r,s) = 1 for every Qrs in = !. 

The four radiant power transfer functions defined by Eq. (4.68), and 
evaluated by Monte Carlo ray-tracing, form the core of the four quad-averaged 
r and t functions for radiance, as will now be seen. 

The upward and downward plane irradiances, E! / E  and E+ / Ed, asu

computed from the quad-averaged radiances at any optical depth ., are given 
by [recall Eq. (4.60)] 
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where we have defined 

(4.71) 

Evaluating the downward irradiance at . = a, i.e. at the upper side of S[a,w], 
contributed solely by power in quad Qrs, we can write the incident radiant 
power per unit horizontal area of the water surface (the irradiance) as 

The upward irradiance E!(a;u,v) generated when the sea surface reflects this 
incident irradiance is 

since, as we have seen, M+!(r,s;u,v) is by construction the irradiance 
reflectance connecting Qrs and Quv. Using Eq. (4.71) this last equation can be 
written 

or 

(4.72) 

Now we recall the upper surface boundary condition (4.66): 

This equation of course holds even if only one particular input quad Qrs is 
illuminated and all others are dark, as we have postulated for the case of (4.72). 
In this case, Eq. (4.66) reduces to 

(4.73) 

Since the incident quad-averaged radiances are arbitrary, comparing Eqs. 
(4.72) and (4.73) immediately yields Eq. (4.74a), below.  Equation (4.74a) 
gives us the connection between the quad-averaged radiance reflectance 
r(a,w;r,s6u,v) and the quad-averaged irradiance reflectance M+!(r,s6u,v) 
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computed by ray tracing.  Corresponding analyses for the other terms of the 
boundary equations (4.66) and (4.67) give the corresponding results seen in 
Eq. (4.74), which are the desired radiance transfer functions across the random 
air-water surface: 

(4.74a) 

(4.74b) 

(4.74c) 

(4.74d) 

On comparing Eqs. (4.74b) and (4.74d) with the discussion of Section 
4.2 [recall Eqs. (4.21)-(4.25)], it is clear that the present quad-averaged forms 
of the transmittance functions for the random air-water surface include the n2 

law for radiance within them. 

Energy conservation at the surface '' 

A requirement for the quad-averaged radiance reflectances and 
transmittances is that they conserve energy at the air-water surface.  The 
irradiance balance at the surface for downward incident irradiance is expressed 
as 

(4.75) 

The left side of Eq. (4.75) is the downward irradiance incident on the water 
surface from all directions above the surface.  The first term on the right side 
of Eq. (4.75) is the upward irradiance at the surface induced by the incident 
downward radiance only, and the second term is the downward irradiance just 
below the surface also induced only by the incident downward radiance.  Thus 
Eq. (4.75) states that the energy received from the sky alone by the surface is 
either reflected back to the sky or transmitted through to the water column. 
The quad-averaged form of Eq. (4.75) is 
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(4.76) 

It is easy to show that Eq. (4.76) is an identity.  By virtue of Eq. (4.73), for a 
single arbitrary input quad Qrs, L

!(a;u,v) can be rewritten in terms of L+(a;r,s), 
with a similar relation also possible for L+(w;u,v). If only one arbitrary input 
quad Qrs of the unit sphere = is illuminated, Eq. (4.76) becomes 

or 

Substituting from Eqs. (4.74a) and (4.74b) for the quad-averaged irradiances, 
this equation becomes 

or 

after recalling Eq. (4.70).  Hence the energy conservation equation (4.75) 
remains valid in the setting of quad-averaged radiative transfer. A 
corresponding result is obtained for energy incident onto the surface from 
below.  Thus ray-by-ray conservation of energy guarantees global 
(hemisphere-wide) conservation of energy in the computed radiance 
reflectance and transmittance functions. 

4.8 Numerical Examples of Radiance Transfer

In Section 4.6 we presented the results of numerical computations of 
water-surface irradiance reflectances.  There it was relatively easy to display 
our results graphically as functions of wind speed and incident ray direction 
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(2) ,N)), since only two "output directions," upward and downward, were 
involved.  Unfortunately, there is not a convenient way to present the 
corresponding results for radiance reflectances and transmittances, since now 
a separate display would be required for each pair of quads Qrs and Quv. 
Moreover, quantities such as r(a,w;:) ,N)6:,N) and its quad-averaged form 
r(a,w;r,s6u,v) are not as intuitively easy to interpret as, say, the reflectances 
r+(2

) ,N)) of Fig. 4.11.  However, the radiance reflectance and transmittance 
functions of a wind-blown water surface are of central importance for radiative 
transfer in natural waters, and so we must attempt to gain some impression of 
the behavior of these functions. 

A level surface 

The simplest case occurs for zero wind speed in Eq. (4.32), so that the 
air-water surface is flat, as in Section 4.2.  For a level surface, we can make a 
direct comparison of ray-tracing results with the Fresnel reflectance formula, 
as follows. 

Figure 4.20 shows a portion of the upper hemisphere of the m = 10, n 
= 12 grid of Fig. 4.19(b), which has all )2 values equal ()2 = 9.474°), except 
for the polar cap, which has a half angle of )2 = 4.737°. For this partition of 
=, )N = B/12 = 0.262 rad = 15°.  The quad solid angles S depend on u.uv 

Table 4.1 displays the bounding 2 and N values of the quads, the average : 
values, and the quad solid angles. 

