What is Monte Carlo Modeling*?

Monte Carlo Modeling is a statisitcal method used here to simulate radiative transfer by simulating photon (or more exactly light rays/beams) interaction with a medium.

MC models can be built such that increasing complexity can be added as the model develops.
*based partially on a ppt file found at: www.ece.utexas.edu/bell/MonteCarlo.pp \dagger

Program

Some steps and concepts needed to implement a Monte Carlo model of photon propagation in a medium:

- Random Number Generation
- Attenuation of beam in the medium
- Scattering of Photons
- Variable weight photon
- Index Mismatch of Boundary Layers
- Grid Structure
- Detector
- Inverse MC (from detector \rightarrow source)

Basic concepts:

The "fundamental principle": we can map any probability distribution to a uniform distribution from 0 to 1:

$$
\xi=\int_{-\infty}^{x_{0}} p(x) d x=P\left(x_{0}\right)
$$

Example: the probability of a photon travel to a distance l (or an optical depth $\tau=c l$) without an interaction is $\exp (-\tau)$.

$$
\begin{aligned}
& \xi=\int_{-\infty}^{l} \exp (-\tau) d \tau=1-\exp (-\tau) \\
& \rightarrow \tau=-\log (1-\xi)=-\log (\xi)
\end{aligned}
$$

For a uniform medium: $\rightarrow l=-\log (\xi) / c$

Random Number Generation

- The first step in building a Monte Carlo model is to have a method to create random numbers.
- In Matlab the function 'rand. m ' generates a uniform distribution of random numbers (r.n.) in (0,1). \leftarrow see: gen_rand.m
- Random number generators produce 'pseudo' random numbers.

Essential Properties of a Random Number Generator*

- Repeatability -- the same sequence should be produced with the same initial values (or seed). This is vital for debugging.
- Randomness -- should produce independent uniformly distributed random variables that pass all statistical tests for randomness.
- Long period -- a pseudo-random number sequence uses finite precision arithmetic, so the sequence must repeat itself with a finite period. This period should be much longer than the amount of random numbers needed for the simulation.
- Insensitive to seeds -- period and randomness properties should not depend on the initial seeds.
*http://www.npac.syr.edu/users/paulc/lectures/montecarlo/p_montecarlo.html

Concepts

- Test if r.n. is "uniformly", i.e., equally distributed
- Generate 10,000 r.n. and divide the $(0,1)$ axis into 20 equal intervals.
- Observe the frequency of occurrence of r.n. in each interval. The ideal mean value is 500.
- Observe the standard deviation. The standard deviation should be less than 36.

Results

$S t d=18.05$

Attenuation of a Collimated Beam

- The goal of this step is to figure out how photons are attenuated in the medium.
- Attenuation coefficient is c with units m^{-1}.
- Attenuation obeys Beer-LambertBouguer's Law:
$L=L_{0} e^{-c z}$, where z is the depth within the medium.
\rightarrow The probability of attenuation within the medium in the interval $[z$, $z+d z]$ is $c d z$, for $d z<1 / c$.

Concepts

- After moving a step, a photon is either absorbed, scattered or transmitted. However, to simplify the problem, we only consider absorption in this step, that is, no scattering occurs. Therefore, $c=a=1 \mathrm{~m}^{-1}$ in this program.
- To simplify further, assume index matched boundary $\left(n_{1}=n_{2}\right)$, fixed step, and fixed weight photon.
- Index matching means that no reflection occurs at the boundary.
- Fixed step means that absorption only happens at the end of a fixed step Δz. In the following program, $\Delta z=20 \mathrm{~cm}$.
- Fixed weight photon means that a photon is treated as an integral particle. A photon cannot be partially absorbed.

Flow Chart

Results


```
Matlab program (code MC_abs.m):
a=1; \%absorption [m^-1];
dz=0.2; \%depth interval;
depths=[0:dz:20/a]; \%depth discritization
interval=zeros(1,length(depths));
for \(\mathrm{i}=1: 10000\)
    \(\mathrm{k}=1\);
    while rand(1)>exp(a*dz)
        \(\mathrm{k}=\mathrm{k}+1\);
    end
    interval(k)=interval(k)+1;
end
bar(interval);
hold on
\(\operatorname{plot}\left([1: 1: 40], d z^{*} 10000^{*} \exp \left(-a^{*}[1: 1: 40]^{*} d z\right)\right.\) );
hold off
xlabel('depth interval')
ylabel('\# of photons absorbed')
```


Code: MC_abs.m (2 ${ }^{\text {nd }}$ part)

Scattering of Photons in medium

- photons are either absorbed, transmitted through the medium or reflected back from the medium.
- We keep track of each photon and tally where all the photons terminate.
- Boundaries are index matched (can do it differently if needed).
- The step length of each photon is variable.

