Radiative transfer in the environment.

Problem set IV:

1. (based on Petty, ex. 7.2) A cloud layer has a vertical profile of the extinction coefficient (c=0.015m⁻¹) that is quadratic with the altitude between its base (z_{base} =1000m) and its top (z_{top} =1200m) with a maximum in the middle of the cloud and zero extinction at its base and top.

Compute the total optical path and vertical transmittance through the cloud.

2. (Petty, ex. 7.6) A particular plane parallel cloud has liquid water density ρ_w =0.1 g m-3 and thickness Δz =100m. At a certain wavelength, the mass extinction coefficient of the cloud droplets is c_{water} *=150m²/kg, and the single scatter albedo is ω_{water} =1. However, the air in which the droplets are suspended is itself absorbing at this wavelength, having an absorption coefficient a_{air} =10km⁻¹ and ω_{air} =0.

Compute a, b, c and ω_0 for the mixture (the absorption, scattering, attenuation and single scattering albedo). Compute the total optical thinkcness of the cloud layer. If the radiation incident on top of the cloud $I_{\lambda,top}$ is at a zenith angle of sixty degrees, compute the transmitted intensity, $I_{\lambda,bot}$.

- 3. (Petty, ex. 7.8) A ground-based radiometer operating at λ =450nm is used to measure the solar intensity $I_{\lambda}(0)$. For a solar zenith angle of θ =30°, $I_{\lambda}(0)$ =1.74×10⁷ Wm⁻²µm⁻¹sr⁻¹. For θ =60°, $I_{\lambda}(0)$ =1.14×10⁷ Wm⁻²µm⁻¹sr⁻¹. From this information, determine the top-of-the-atmosphere solar intensity S_{λ} and the atmospheric optical thickness τ_{λ} .
- 4. (Petty, ex. 7.12, using individual particle optical properties to obtain bulk properties) A certain cloud layer has geometric thickness H=0.1km and liquid water path ($L \equiv \int_{z_{bot}}^{z_{top}} \rho_w dz$) L=0.01kg m⁻². Assuming Qe~2 (the extinction efficiency of particles larger than the wavelength) and a solar zenith angle of θ =60°, compute the transmittance of a direct light beam for a. N=100cm⁻³ (characteristic of clean maritime environments), and b. N=1000cm⁻³

(characteristic of continental environments), where N is the number of spherical drops.

5. (Continuation of problem 3 from problem set 3). Recast the problem in terms of the asymmetry parameter: $g=(T_1-R_1)/=(T_1+R_1)$ and the single scattering albedo: $\omega_0=T_1+R_1=1-A_1$. Investigate the sensitivity of the asymptotic value of R_N to these parameter (as you did in the previous homework).

Extra credit: in the ocean we often assume that $R_N \sim b_b/a$ {or $b_b/(b_b+a)$ }. Translate this expression to g and ω_0 and investigate whether it is consistent with your findings.