In Fig. 4.20 an incident ray  is shown approaching the water surface 
)from a direction (2s ,Ns 

)) in a source quad Qpq in = . The ray is headingu

toward input quad Qrs in = d, which lies exactly opposite Qpq on the unit sphere 
=.  For a level water surface, the reflected ray  traveling in direction (2,N) 
has 2 = 2 ), so that any ray heading toward Qrs will be reflected into only ones 

)quad Quv, with u = r and s = v, as shown for the case of u = r = 3. Angles 2s 

and 2 are shown in the figure as zenith angles, for ease of drawing.  The 
vectors , , and  are coplanar.  If has unit power, then ray has power 
equal to the value of Fresnel's formula for r(2 )) in Eq. (4.14). If a larges 

)number of incident rays  is selected at random from directions (2s ,Ns 
)) in Qpq, 

then M+!(r,s6u,v), computed as in Eq. (4.68a) is in effect the average of the 
Fresnel reflectance over the 2 range of the quad Qrs, +r(2s 

)),rs. Moreover, since 
u = r and s = v for a level surface, *:r *S  = *: *Suv, and Eq. (4.74a) reduces rs u 

to just 

All r(a,w;r,s6u,v) values are zero for r � u and s � v. Similar statements 
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Fig. 4.20.  A portion of the upper (= u) hemisphere of Fig. 4.19(b), showing the 
ray-tracing geometry.  A ray source quad Qpq, input quad Qrs, and the 
associated specular-reflectance quad Quv are shown shaded.  The insets clarify 
the relation of the main figure to the full sphere of quads. 

can be made for the case of water-incident rays and the values of 
r(w,a;r,s6u,v). 

Figure 4.21 shows the value of the continuous Fresnel reflectance 
function r(2 )) for air-incident rays superimposed on the values of s 

r(a,w;r,s6r,s) as computed by tracing 1000 rays toward each input quad Qrs, 
r = 1, ..., m = 10, shown in Fig. 4.20.  The corresponding curve of r(2 )) fors 

water-incident rays is also compared to r(w,a;r,s6r,s). The quad-averaged 
values are clearly good estimates of the average of r(2 )) over the 2 ranges ofs 

the various quads. 
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Table 4.1 	 Quad specifications for the m = 10, n = 12, 
equal )2 partition of Fig. 4.19(b). 

quad 2 range : range average : quad solid 
u index (deg) value, :u angle, Suv (sr) 

1 80.53 - 90.00 0.000 - 0.165 0.0823 0.0431 
2 71.05 - 80.53 0.165 - 0.325 0.2446 0.0419 
3 61.58 - 71.05 0.325 - 0.476 0.4003 0.0396 
4 52.11 - 61.58 0.476 - 0.614 0.5451 0.0362 
5 42.63 - 52.11 0.614 - 0.736 0.6750 0.0318 
6 33.16 - 42.63 0.736 - 0.837 0.7864 0.0266 
7 23.68 - 33.16 0.837 - 0.916 0.8765 0.0206 
8 14.21 - 23.68 0.916 - 0.969 0.9426 0.0140 
9 4.74 - 14.21 0.969 - 0.997 0.9830 0.0071 

10 0.00 - 4.74 0.997 - 1.000 0.9983 0.0215 

Fig. 4.21.  Fresnel reflectances for n  = 4/3 (smooth curves) and the w

corresponding quad-averaged radiance reflectances (stair-step curves), for the 
case of a level water surface. 



214 Across the Surface 

Capillary wave surfaces; air-incident rays 

If the wind speed is greater than zero, so that the air-water surface is 
covered by capillary waves as described in Section 4.3, then the daughter rays

 belonging to a given incident ray  may be directed toward any quad Quv, 
and the simple geometry of Fig. 4.20 no longer holds.  We shall illustrate the 
effects of the capillary waves for a wind speed of U = 10 m s!1 and for the 
same input quad Qrs shown shaded in Fig. 4.20. 

Figure 4.22 graphically displays the results of one Monte Carlo 
experiment, which traced 10,000 initial rays toward the same input quad Qrs, 
r = 3, illustrated in Fig. 4.20.  Each initial ray used a different realization of the 
capillary-wave surface.  As always, the wind is in the direction, so that N) 

= 0, as in Fig. 4.6.  Now, however, the tilted wave facets cause the reflected 
and refracted daughter rays  to be directed into many different quads Quv. 

Fig. 4.22.  A perspective view of the upper (= u) hemisphere of Fig. 4.19(b). 
The number in each quad gives the total number of reflected daughter rays 
ending up in that quad, for one Monte Carlo experiment tracing 10,000 air-
incident initial rays for a wind speed of U = 10 m s!1. The shaded specular 
quad Quv = Q3,1 would receive all 10,000 reflected rays in the case of zero wind 
speed. Quads with no number never received a reflected ray. 
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The numbers in the quads give the total number of reflected rays falling 
into each quad.  The "specular quad" Quv = Q3,1 (shown shaded) would have 
received all 10,000 reflected rays in the case of a level water surface (as in Fig. 
4.20).  In this experiment with capillary wave surfaces, Q3,1 received only 
1,444 reflected rays which, not surprisingly, is the most of any quad.  Quads 
near the specular quad also received substantial ray counts.  Quads located at 
an angular distance of more than 45° from the specular quad received few, if 
any, reflected rays. 

The observant reader will note that the total number of rays displayed in 
Fig. 4.22 is only 9,991.  For a horizontally finite hexagonal grid of wave facets, 
daughter rays sometimes leave the hexagonal domain of Fig. 4.6 before they 
have completed their multiple scattering interactions with the simulated water 
surface.  In the present experiment there were 9 such rays.  The number of such 
"lost" rays can be made arbitrarily small by making the hexagonal grid 
sufficiently large; this, however, increases the computational costs.  The loss 
of one ray per thousand is a reasonable tradeoff between cost and accuracy. 