bottom absorption or reflection

Concepts

- In this step we will simulate the scattering of a photon in the medium.
- Scattering is accomplished by accounting for the position and direction of each photon.
- If a photon exits the medium ($z<0$), it has been reflected. Determining which depends on the z position at the exit point. At this point the photon is terminated (could be reflected back).
- Termination of the photon can also occur due to absorption in the medium or bottom.
- Step length is no longer a fixed value. It is calculated as:

$$
z=-\log (r . n .) / c
$$

Deflection Angle

- Deflection angle (θ) : When a photon is scattered it is deflected by this angle relative to its propagation direction:

$$
\int_{0}^{\theta} \beta\left(\theta^{\prime}\right) \sin \left(\theta^{\prime}\right) d \theta^{\prime}=\frac{b}{2 \pi} \cdot \text { r.n. }
$$

For empirical VSF use a lookup table and interpolation to save time on computations.

For certain idealized functions we have analytical expressions:

For Rayleigh, Raman and Pure-water scattering

$$
-\frac{f}{6+2 f} \mu^{3}-\frac{3}{6+2 f} \mu^{2}+\frac{1}{2}-\xi=0
$$

Where $f=0.835$ for pure water 0.55 for Raman at 490 nm and 1 for Rayleigh scattering. μ is the only positive root for a given ξ.

Henyey-Greenstein:

$$
\mu_{s}=\frac{1}{2 g}\left[1+g^{2}-\left(\frac{1-g^{2}}{1+g-2 g \xi}\right)\right]
$$

Where g>0 is the asymmetry parameter

Azimuthal Angle

- Azimuthal angle (ϕ) : When deflected by the Deflection angle, it is also deflected with respect to the orthogonal plane of propagation.

$$
\phi=2 * \pi * \text { r.n. }
$$

Flow Chart

Variable Weight Photons

- Now, as a photon encounters the medium it's weight is decremented.
- Once the weight is small enough the photon will either terminate or be re-energized. A threshold is set to determine if the weight is significantly small.
- A photon is only re-energize every 1 /threshold photons to keep the energy balanced. This concept is called roulette.

$$
\begin{aligned}
& \text { if(r.n. < threshold) } \\
& \text { weight = weight * 20; } \\
& \text { else } \\
& \text { weight = 0; }
\end{aligned}
$$

Plane-Parallel semi infinite scattering medium illuminated from above:

```
c = 1; % attenuation coefficient (1/m)
wO = 0.8; % single-scattering albedo
N = 1e5; % number of photons to trace
ns = 100; % max number of scatters per photon
E = 0; % initialize detector
for i=1:N
    z = 0; % initial position depth
    muz = 1; % incident light direction (collimated)
    w=1;% initial photon weight
    for j=1:ns
        s = - log(rand)/c; % geometric path length
        z = z + muz*s; % move photon
        if (z<0) E=E+w; break, end % count photons leaving out top
        w=w*w0; % absorb fraction of photon packet
        muz= 1-2*rand; % isotopic scattering
    end
end
E = E/N % normalize result
```


Index Mismatch at boundary

- In this step, the index-mismatched boundary between air and water is taken into effect. When light enters water, the total reflectance R_{t} should include both the specular reflection $R_{s p}$ and the remitted diffuse reflectance R_{d}.

Develop a Grid Structure

- To keep track of the locations at which photons are absorbed within the water.
- To accomplish this develop a two/threedimensional array of bins corresponding to the depth/location of the photon.
- With each absorption event, the photon's weight will be added into the bin corresponding to the photon's current location.

Detection of photons

Including a detector to detect the number of photons which enter the detector field of view.

- The detector is placed within the previously defined grid boundaries.

Detector Variables

- Detector position (Lateral distance from ray and the height above water)
- The detector radius
- The field of view of the detector (FOV)

Inverse Monte Carlo

- Use the principle of reciprocity: if a photon makes it from a to b, a photon can make it from b to a along the same path.
- Only simmulates photons that made it to the detector (as opposed to the whole medium).

Monte Carlo vs. other RT

- MC is the most flexible of all RT can accommodate any arrangement of source, receiver and medium properties.
- MC is simple to conceptualize.
- MC is slow. Need to simmulate millions of photons to reduce statistical error.

Monte Carlo Programming

A tutorial to Monte Carlo methods:

http://people.revoledu.com/kardi/tutorial/Simulation/index.html
List of tutorials:
http://www.cooper.edu/engineering/chemechem/MMC/tutor.html

Monte Carlo Simulation for Statistical Physics by Paul Coddington at Northeast Parallel Architectures Center at Syracuse University: An electronic book covering Monte Carlo programming in depth - includes discussion on Monte Carlo methods, specific algorithms, and problems and subtleties in Monte Carlo programming.
http://www.npac.syr.edu/users/paulc/lectures/montecarlo/p_montecarlo.html
Radiative transfer codes and documentation can also be found at:
http://www-star.st-and.ac.uk/~kw25/research/montecarlo/montecarlo.html

