
Radiative transfer in the environment.    Weitzmann, fall 2008. 

Answers to proem set II:  

1. (based on Petty, 2006, pr. 5.5, p.112) Above is a figure from Petty, 2006, describing the 
reflectivity of different surfaces. A particular satellite sensor is being designed to measure 
reflectivities at two wavelengths. Based on this figure, choose to wavelengths so as to 
optimize the ability of the satellite to discriminate different surface types (assume the 
atmosphere is transparent). Start by drawing R(λ1) as function of R(λ2) for different 
surfaces. Plot points corresponding to each surface type and label them. Try to develop a 
simple mathematical algorithm (e.g. a series of tests based on inequalities) that would 
allow you to correctly classify the surface as snow, soil, growing vegetation, dry 
vegetation, or water based on the observations of  R(λ1) and R(λ2). You may want to 
consider differences in reflectivities and/or ratios and/or the value of the reflectivities in 



one wavelength, as possible variable in the algorithm. Whatever criteria depict them 
graphically as curves separating surface types on your plot of R(λ1) as function of R(λ2).  
Not that in order for an algorithm to be successful the classifier should be spread enough 
on your plot that uncertainties in R will not compromise your scheme. There are multiple 
solutions to this problem - be creative! 

There is a big difference between λ <1.1 and λ>1.4μm so it seems logical to pick one 
wavelength of each of the ranges. To separate grass from dark soil I decided to use 0.65um in 
the visible and 2.0um in the infra red. Dry vegetation has no NIR data and  a value in the VIS 
(0.3) at 0.65um wavelength that is quite distinct in absolute value from the rest. Water is black in 
the NIR while snow has a very high VIS/NIR ratio. The NIR value alone can separate light soil 
and dark soil which line on a similar wavelength ratio line. Growing vegetation as a low and 
similar value of NIR and VIS. 

 

Figure 1. Values of reflectance at 0.65μm and 2.0μm associated with different substrate. 

 
2. (based on Petty, 2006, pr. 6.2) Sometimes Planck’s function (B(T) may be expressed as 

function of frequency instead of wavelength (see last class for expression of Bλ(T)). Find 
the correct expression for Bν(T). Hint: think about energy conservation and watch for 
units. 

The best way to go about it (and not have problems with units) is to start from the integral of 
Plank’s function, which represents energy: 
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We substitute: 
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Note that we inverted the limits on the integral as smaller wavelengths are associated with larger 
frequencies and vice-versa. 

3. The simplest model of the greenhouse effect involves a slab encircling the air assumed to 
be in thermal equilibrium.  This slab (the atmosphere) is assumed to be transparent to the 
sun’s radiation yet absorbing to the radiation that emitted by the Earth with transmissivity 
τ for long wave radiation. This layer emits radiation according to its own temperature to 
both the Earth and outer space. a. assuming S to be the solar irradiance absorbed by the 
Earth’s surface (its value you derived in the previous homework), and that the 
atmosphere behave as a blackbody, derive and expression for the Earth’s temperature as 
function of S and τ. Using S you derived in the previous homework plot the Earth 
temperature as function of τ. Are they reasonable? 
 
From the previous homework we know that the absorbed radiation in the 
visible is S=243W/m2. I assume the reflected radiation is not absorbed by the 
atmosphere. The Earth warms and emits NIR radiation based on its own 
temperature. The Earth has a temperature of Te while the atmosphere Ta. 
At equilibrium the radiation absorbed by the Earth is balanced by that radiated to 
space: 
S=σTe4τ + σTa4 
Since at equilibrium the atmospheric layer emits the same amount as it absorbs 
both to outer space and back to Earth {that is σTa4 =(1-τ)σTe4 /2}. Hence:   
S= σTe4(1+τ)/2 or  
Te4=2S{(σ(1+τ)} 
Values on graph (Fig. 2 below) are reasonable, warmer the more absorbing the layer 
is. 



 
Figure 2. temperature of the hypothetical Earth for a given atmospheric 
layer transmission in the NIR, assuming a single slab.  
 
Analysis of BLB data: 
Fitting an exponential to the data (I used Excel, which for now is good 
enough. DO NOT USE it for your research data unless you know that your 
relative uncertainties are constant. Excel simply log(y-data) and fits a line 
with a linear-least-square fit. Better to use a non-linear fit, weigh the fit 
with your measured uncertainties and when uncertainties in both dependent 
and independent parameter are important, use type-II regression) provide 
us an equation where the exponent is equal to the specific attenuation for a 
drop times the length of the tank. 

 Attenuation per drop (in the volume of our tank) = 0.111/0.34=0.326 tank 
volumes/ drop /m. 

Drop/tank volume are the units of concentration of the drops in our 
experiment. 
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Figure 3. Data and fit for the BLB experiment. 
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