The displayed ray count also gives an indication of the magnitude of the 
statistical fluctuations associated with the Monte Carlo ray tracing technique. 
Since, in this experiment, both the wind and the incident rays are in the N = 0 
direction, the elliptical symmetry of the water surface [recall Eq. (4.42)] 
implies that, on average, equal numbers of rays should be reflected into 
azimuthal directions N and 2B ! N. Thus in Fig. 4.22, for a given u value (i.e. 
for a given :-band of quads), we would expect on average to have equal ray 
counts for quads Quv with v = 2 and v = 24, v = 3 and v = 23, and so on.  We 
see, for example, that the ray counts for quads Qu,2 and Qu,24 differ by typically 
15%, for this experiment with 10,000 initial rays.  A corresponding asymmetry 
can be expected in the r(a,w;r,s6u,v) values computed from these rays. 

This statistical fluctuation can be made arbitrarily small by tracing a 
sufficient number of rays, with an attendant increase in computation expense. 
Any user of Monte Carlo techniques must decide how much statistical error 
can be tolerated in the computed results and then determine (most likely by 
numerical experimentation) how many Monte Carlo simulations must be 
performed (e.g., how many rays must be traced). 

Figure 4.23 displays the ray counts for the transmitted, or refracted, 
daughter rays generated by the same 10,000 air-incident rays just discussed. 
These are the rays used to compute t(a,w;r,s6u,v). In Fig. 4.23 we are in the 
position of a scuba diver looking up toward the water surface.  Two features 
of the transmitted ray count deserve comment. First, the angular distribution 
of the transmitted rays is noticeably tighter than for the reflected 
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Fig. 4.23.  A perspective view of the lower (= d) himisphere of Fig. 4.19(b); the 
azimuthal, or N, orientation matches that of = u in Fig. 4.22. The numbers give 
the total number of transmitted (refracted) rays ending up in each quad, for the 
same 10,000 air-incident parent rays tallied in Fig. 4.22. 

rays of Fig. 4.22.  Second, the quad receiving the most rays is the one with u 
= 5, which is nearer to the nadir direction than the incident quad Qrs (r = 3) is 
to the zenith direction.  The first feature represents the well-known "focusing" 
of rays when passing from air to water and, like the second feature, is a direct 
consequence of Snell's law.  The presence of these features in the transmitted 
rays is evidence that the n2 law for radiance, Eq. (4.21), is properly modeled 
by the ray-tracing procedure. 

Finally, we remark that of the 10,000 initial rays of this experiment, 
8,918, or 89%, underwent a single-scatter, three-branch interaction with the 
surface, as shown in upper left of Fig. 4.9.  The double-scatter, five-branch 
event of Fig. 4.9 occurred 1,004 times, for 10% of the total.  Still higher order 
scattering accounted for 1% of the interactions.  Thus multiple scattering 
occurred for 11% of the incident rays.  This number is seen to be compatible 
with the results displayed in Fig. 4.10, after noting in Table 4.1 that the 
incident rays had 2) values from 61.6° to 71.1°.  The number of transmitted 
rays tallied in Fig. 4.23 is 11,166, owing to the proliferation of transmitted rays 
by multiple scattering events (see Fig. 4.9). 

Each ray tallied in Figs. 4.22 and 4.23 had a power computed as a product 
of Fresnel reflectances and transmittances, as described in the 



217 4.8 Numerical Examples of Radiance Transfer 

paragraphs leading to Eq. (4.68).  Figure 4.24 shows the radiant power transfer 
functions M+!(r,s6u,v) computed as in Eq. (4.68a) from the rays tallied in Fig. 

M

4.22.  The numbers displayed are 100×M+!, i.e. a percent of the total incident 
power; recall that each incident ray is assigned unit power.  Note that the 
specular quad at u = 3 (with 1,444 rays) received 1.401% of the power, 
whereas the quad below, at u = 2, received 1.962% of the power even though 
this quad received fewer (1,333) rays.  The quad nearest the equator, at u = 1, 
tallied only 594 rays but received almost as much power, 1.307%, as the 
specular quad.  This power distribution is explained by the observation that 
even though the Q1,1 and Q2,1 quads had fewer rays than the Q3,1 quad, the 
average Fresnel reflectances for the individual rays were considerably greater 
for rays reflected into directions near the equator (so that the angle of incidence 
relative to the normal of the reflecting wave facet is large) than for rays 
reflected into the specular direction or poleward thereof.  Summing the 

+!(r,s6u,v) values as in Eq. (4.70a) yields a reflectance r+(r,s) = 0.092, which 
is compatible with Figs. 4.11 and 4.12 for incident angles in the range of Qrs, 
namely 61.6° # 2 ) # 71.1°.s 

The remaining 90.8% of the incident power is of course transmitted 
through the surface, into the water.  Figure 4.25 shows the M++(r,s6u,v) values 
obtained from the rays tallied in Fig. 4.23.  Note that almost 42% of all 
incoming power is transmitted through the surface and into only one quad, Q5,1. 
This quad and its eight nearest neighbors account for almost 89% of the 
incident power. 

