
Hands-on Mie lab. 
Emmanuel Boss, U. of Maine,  

Radiation transfer in the environment, 2008. 
 
Introduction: 
Mie theory provides the solution for a plane-parallel EM energy interacting 
with a homogeneous sphere. It assumes that a single scattering event is 
talking place. It is in the form of a series solution. The code provided 
(translated from the textbook by Bohren and Huffman, 1983) was designed 
to sum up the series elements based on a given convergence criteria.  We 
will also use simple approximations based on the anomalous diffraction 
approximation (developed by van de Hulst) which are applicable to many 
marine particles. 
 
The inputs to the Mie code: 
1. Wavelength of light interacting with the particle in the medium (λ).  
2. Index of refraction of the medium which is assumed to be non-absorbing . 
3. The diameter of the particle (with the same length units as the 
wavelength). 
4. Index of refraction of the particle (m=n+in’), both real and imaginary 
parts relative to the medium in which the particle is immersed. The 
imaginary part of the index of refraction relates to the absorption of the 
material it is made of in solution: n’=asolλ/4π. 
 
The solution of the Mie code is often given in terms of ‘cross section’ and/or 
‘efficiency factor’ for absorption and attenuation (scattering is obtained as a 
difference). For example, the attenuation cross-section, σext, has units of L2 
and provides the amount of light that is attenuated by a single particle in one 
m3. If we had N such particle in a m3 of water the beam attenuation would 
be: 
  c=σext  [number concentration]= σext N .  
The efficiency factor (Qext) is the cross section divided by the cross sectional 
area, e.g. for attenuation:  

Qext=σext/πr2.  
The efficiency factors are dimensionless. Another output of the code is the 
phase function. The optical properties of an ensemble of particles are, by the 
Beer-Lambert law, the sum of the optical properties of each of the individual 
particle present. 
 



Mie theory part I: optical properties of a single particle. 
 
a. Review: analytical limits for Mie’s solution (homogeneous spheres). 
See appendix. 
 
b. Class example (and homework): let’s assume we are dealing with 
non-absorbing rain drops (m=1.33) and a wavelength in air of 550nm 
(0.55μm). How does the mass-specific attenuation (c*=Qext*cross-
section/volume/density) vary as function of size for drops varying in size 
D=0.01, 0.1, 1, 10, 100, 1000. Use the Matlab routine callbh.m and the 
Mie solver (bhmie.m) to get Qext=Qc. 
 
Given a water fraction of 1g/m3 calculate the transmission (L/L0=e-cR) 
through a cloud R=1km thick for water distributed uniformly with the 
above diameters. 
 
How does it explain visibility differences between fog and rain?  
 
c. Class example: let’s assume a phytoplankton with  
m=1.05+0.01i, D=2μm & λ=440nm 
What analytical regime is applicable for such a cell? 
 
What is its attenuation (c), scattering (b) and absorption (a) per cell based on 
that approximation? Assuming 5*104 phytoplankton per ml compute the 
absorption, scattering and attenuation coefficients of this ensemble of mono-
dispersed particles? 
 
Using the Matlab routine callbh.m and the Mie solver (bhmie.m) get Qa, 
Qb, Qc, Qbb, β(θ) and ( )θβ~ . Calculate a, b, c and bb per cell and for a 
population of 5*104 phytoplankton per ml. Compare your results with the 
theoretical approximation you used above. 
 
Part II: Optical properties of a population of particles: 
 
a. Assume a phytoplankton population with n=1.05+0.01i relative to water. 
Assume the particles size distribution to be a power law distribution with a 
‘differential’ size distribution function f(D)=5*104D-4 particles per ml per 
μm for particles ranging from 0.2-100μm. Subdivide this range 
logarithmically into 35 size bins. Assume a wavelength of 440nm. 



• Using the Mie code (callbh_variedsizes_part2.m) obtain a, b, c, bb 

the volume scattering function (VSF; β(θ)) and the phase function (β
~

(θ)) for each size group.  
• Add them up to get the IOPs of the population (use 

Junge_population.m).  
• Compare the phase function for all sizes (plot them all on a semi-

logarithmic plot).  
• How do they compare to the shape of the total VSF?  
• How does bb /b changes as function of size?   
• Which contributes more to the attenuation in each size group, a or b? 

