Radiation transfer in environmental sciences

Lecture 3. Interaction of radiation with surfaces

Upcoming classes

When a ray of light interacts with a 'surface', several interactions are possible:

1. It is absorbed.
2. It is reflected (scattered, specular/diffuse).
3. It is transmitted into the material.

These interaction are important as both the radiance field directionality and magnitude may change following this interaction.

Thermal emission by the surface (e.g. a source) are sometime also considered as part of these process.

From: wikipedia

The index of refraction:

$$
\mathrm{N}=\mathrm{n}_{\mathrm{r}}+\mathrm{in}_{\mathrm{i}}
$$

n_{r}-controls the phase speed of light relative to a given medium (often vacuum).
n_{i}-describes the absorption by the wave.
Note: the two are related (Kramer-Kronig relations)
Related to the dielectric constant (relative permittivity- $\varepsilon / \varepsilon_{0}$).
For non-magnetic materials:

$$
\mathrm{N}^{2}=\varepsilon / \varepsilon_{0}
$$

ε is more convenient when we want to compute the index of refraction of a mixture.

In most problem we are interested in the relative index of refraction, e.g. particles in water (μ-permeability).

$$
\mathrm{N}^{2}=\varepsilon_{\mathrm{r}} \mu_{\mathrm{r}}
$$

The index of refraction varies with wavelength - (dispersion) \rightarrow separation of spectra using prism. For most materials the longer λ the smaller n (normal disp.).

Some important concepts/principles:

During the interaction with surfaces, radiant energy must be conserved.
Reciprocity: if a light ray follows a certain path the same path will be taken in the opposite direction if we replace the source and receiver geometry (very important for Monte Carlo simulations).

Effect due to an interface:

Refraction (Snell's Law):

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/refr.html\#c3

Another view (Feynman's lifeguard):

From: Wikipedia

Effect due to an interface

Refraction \& Reflection (critical angle):

Which is larger, n_{i} or n_{t} ?

Air and water:
$\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{t}} \cong 1.33$,
$\theta_{c} \cong 49^{\circ}$
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/totint.html\#c1

Effect due to an interface

Refraction (Snell's cone/window):

Effect due to an interface

Specular reflection (Sun glint):
Directionality of specularly reflected beam: $\theta_{r}=\theta_{i}, \phi_{r}=\phi_{i}+180^{\circ}$

Effect due to the interface

Fresnel (specular) reflection
Reflectivities (derived from Maxwell's equations, translated to plane waves + BCs, for nonmagnetic substances, Bohren and Huffman, 1987):

$$
\begin{aligned}
& R_{p}=\left[\frac{\tan \left(\theta_{t}-\theta_{i}\right)}{\tan \left(\theta_{t}+\theta_{i}\right)}\right]^{2}=\left[\frac{n_{1} \cos \left(\theta_{t}\right)-n_{2} \cos \left(\theta_{i}\right)}{n_{1} \cos \left(\theta_{t}\right)+n_{2} \cos \left(\theta_{i}\right)}\right]^{2}=\left[\frac{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}-n_{2} \cos \left(\theta_{i}\right)}{n_{1} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}+n_{2} \cos \left(\theta_{i}\right)}\right]^{2} \\
& R_{s}=\left[\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)}\right]^{2}=\left[\frac{n_{1} \cos \left(\theta_{i}\right)-n_{2} \cos \left(\theta_{t}\right)}{n_{1} \cos \left(\theta_{i}\right)+n_{2} \cos \left(\theta_{t}\right)}\right]^{2}=\left[\frac{n_{1} \cos \left(\theta_{i}\right)-n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}}{n_{1} \cos \left(\theta_{i}\right)+n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}}\right]^{2}
\end{aligned}
$$

$$
\square
$$

Polarization plane

$$
R=0.5\left(R_{s}+R_{p}\right)
$$

Transmittance $(T)=1-R$

Normal incidence:

$$
\begin{aligned}
& R=R_{s}=R_{p}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \\
& T=T_{s}=T_{p}=1-R=\frac{4 n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}}
\end{aligned}
$$

From: wikipedia

Reflectance and Transmittance for an Air-to-Glass Interface

Note that $\quad R+T=1$

Parallel polarization

Brewster angle: $\theta_{B}=\tan ^{-1}\left(\frac{m_{2}}{n_{1}}\right)$. $\theta_{b}=53^{\circ}$ air \rightarrow water

Reflectance and Transmittance for a Glass-to-Air Interface

Parallel polarization

Note that $\quad R+T=1 \quad \theta_{b}=37^{\circ}$ water \rightarrow air

Specular reflectance at the air-sea interface

Table 2.1. Reflectance of unpolarized light from a flat water surface. The values of reflectance have been calculated using eqns 2.12 and 2.15, assuming that the water has a refractive index of 1.33