The four radiant power transfer functions M±± are easily interpreted, as we 
have just seen for M+! and M++. However, it is not the M±± of Eq. (4.68) that are 
needed for radiance transfer computations, but rather the quad-averaged 
radiance transfer functions of Eq. (4.74).  Figure 4.26 shows r(a,w;r,s6u,v) as 
obtained from the M+! values of Fig. 4.24 and the : and S factors of Table 4.1, 
using Eq. (4.74a).  Figure 4.27 shows the t(a,w;r,s6u,v) values obtained from 
the M++(r,s6u,v) values seen in Fig. 4.25, using Eq. (4.74b).  The numbers in 
these two figures do not lend themselves to a simple physical interpretation as 
did M+! and M++, owing to the presence of the geometrical factors in Eqs. 
(4.74a) and (4.74b); they are merely the numbers needed in the quad-averaged 
equations (4.66) and (4.67) in order to compute the reflectance and 
transmittance of the quad-averaged radiance L(a;r,s) by the air-water surface, 
for this particular quad partition and wind speed. 

It should be remembered that Figs. 4.22-4.27 pertain to one particular 
input quad Qrs, one wind speed, and one set of 10,000 Monte Carlo realizations 
of the random air-water surface.  A similar set of figures could be generated for 
every input quad and every wind speed, and the statistical 
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Fig. 4.24.  The radiant power transfer function M+!(r,s6u,v) corresponding to 
Fig. 4.22.  The plotted values are 100×M+!, i.e. M+! as a percentage of the total 
incident power.  , denotes a plotted values less that 0.001, i.e. a value M+! < 

!5. 

Fig. 4.25.  The radiant power transfer function M++(r,s6u,v) corresponding to 
Fig. 4.23.  The plotted values are 100×M++, i.e. M++ as a percentage of the total 
incident power. 
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Fig. 4.26.  The quad-averaged radiance reflectance function r(a,w;r,s6u,v) 
corresponding to Figs. 4.22 and 4.24.  The numbers plotted are 
103×r(a,w;r,s6u,v). 

Fig. 4.27.  The quad-averaged radiance transmittance function t(a,w;r,s6u,v) 
corresponding to Figs. 4.23 and 4.25. The numbers plotted are 
103×t(a,w;r,s6u,v). 
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character of each of these data sets can be studied by making repeated, 
independent Monte Carlo experiments.  Although such analyses must be 
meticulously done in order to verify the correctness of the numerical 
techniques and of the associated computer coding, a discussion of the results 
is beyond our present needs.  There is, however, one other situation requiring 
comment, and that is the case of water-incident rays. 

Capillary wave surfaces; water-incident rays 

Think of turning Fig. 4.20 "upside down", so that the source quad Qrs is 
in = + and the initial rays 0 = ! are traveling upward and hitting the air-water 
surface from below.  The reflected rays are then heading downward, 
contributing to M!+ and r(w,a;r,s6u,v). The refracted rays are transmitted 
through the surface and into the air, contributing to M!! and t(w,a;r,s6u,v). 

In the case of a level surface, all incident rays undergo total internal 
reflection, since Qrs with r = 3 has 2 ) (now measured from the nadir direction) s 

Q

in the range 61.58° # 2 # 71.05°, which is greater than the critical angle for 
total reflection, 48.59°, obtained from Eq. (4.13b).  Thus M!+(r,s6u,v) = 1 when 

uv is the specular quad Q3,1; all other elements of M!+ and all elements of M!! 

are zero. 
When the wind speed is greater than zero, the incident rays will 

occasionally encounter capillary wave facets which are tilted so as to allow 
daughter rays to be transmitted through the surface, and the reflected and 
transmitted rays may be directed toward any quad. 

Figure 4.28 shows the distribution of reflected rays obtained from tracing 
10,000 water-incident initial rays, just as in the experiment previously 
described for the air-incident case.  Once again, the specular-reflection quad 
(shown shaded) has received the most reflected rays.  This ray-count diagram 
is not greatly different from that of the air-incident case shown in Fig. 4.22. 
Figure 4.29 shows the M!+ power distribution diagram belonging to Fig. 4.28. 
The M!+(r,s6u,v) values are much larger than the M+! values for air-incident 
rays, shown in Fig. 4.24.  These differences in air-incident and water-incident 
reflected power values are of course a consequence of the much larger Fresnel 
products of the water-incident reflected rays.  Note, for example, in Fig. 4.28 
that the quad Quv = Q1,24 (the first :-band at N = 345°) received 76 rays (i.e. 
0.76% of the 10,000 initial rays).  Now note in Fig. 4.29 that this quad received 
0.76% of the total power.  Thus we see that each of these 76 rays was the 
daughter ray of an initial ray that underwent total internal reflection, thereby 
receiving a Fresnel product of 1.  Similar results can be seen in other quads 
near the equator. 
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Fig. 4.28.  The distribution of reflected daughter rays in the = d hemisphere, for 
10,000 water-incident parent rays and for a wind speed of U = 10 m s!1. The 
shaded specular quad would have received all 10,000 reflected rays in the case 
of a level surface. 

Fig. 4.29.  The radiant power transfer function M!+(r,s;u,v) corresponding to 
Fig. 4.28.  The plotted values are 100×M!+, i.e. M!+ as a percentage of the total 
incident power. 
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The total ray count in Fig. 4.28 is 10,384, which is greater than 10,000 
owing to multiple scattering; 84% of the ray-surface interactions were of the 
single-scatter, two-branch, total-internal reflection type seen in Fig. 4.9.  The 
high frequency of total reflection gives a reflectance of r!(r,s) = 0.981, which 

)is consistent with an r!(2s ,Ns 
)) value estimated from Fig. 4.14 for 2 ) in thes 

range of 61° to 70°. 

M

Only 493 rays were able to pass through the surface; their distribution is 
seen in Fig. 4.30.  Figure 4.31 gives the corresponding power distribution 

!!(r,s6u,v), which leads to t(w,a;r,s6u,v). These M!! values total to 0.019, 
as expected. 