(plot them as function of D).  
• How do the optical characteristics change if f(D)∝ D-3?  
• How does your answer change if the range is 1-100 μm (i.e. what does 

the range 0.2-1μm contribute most to)? 
• Do the results change significantly when we used the finer spaced size 

bins (i.e. 100 versus 35 bins)? 
 
 
Part III: Inverse calculations: 
 
a. Using a phytoplankton absorption curve (obtained with an ac-9) for T. 

Pseudonana we find a(676)=0.14m-1. Assuming all cells had the same 
size (4μm) find n’(λ), for λ=676nm. Assume N=5*105cells/ml 
• Use a(λ)=Qa (λ)πD2/4*N and the AD.m code. Notice: in the 

anomalous diffraction approximation, Qa is not a function of n, and 
thus the assumed n value will not affect Qa.  

• For the same cells it was found that c(676)=0.8m-1. Using AD.m vary 
n between 1.02 and 1.2 and find which is most consistent with this 
observation. Notice: there may be more than one solution. Choose the 
one that seems most reasonable.  

 
b.   A given population of inorganic particles (n(660)=1.15, n’(660)=0.001) 

is distributed according to a power-law with ξ=3.5 between 2 and 30μm. 
If c(660)=3m-1, what is the amplitude of the PSD (in # per ml per μm) at 
2 μm? Use AD_population.m. 

 
    Note: similar inverse approach can yield population size exponent or size 

range for a population with given n and n’ and with the full Mie code. 



 
Appendix: A brief survey of some analytical solutions for Mie theory 
(based mostly on Light Scattering by Small Particles by Van de Hulst): 
 
Definitions:  x≡πD/λ-size parameter 
m=n+in’-index of refraction relative to medium 
ρ≡2x(n-1)-phase lag suffered by ray crossing the sphere along its diameter 
ρ’≡4xn’-optical thickness corresponding to absorption along the diameter 
β≡tan-1(n’/(n-1))   
D- Diameter          
λ-wavelength in medium  (=wavelength in vacuum/index of refraction of 
medium relative to vacuum)         
 
Rayleigh regime: x<<1 and |m|x<<1 
Qa=4x Im{(m2-1)/(m2+2)}    note: proportional to λ-1 
Qb=8/3 x4 |(m2-1)/(m2+2)| 2   note: proportional to λ-4 
Qc= Qa+ Qb 
Qbb= Qb/2 
Phase function: β=0.75(1+cos2θ) 
 
Rayleigh-Gans regime: |m-1|<<1 and ρ<<1 
Qa=8/3 x Im{(m-1)}     note: proportional to λ-1 
Qb=|m2-1| [2.5+2*x2-sin(4x)/4x –7/16(1-cos(4x)) /x2 +(1/(2x2)-2){γ+log(4x)-
Ci(4x)}], where γ=0.577 and . 

Qc= Qa+ Qb 

For x<<1: Qb=32/27 x4 |m-1| 2, Qbb= Qb/2 
For x>>1: Qb=2 x2 |m-1| 2, Qbb= 0.31|m-1| 2 
 
Anomalous diffraction: x>>1, |m-1|<<1 (ρ can be >>1) 
Qc=2-4exp(-ρtanβ)[cos(β)sin(ρ−β)/ρ+(cosβ/ρ)2cos(ρ−2β)]+4(cosβ/ρ)2cos2β 
Qa=1+2exp(-ρ’)/ ρ’+2(exp(-ρ’)-1)/ ρ’2 
Qb= Qc-Qa  
 
Geometric optic: x>>>1 
Qc=2 
Absorbing particle: Qb=1, Qa=1 
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Non-absorbing particle: Qb=2, Qa=0 

Angular scattering cross section: ( ) ( ) ( )2
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G is the cross sectional area (πD2/4). 


