Problem set IV:

1. (based on Petty, ex. 7.2) A cloud layer has a vertical profile of the extinction coefficient ($c=0.015 \mathrm{~m}^{-1}$) that is quadratic with the altitude between its base ($z_{\text {base }}=1000 \mathrm{~m}$) and its top ($z_{\text {top }}=1200 \mathrm{~m}$) with a maximum in the middle of the cloud and zero extinction at its base and top.

Compute the total optical path and vertical transmittance through the cloud.
2. (Petty, ex. 7.6) A particular plane parallel cloud has liquid water density $\rho_{\mathrm{w}}=0.1 \mathrm{~g} \mathrm{~m}-3$ and thickness $\Delta z=100 \mathrm{~m}$. At a certain wavelength, the mass extinction coefficient of the cloud droplets is $c_{\text {water }}{ }^{*}=150 \mathrm{~m}^{2} / \mathrm{kg}$, and the single scatter albedo is $\omega_{\text {water }}=1$. However, the air in which the droplets are suspended is itself absorbing at this wavelength, having an absorption coefficient $a_{\text {air }}=10 \mathrm{~km}^{-1}$ and $\omega_{\text {air }}=0$.

Compute a, b, c and ω_{0} for the mixture (the absorption, scattering, attenuation and single scattering albedo). Compute the total optical thinkcness of the cloud layer. If the radiation incident on top of the cloud $I_{\lambda, \text { top }}$ is at a zenith angle of sixty degrees, compute the transmitted intensity, $I_{\lambda, \text { bot }}$.
3. (Petty, ex. 7.8) A ground-based radiometer operating at $\lambda=450 \mathrm{~nm}$ is used to measure the solar intensity $I_{\lambda}(0)$. For a solar zenith angle of $\theta=30^{\circ}$, $I_{\lambda}(0)=1.74 \times 10^{7} \mathrm{Wm}^{-2} \mu \mathrm{~m}^{-1} \mathrm{sr}^{-1}$. For $\theta=60^{\circ}, I_{\lambda}(0)=1.14 \times 10^{7} \mathrm{Wm}^{-2} \mu \mathrm{~m}^{-1} \mathrm{sr}^{-1}$. From this information, determine the top-of-the-atmosphere solar intensity S_{λ} and the atmospheric optical thickness τ_{λ}.
4. (Petty, ex. 7.12, using individual particle optical properties to obtain bulk properties) A certain cloud layer has geometric thickness $\mathrm{H}=0.1 \mathrm{~km}$ and liquid water path ($L \equiv \int_{z_{b o t}}^{z_{t o p}} \rho_{w} d z$) $L=0.01 \mathrm{~kg} \mathrm{~m}^{-2}$. Assuming Qe~2 (the extinction efficiency of particles larger than the wavelength) and a solar zenith angle of $\theta=60^{\circ}$, compute the transmittance of a direct light beam for a. $N=100 \mathrm{~cm}^{-3}$ (characteristic of clean maritime environments), and b. $\mathrm{N}=1000 \mathrm{~cm}^{-3}$
(characteristic of continental environments), where N is the number of spherical drops.
5. (Continuation of problem 3 from problem set 3). Recast the problem in terms of the asymmetry parameter: $g=\left(T_{1}-R_{1}\right) /=\left(T_{1}+R_{1}\right)$ and the single scattering albedo: $\omega_{0}=T_{1}+R_{1}=1-A_{1}$. Investigate the sensitivity of the asymptotic value of R_{N} to these parameter (as you did in the previous homework).

Extra credit: in the ocean we often assume that $R_{N} \sim b_{b} / a\left\{\right.$ or $\left.b_{b} /\left(b_{b}+a\right)\right\}$. Translate this expression to g and ω_{0} and investigate whether it is consistent with your findings.