When using the numerical model of Chapter 8 for radiance calculations, 
we must evaluate the four radiance transfer functions of Eq. (4.74) for every 
input quad Qrs in =. The elliptical symmetry of the capillary wave surface 
does, however, reduce the computation by a factor of four since, if the transfer 
functions are known for all quads in the "first quadrant" of = (i.e. for 0 # N # 
B/2), then the functions can be obtained for all other quads by quad versions 
of the symmetry relations (4.42).  These matters are discussed in Section 8.5. 

Moreover, these surface computations need be done only once for a given 
wind speed and quad partitioning, because the ray-tracing model is 
independent of the water body and of the incident radiance to be imposed in 
any particular study. There will always be quads that receive only a few 
daughter rays, and consequently the values of the transfer functions for these 
quads will be relatively uncertain.  However, these quads account for only a 
very small part of the total power, and large relative errors in the associated 
transfer functions will have little effect on the overall radiance distribution. 
Those quads near the specular directions receive most of the power and 
therefore dominate the radiance distribution.  It is computationally practicable 
to trace enough rays to guarantee that the larger elements in the transfer 
functions have errors of at most a few percent, which is acceptable for most 
radiance calculations.  The actual number of initial rays that must be traced 
from each source quad depends on the quad solid angle and upon the wind 
speed, and must be determined on a case-by-case basis by a few independent 
Monte Carlo experiments like the ones discussed above.  For a 10 m s!1 wind 
speed and for the quad-partitioning used in Figs. 4.22-4.31, tracing 50,000 rays 
from each input quad Qrs appears to give acceptably accurate radiance transfer 
functions.  Fewer rays need be traced for lower wind speeds. 

We note in closing that the ray tracing procedures developed and used in 
this chapter are ideally suited to parallel processing.  Thus it is reasonable to 
suppose that within a few years of this writing, researchers  
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Fig. 4.30. The distribution of transmitted daughter rays in the = u hemisphere, 
for the same 10,000 water-incident parent rays of Fig. 4.28. 

10

Fig. 4.31.  The radiant power transfer function M!!(r,s6u,v) corresponding to 
Fig. 4.30.  The plotted values are 100×M!!, i.e. M!! as a percentage of the total 
incident power.  , denotes a plotted values less that 0.001, i.e. a value M!! < 

!5. 
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will be able to trace, at nominal cost, millions of rays per quad, with quad 
resolutions as fine as that of Fig. 4.19(c), and with a fully developed sea 
replacing our capillary waves. 

4.9 Extensions to Arbitrary Wave Spectra 

The results presented on the previous pages pertain to an air-water surface 
covered by capillary waves, but otherwise level.  This situation occurs in nature 
only for times shortly after the wind has begun to blow over a previously calm 
surface.  It is to be expected that the optical properties of a well developed sea, 
over which the wind has been blowing for long times and extensive fetches, will 
be affected by the presence of the resultant gravity waves. In particular, at low 
solar elevations the effects of wave shielding may become important, because 
the incoming rays will tend to strike the "frontsides" of the large gravity waves 
while their "backsides" remain in shadow. 

As has been mentioned, the ray-tracing algorithm based on the 
representation of the water surface by triangular wave facets is immediately 
applicable to the modeling of a surface on which gravity waves are present. In 
principle, it is necessary only to replace the capillary wave statistics (4.32) and 
(4.33) with equations defining the statistics of the desired wave spectrum.  In 
practice, however, this replacement is not trivial.  It is therefore worthwhile to 
illustrate how more complicated wave spectra can be incorporated into the 
numerical model. 

We note first that modeling a full gravity-capillary wave surface in the 
brute-force manner of Section 4.3 would require an astronomical number of 
triangular wave facets:  the facets must be small enough (# 0.005 m) to resolve 
the optically dominant capillary waves, and the hexagonal domain of facets 
must be large enough ($ 100 m) to cover several wavelengths of the larger 
gravity waves.  Such spatial resolution far exceeds the capabilities of even the 
largest computers.  It is therefore also necessary to develop algorithms that 
dynamically generate (as the randomly directed daughter rays are generated) 
only those parts of the sea surface that are needed for interaction with the 
daughter rays generated by the previous interaction of a ray with the surface. 
That is to say, we need to generate only small patches of the sea surface at the 
locations of the ray-surface intersections. However, these patches must 
represent all scales of surface waves.  Efficient algorithms for such a treatment 
of well developed seas have not been developed. 
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A hybrid gravity-capillary wave model 

The next-best approximation to nature might be to use a gravity-wave 
spectrum to generate a random sea surface of triangular gravity-wave facets. 
These gravity-wave facets would resolve only the larger gravity-wave 
components – those larger than 1 m, for example.  Ray tracing would be 
initiated with a realization of the gravity-wave surface.  Whenever an incoming 
ray  intersects a gravity wave facet, then that facet alone can be covered with 
a surface of capillary waves, generated as in Section 4.3.  The ray-surface 
interaction would then be completed with the capillary waves "riding" on the 
tilted gravity wave facet.  Tilting by the gravity waves can then be thought of 
as producing a systematic change in the incoming ray direction relative to the 
capillary waves riding on the gravity wave facet.  Thus when a ray strikes a 
gravity wave facet that is tilted toward the sun, the capillary waves on that facet 
see the sun as being "higher in the sky" relative to the plane of their gravity 
wave facet. 