Zenith angle of incidence, $\theta_{\text {a }}$ (degrecs)	Reflectance (\%)	Zenith angle of incidence, θ_{2} (degrecs)	Reflectance $(\%)$
0.0	2.0	50.0	3.3
5.0	2.0	55.0	4.3
10.0	2.0	60.0	5.9
15.0	2.0	65.0	8.6
20.0	2.0	70.0	13.3
25.0	2.1	75.0	21.1
30.0	2.1	80.0	34.7
35.0	2.2	85.0	58.3
40.0	2.8	87.5	76.1
45.0	89.0	89.6	

As a function of sun angle
And wind speed

As a function of sun angle

Fig. 7. Effects of sun glitter on ρ. The wind speed is $U=10 \mathrm{~m}^{-1}$ and the sky has
a non-uniform radiance distribution characteristic of a clear sky; 0 , is the

Effect due to the interface:

Immersion effects, n^{2}-law of radiance (energy conservation)

Reflection from natural surfaces.
R and T defined above apply to irradiances.
Irradiance reflectance is in fact: $R \equiv \frac{E_{u}}{E_{d}}$

The Bi-directional reflection distribution function (BRDF):

$$
B R D F \equiv \frac{L_{r}\left(\Omega_{r}\right)}{E_{i}\left(\Omega_{i}\right)}
$$

Units? How does one measure it?

Example of light field reflected from natural surfaces.

Concepts:

Shadows
specular reflection
Hot spot (backscattering)

Pictures from: http://www-modis.bu.edu/brdf/brdfexpl.html

Basic models of BRDFs:

1. Lambertian surface: BRDF is independent of direction of observation and direction of incidence: $L=\frac{\rho}{\pi} E$
2. Specular: $\quad B R D F \propto \delta\left(\theta_{i}\right) \delta\left(\phi_{i}+180^{\circ}\right)$

For more models see, e.g., Thomas and Stamnes.

\section*{Bidirectional Reflectance
 | Bidirectional Reflectance |
| :--- |
| Distribution Functions: Causes |}

Wolfgang Lucht, 1997

Calculation the radiance when the BRDF is known:
$L\left(\Omega_{r}\right)=\int_{2 \pi} B R D F\left(\Omega_{i} ; \Omega_{r}\right) E\left(\Omega_{i}\right) d \Omega$

http://www.vetscite.org/publish/articles/000063/index.html

What about macro surface features?
What ρ should we use?

aa053565 www.fotosearchcorn
For a Lambertian surface and a collimated source:

$$
\rho_{\mathrm{eff}}=\rho\langle\cos | \theta_{z}-\theta_{b}| \rangle
$$

More @ Zaneveld and Boss, 2003

http://www.stmarysmedia.co.uk/jb19/project/Wind.htm

Albedo, emissivity and reflectivity

Until now all we described are spectral concepts (narrow band).
We ignored absorption and the possibility that the surface emits light.
In general:

$$
E_{\lambda, r}\left(\theta_{r}, \phi_{r}\right)=R\left(\lambda, \theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) E_{\lambda, i}\left(\theta_{i}, \phi_{i}\right)
$$

And:

$$
R\left(\lambda, \theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)+A\left(\lambda, \theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=1
$$

Ignoring angular dependence and lambertian reflection

$$
E_{\lambda, u}=R(\lambda) E_{\lambda, d} \Rightarrow \Delta E=E_{\lambda, d}-E_{\lambda, u}=A(\lambda) E_{\lambda, d}
$$

Albedo, emissivity and reflectivity

Integrating the irradiance over a wide band (~ assuming a constant absorptivity, grey-body approximation), we define the 'Albedo':

$$
\bar{R}_{R_{u}}=\frac{E_{a}}{E_{d}}
$$

Not a bad assumption if $E_{d} \sim$ flat spectrally (why?).

Albedo, emissivity and reflectivity

In the $1^{\text {st }}$ lecture we talked about black-body radiation. Natural bodies emit less than a black-body, and we define the ratio as the emissivity:

$$
\varepsilon_{\lambda} \equiv \frac{E_{\lambda, u}}{\pi B_{\lambda}(T)}, \text { where : } B_{\lambda}(T)=\frac{2 h c^{2}}{\lambda^{5}\left(e^{h c / k_{B} \lambda T}-1\right)}
$$

Broadband 'grey-body' emissivity:

$$
\varepsilon_{\Delta \lambda} \equiv \frac{E_{\Delta \lambda, u}}{\pi \int_{\lambda_{1}}^{\lambda_{2}} B_{\lambda}(T) d \lambda}
$$

Wide enough spectral gap:

$$
\varepsilon \equiv \frac{E_{u}}{\sigma T^{4}}
$$

Albedo, emissivity and reflectivity

Kirchhoff's law: in local thermodynamic equilibrium:

$$
\int_{0}^{\infty} \varepsilon_{\lambda} E(\lambda) d \lambda=\int_{0}^{\infty} A_{\lambda} E(\lambda) d \lambda
$$

From the 'principle of detailed balance' (time reversal symmetry of Maxwell's equ.) it follows that:

$$
\varepsilon_{\lambda}=A_{\lambda}
$$

It is most common to apply this law to broad-band radiation.

Next week: interaction of light with matter

Rainbow tutorial on U-tube:
http://www.youtube.com/watch?v=rQukmSPctks