Figure 4.32 quantifies this idea, using gravity waves generated in the 
manner described below. Let  be the surface normal of the gravity wave facet 
that has intercepted an incoming ray , and let 2c 

) be the equivalent zenith 
angle for capillary waves on the gravity wave facet.  That is, a tiny observer on 

)the gravity wave facet would see  come in at the angle 2  from the local c 

normal.  For a flat horizontal surface, = !  and 2 ) = 2 ), the true zenith angle c s 

of the incoming rays.  Figure 4.32 shows the average (over thousands of 
)incident rays) of 2 ) as a function of wind speed and true zenith angle 2 . Thisc s 

figure gives us an idea of when gravity-wave tilting is important.  For incident 
angles of 2 ) # 60°, there is little shielding over the wind speed range from 0 to s 

20 m s!1, and so the incoming rays are rarely intercepted in their way to the 
)target facet.  The average 2 ) is therefore equal to 2 . For rays incident fromc s 

nearer the horizon, shielding becomes noticeable at the higher wind speeds. 
Thus at sunset (2 ) = 90°) the capillary waves on the gravity waves see a solar s 

position which on average is around 10° above their horizon (i.e. 2 ) . 80°) at c 

a wind speed of 20 m s!1. 
Such two-scale models of the sea surface have been used in studies of 

radar backscatter by wind-generated waves (Donelan and Pierson, 1987, and 
references therein).  However, further investigations of the optical properties of 
this hybrid gravity-capillary wave model have not been made. 
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)Fig. 4.32.  The average equivalent polar angle 2  as a function of the windc 
)speed and of the true polar angle 2 . Solid lines are for N ) = 0° (incident rayss s 

)parallel to the wind), and dashed lines are for N  = 90° (incident rayss 

perpendicular to the wind).  [redrawn from Preisendorfer and Mobley (1985)] 

Generating a gravity-wave surface '' 

It is worthwhile to sketch how the realizations of a random gravity-wave 
surface were generated in the studies leading to Fig. 4.32, since the technique 
is applicable to any wave spectrum. 

A rectangular, wind-based coordinate system for gravity waves on the sea 
surface is shown in Fig. 4.33.  The horizontal plane of the system rests at mean 
sea level.  The region covered is 2X by 2Y meters and the x-axis lies downwind. 
(Our notation in this section deviates slightly from that adopted in Section 4.1; 
here we use x and y as horizontal coordinates).  The distances 2X and 2Y are 
divided respectively into 2R and 2m equal parts, forming a grid of alongwind and 
crosswind coordinate lines, of spacings )x = X/R and )y = Y/m. A point (or 
node) on the grid is located by the pair of integers (i,j), with !R # i # R and !m 
# j # m. 

The Tth realization of a spatially stationary, zero-mean random surface 
over this grid is defined by a surface elevation function 0 whose value (in 
meters), at node (i,j) is (Preisendorfer, 1988, p.155) 
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Fig. 4.33.  The rectangular, spatial-domain (x,y) coordinate system (solid lines) 
used to construct a random air-water surface of triangular gravity-wave facets. 
The facet triads corresponding to Fig. 4.6 are shown by dashed lines.  [redrawn 
from Preisendorfer and Mobley (1985)] 

(4.77) 

Here W is the set of (u,v) values such that u = 0 and 1 # v # m, or 1 # u # R and 
!m # v # m; p = 2R + 1 and q = 2m + 1. The quantities b and c areuv uv 

independent, normally distributed random variables of zero mean and variances 

(4.78) 
where 
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The quantity E(k ,kv) is the directional energy spectrum of the waves in u

rectangular coordinate form.  As before, õ denotes the ensemble average over 
the T = 1, ..., S realizations of the random surface.  The spectral domain W is 
shown in Fig. 4.34. E(k ,kv) has the symmetry E(!ku,!kv) = E(k ,kv), so that Wu u

covers all wave trains moving generally downwind. 
The directional energy spectrum for gravity waves as deduced from 

observation during the Stereo Wave Observation Project (SWOP; Coté, et al., 
1960; see also H.O. VI Chapter 12) is given by 

(4.79) 

where 

The first four of these equations are completely general; the last four 
define the SWOP spectrum [see Supplementary Note 6].  This formidable set 
of equations (4.77)-(4.79) is used as follows.  Select the wind speed U (in 
meters per second). This fixes the frequency (H.O. VI, p. 187) 

of the highest spectral energy density of waves represented by the spectrum. By 
F2 = gk and 8 = 2B/k, the value of F  also determines the associated max

wavelength 
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Fig. 4.34.  The spectral-domain (u,v) coordinate system corresponding to the 
spatial domain of Fig. 4.33.  W is the set of (u,v) values shown by circles. 
[redrawn from Preisendorfer and Mobley (1985)] 

of the waves of maximum energy density.  (Note that this 8 is the wavelength 
of the water waves, not the wavelength of light.)  This wavelength can be used 
to set the physical scale of the hexagonal grid of Fig. 4.33.  For example, X = 
Y = 48  would give an hexagonal domain capable of resolving fourmax

wavelengths of the maximum-energy waves.  Each of the maximum-energy 
waves is resolved according to the choice of R and m: R = m = 24, say, gives )x 
= )y = 8max/24. Note that the simple scaling of Eq. (4.39), e.g. the choice of * 
= 1, no longer holds. Once the grid resolution has been fixed, E(k ,kv) isu

determined from Eq. (4.79) evaluated for each pair of integers (u,v) in W. This 
calculation is performed only once.  Finally, to construct the Tth realization of 
a random surface, for each (u,v) 0 W we randomly draw (for the Tth time) 
independent samples buv(T) and cuv(T) from a normal distribution of zero mean 
and variance E(k ,kv))u)v [recall Eq. (4.78)].  The surface elevation 0(i,j;T) atu

node (i,j) is then found from Eq. (4.77) using the samples buv(T) and cuv(T) just 
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drawn.  An example of a sea surface simulated in this manner [using a  different 
wave spectrum than Eq. (4.77)] can be seen in McLean (1990; his Fig. 2). 

Note in Fig. 4.33 that the vertices of the wave triads, used to define the 
triangular wave facets, coincide with every other (i,j) point of the rectangular 
grid used to define E(k ,kv). Thus Eq. (4.77) need be evaluated at only those (i,j)u

nodes coinciding with a triad vertex (the points shown by circles in Fig. 4.33). 
Techniques similar to that just described have been used in recent studies 

of ocean glitter patterns.  For example, Tse, et al. (1990) show a very realistic 
looking simulation of a moonlit sea surface (their Fig. 7).  However, systematic 
investigations of the radiative transfer properties of a well developed sea have 
not been made, in part because the requisite computer power has not been 
available. 

4.10 Limitations of the Air-Water-Surface Model

The mathematical techniques developed in this chapter for describing 
wind-blown water surfaces are imperfect in several ways related to spatial (or 
wave) and temporal resolution, and to the omission of relevant physics. 

Spatial and temporal resolution 

The modeling of a sea surface as capillary waves of scales -0.01 m riding 
of gravity waves of scales $ 1 m is clearly a poor simulation of nature.  Real 
water surfaces comprise waves of all sizes in a continuous distribution from the 
smallest to the largest, and this physics should be incorporated into the 
numerical simulation of the random water surface. 

Water-wave spectra are an area of continuing research in hydrodynamics, 
and the literature abounds with semi-empirical and theoretical formulas for 
E(k ,kv) and related quantities.  Each new set of measurements of wind-u

generated waves seems to require a slightly different energy spectrum for its 
description.  This is not surprising, since the exact nature of the wind-blown 
surface depends on the history of the surface – how long the wind has been 
blowing, over what fetch, on the presence of currents, etc. 

The SWOP spectrum (4.79) is quite out of date for purposes of 
understanding the details of wave growth and dissipation.  We have presented 
it here only because it is the spectrum used to generate Fig. 4.32.  Recently 
developed spectra include all size scales from capillary to gravity 
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in a continuous fashion (Glazman, 1993, and references therein).  These more 
sophisticated spectra are essential for understanding wave turbulence and the 
nonlinear cascade of energy from larger to smaller scales.  The use of such 
spectra already has advanced our understanding of radar backscatter by the sea 
surface beyond that obtained from two-scale models (Glazman, 1990). 
Equations (4.77) and (4.78) are valid for all wave spectra.  We need only 
replace Eqs. (4.79) with the equations describing the desired wave spectrum, 
and then procede as described above.  However, such calculations at visible 
wavelengths, as are needed to revise Figs. 4.11-4.17 to include the effects of 
waves larger than capillary waves, are yet to be made.  

We also reiterate that the surface reflectance and transmittance properties 
computed in this chapter are time-averaged values. Surface waves can generate 
an interesting and important time-dependent phenomenon known as wave 
focusing, in which light rays passing through the surface are occasionally 
refracted in just the right directions so as to focus at a particular point below the 
surface.  Wave focusing is familiar to anyone who has noticed the fluctuating 
pattern of bright light on the bottom of a swimming pool.  Wave focusing is 
important because the responses of biological organisms or of some instruments 
to a rapidly fluctuating light field of some average value may be different than 
the responses to a steady light field of the same average value. 

Figure 4.35 illustrates the character of the fluctuations in the downwelling 
plane irradiance.  The figure shows a one-second-long time series of Ed 

measured at a depth of z = 0.5 m and a wavelength of 8 = 525 nm. Note that 
the irradiance exceeded twice its average value three times in one second, 
and that one "flash" in Ed was 4.5 times the average value.  Observation and 
simple modeling [e.g. Stramski (1986), Stramski and Dera (1988)] show that 
wave focusing effects are most pronounced at high solar elevation, at wind 
speeds less than 5 m s!1, and when the sky and water are clear.  Typical flashes 
last for a few tens of milliseconds.  The intensity of the flashes damps out 
rapidly with depth, so that the fluctuations in Ed are small below the upper few 
meters of the water column.  Relatively smooth surface waves with lengths of 
centimeters to tens of centimeters appear to be most responsible for wave 
focusing. 

Whitecaps and foam 

The models developed above also omit the effect of whitecaps and foam, 
which are present at wind speeds greater than a few meters per second, and 
which can have a pronounced effect on the optical properties of the sea surface. 
To be precise, we must distinguish between whitecaps, 
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Fig. 4.35.  Measured time series of spectral downwelling plane irradiance Ed(t) 
showing the effects of wave focusing.   is the average value of Ed(t) over the 
one-second observation period. [redrawn from Stramski (1986), with 
permission] 

which are the foamy part of actively breaking waves, and the total area covered 
by all foam, including that which is left over after a wave has broken.  The 
whitecap area is determined by the hydrodynamics of the waves; the total foam 
area depends also on water chemistry and air-sea temperature differences. 
There is often a factor of ten difference in the two areas.  A proper dynamical 
treatment of whitecaps is difficult [see Monahan and MacNiocaill (1986), and 
Glazman and Weichman (1989)], but a crude estimate of the effect of foam can 
be made as follows. 

Consider the computation of the irradiance reflectance r+ = r(a,w), as was 
presented in Fig. 4.16.  Let f be the fractional area of the wind-blown sea surface 
that is covered by foam, 0 # f # 1. Then 1 ! f is the fractional area of the 
surface that is free of foam, and for which the computed reflectance r(a,w) is 
assumed to hold.  If we assign an average reflectance rfoam to the foam, 0 # rfoam 

# 1, then the average reflectance   of the sea surface can be estimated as 

(4.80) 



233 4.11 Lambertian Bottom Surfaces 

The value of f depends on the air-sea temperature difference, as well as 
upon wind speed.  Monahan and O'Muircheortaigh (1986) present the empirical 
formula 

where U is the wind speed in meters per second measured at an elevation of 10 
m, and Tw and T are respectively the water and air temperatures in degrees a 

Celsius.  Glazman and Weichman (1989) present a formula the fraction of the 
sea surface that is covered by whitecaps; their formula is based on theoretical 
considerations of the hydrodynamics of breaking waves. 

The reflectance of newly made, thick foam in whitecaps is typically 
greater than 0.5.  The reflectance decreases with time as the foam ages and 
eventually disappears.  The average value of rfoam over the life of a patch of 
foam is likely in the range of 0.2 to 0.3 (Koepke, 1984).  Using a value of f = 
0.02, appropriate for neutral stability (T  = Ta) and U = 15 m s!1 in the precedingw

formula, a value of rfoam = 0.3, and r(a,w) = .05 (see Fig. 4.16), Eq. (4.80) yields 
= 0.055.  This value is 10% greater than the computed value of r(a,w) = 0.05. 
It can be inferred from crude analyses of this sort that the reflectances r(a,w) 
computed by ray tracing are -10% too low at the higher wind speeds. The 
effect of foam is expected to be much greater at very high wind speeds (U $ 30 
m s!1); then the contribution of the foam to  may equal the contribution of the 
foam-free surface. 

An interesting method for dynamically incorporating whitecaps into a 
glitter simulation has been developed by Tse, et al. (1990). Gordon and Jacobs 
(1977) performed a crude numerical study of the effects of foam on the earth's 
albedo and concluded that sea foam often may be as important as the water itself 
in determining the earth's albedo.  However, comprehensive studies of the 
optical effects of whitecaps and foam have not been made, in spite of the 
significant influence they may have on radiative transfer across the air-water 
surface. 

4.11 Lambertian Bottom Surfaces 

This chapter has been devoted to a detailed discussion of the time-
averaged radiative-transfer properties of air-water surfaces.  However, sandy or 
muddy bottoms in shallow waters can also greatly affect the nature of the 
underwater light field, and of the light leaving the air-water surface.  We saw 
proof of this in Figs. 2.6 and 2.7.  Such surfaces therefore require some 
discussion. 
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Consider an opaque, reflecting bottom boundary S[m,b] whose radiance 
reflectance function is 

(4.81) 

where 0 # R # 1 and 0 = d, 0 = . Substituting Eq. (4.81) into an irradiance u

reflectance equation of the form of Eq. (4.7b) gives 

(4.82a) 

(4.82b) 

(4.82c) 

We have used the definition of Ed in going from Eq. (4.82a) to (4.82b). 
Equation (4.5) written for the bottom boundary reads 

Letting t(b,m) = 0 for an opaque bottom, we see that r(m,b) is just the irradiance 
reflectance of the opaque bottom, so 

(4.83) 

This result gives us a simple physical interpretation for the R of Eq. (4.81). 
Surfaces whose radiance reflectance is of the form of Eq. (4.81) are called 

Lambertian surfaces, and R is called the (irradiance) reflectance of the surface. 
The radiance reflected by a Lambertian surface is, in analogy to Eq. (4.3), 

(4.84) 

Note that L( ) is independent of . Although the radiance reflectance depends 
on the incident angle 2), the radiance is reflected equally into all directions 
(2,N). This is the meaning of a Lambertian surface. Such surfaces are also 
called cosine reflectors, for an obvious reason.  Matte 
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surfaces such as sand or silt are reasonably well modeled as Lambertian 
reflectors. 

4.12 Problems 

4.1.  Suppose that the sun is at a zenith angle of 60°, and that the radiance of the 
solar disk is L  when measured in air. What will be the measured radiance of s

the solar disk if the instrument is placed just below a calm water surface?  The 
submerged instrument points toward the refracted solar image.  Repeat the 
above problem for a solar zenith angle of 85°. 

4.2.  Use the quad-averaging formalism to develop a formula giving E  in terms ou

of the quad-averaged radiances. 

4.3.  Equation (4.84) shows that for a Lambertian surface, E  = REd, where Edu

is the plane irradiance incident onto the surface, and Eu is the plane irradiance 
reflected by the surface.  What is E  for a Lambertian surface?  Is there a value ou

of R for which E  = E ?ou u

4.4.  You wish to model the spring phytoplankton bloom in the Arctic, where 
the sun is always low in the sky.  On a calm, clear day, with a level sea surface, 
a certain amount of light gets into the water.  If the wind starts to blow, will 
more or less light get into the water?  How might your answer change if the sky 
changes to a heavy overcast? 

4.5. Show that the albedo of a water body can be written as 

(4.85) 

Next rewrite Eu(w)/Ed(a) as R(w)Ed(w)/Ed(a) and use Eq. (4.6) to express 
Ed(w)/Ed(a) in terms of Eu(w)/Ed(a). Use these relations to transform Eq. (4.85) 
into an infinite series, which can be summed to give 

Use this exact formula to estimate the albedo of a water body for clear skys, sun 
at 45°, and wind = 5 m s!1; assume that the water has R(w) = 0.02. 
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